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About me
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Modern Systems-on-a-Chip
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The Transaction Level Model:
Principles and Objectives

A high level of abstraction,
that appears early in the design-flow

A virtual prototype of the system, to enable
I Early software development
I Integration of components
I Architecture exploration
I Reference model for validation

Abstract implementation details from RTL
I Fast simulation (' 1000x faster than RTL)
I Lightweight modeling effort (' 10x less than RTL)
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Content of a TLM Model
A first definition

Model what is needed for Software
Execution:

I Processors
I Address-map
I Concurrency

... and only that.
I No micro-architecture
I No bus protocol
I No pipeline
I No physical clock
I . . .
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An example TLM Model
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Performance of TLM
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Content of a TLM Model
A richer definition

Timing information
I May be needed for Software Execution
I Useful for Profiling Software

Power and Temperature
I Validate design choices
I Validate power-management policy
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Use of Extra-Functional Models
Timing, Power consumption, Temperature Estimation
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Summary: Expected Properties of TLM Programs

SystemC/TLM Programs should
Simulate fast,
Satisfy correctness criterions,
Reflect faithfully functional and extra-functional properties of the
actual system.
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SystemC: Simple Example

N1 N2

SC_MODULE(not_gate) {
sc_in<bool> in;
sc_out<bool> out;

void compute (void) {
// Behavior
bool val = in.read();
out.write(!val);

}

SC_CTOR(not_gate) {
SC_METHOD(compute);
sensitive << in;

}
};

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
// Instantiate modules ...
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;
// ... and bind them together
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS);
return 0;

}
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Compiling SystemC

$ g++ example.cpp -lsystemc
$ ./a.out

... end of section?

But ...
C++ compilers cannot do SystemC-aware optimizations
C++ analyzers do not know SystemC semantics
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This section

2 Compilation of SystemC/TLM
Front-end
Optimization and Fast Simulation
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SystemC Front-End

In this talk: Front-end = “Compiler front-end” (AKA “Parser”)

SystemC Front
end

Intermediate
Representation

Back
end

Intermediate Representation = Architecture + Behavior
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SystemC Front-Ends

When you don’t need a front-end:
I Main application of SystemC: Simulation
I Testing, run-time verification, monitoring. . .

⇒ No reference front-end available on
http://www.accellera.org/

When you do need a front-end:
I Symbolic formal verification, High-level synthesis
I Visualization
I Introspection
I SystemC-specific Compiler Optimizations
I Advanced debugging features
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Challenges and Solutions with SystemC Front-Ends
1 C++ is complex (e.g. clang ≈ 200,000 LOC)

; Write a C++ front-end or reuse one (g++, clang, EDG, . . . )

2 Architecture built at runtime, with C++ code

; Analyze elaboration phase or execute it
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void compute (void) {

// Behavior
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Static Approaches

Dynamic Approaches

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 18 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with the architecture
When it becomes tricky. . .

int sc_main(int argc, char **argv) {
int n = atoi(argv[1]);
int m = atoi(argv[2]);
Node array[n][m];
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
array[i][j]

= new Node(...);
...

}
}

sc_start(100, SC_NS);
return 0;

}
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Dealing with the architecture
When it becomes tricky. . .

Static approach: cannot
deal with such code
Dynamic approach: can
extract the architecture for
individual instances of the
system
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Dealing with the architecture
When it becomes very tricky. . .

One can unroll the loop to
let i become constant,
Undecidable in the general
case.

void compute(void) {
for (int i = 0; i < n; i++) {

ports[i].write(true);
}
...

}
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The beginning: Pinapa
AKA “my Ph.D’s front-end”

Pinapa’s principle:
I Use GCC’s C++ front-end
I Compile, dynamically load and execute the elaboration (sc_main)

Pinapa’s drawbacks:
I Uses GCC’s internals (hard to port to newer versions)
I Hard to install and use, no separate compilation
I Ad-hoc match of SystemC constructs in AST
I AST Vs SSA form in modern compilers

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 21 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

LLVM: Low Level Virtual Machine

Bitcode
Front
ends

Back
ends

C

C++

...
Optimizer

JIT
compilation

Code
Generation

Clean API
Clean SSA intermediate representation
Many tools available

Can we be here?
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PinaVM: Enriching the bitcode
SystemC

Compilation
(llvm-g++, llvm-link)

LLVM bitcode

Execute
elaboration

Architecture

Identify
SC constructs

bitcode++

Intermediate
Representation

Execute
dependencies

...
%port = expr1(%this)
%data = expr2
SCWrite
- data = ??
- port = ??

...

SystemC construct
is still a normal function

%this
is fixed

%this not known
Cannot compute %port

...
port.write(data);
...

...
%port = expr1(%this)
%data = expr2
call write %port, %data
...

...
%port = expr1(%this)
%data = expr2
SCWrite

- data =

{
Process 0→ data d0
Process 1→ data d1

}

- port =

{
Process 0→ port p0
Process 1→ port p1

}
...
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Summary

PinaVM relies on executability (JIT Compiler) for execution of:
I elaboration phase (≈ like Pinapa)
I sliced pieces of code

Open Source: http://forge.imag.fr/projects/pinavm/
Still a prototype, but very few fundamental limitations
≈ 3000 lines of C++ code on top of LLVM
Experimental back-ends for

I Execution (Tweto)
I Model-checking (using SPIN)
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This section

2 Compilation of SystemC/TLM
Front-end
Optimization and Fast Simulation
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Typical Transaction Journey

Bus

CPU

RAM

T1 T2

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Call virtual method
on socket

Forward method
call to target socket

Address
Decoding

Another virtual
method call

Forwarded to
target socket

Ends-up calling
target module’s

method
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Basic Ideas

Do statically what can be done statically ...
... considering “statically” = “after elaboration”
Examples:

I Virtual function resolution
I Inlining through SystemC ports
I Static address resolution
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Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus

Address
Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Possible optimizations:
I Replace call to port.write() with RAM.write()
I Possibly inline it
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Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC

Encoding

Formal
language

Existing
verifier

Yes/No/Maybe
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Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3
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Translating a SystemC Program

Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

Scheduler
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Direct semantics

Direct semantics

Communication:
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The SystemC scheduler

Non-preemptive scheduler
Non-deterministic processes election

Init

Select process

Run Update Time elapse

(+ 1 automaton per process to reflect its state)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 31 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC to Spin: encoding events

notify/wait for event Ek :

p::wait(Ek ):
Wp := k
blocked(Wp == 0)

p::notify(Ek ):
∀i ∈ P|Wi == K

Wi := 0

Wp : integer associated to process p.
Wp = k ⇔ “process p is waiting for event Ek ”.
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SystemC to Spin: encoding time and events

discrete time
a deadline variable Tp is attached to each process p
Tp = next execution time for process p

p::wait(d):
Tp := Tp + d
blocked(Tp == min

i∈P

Wi==0

(Ti))

“Set my next execution time to
now + d and wait until the current
execution time reaches it”

p::wait(Ek ):
Wp := K
blocked(Wp == 0)

p::notify(Ek ):
∀i ∈ P|Wi == K

Wi := 0
Ti := Tp
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SystemC to Spin: results
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This section

4 Extra-Functional Properties in TLM
Time and Parallelism
Power and Temperature Estimation
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Parallelization of Simulations
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Parallelization of Simulations
System-level Simulation Vs HPC
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Problems and solutions for parallel execution of
SystemC/TLM

(1) Execution order imposed by SystemC semantics
(2) Concurrent access to shared resources

(e.g., x++ on a global variable)

; No 100% automatic and efficient solution for TLM

Our proposal = additional constructs:
Desynchronization (1) / Synchronization (2)
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Approaches to parallelization

Efficient

Targets a
wide subset of

SystemC

Few/no
modifications

required
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SC-DURING: The Idea

SC_THREAD_1

SC_THREAD_2

...

SC_THREAD_N

OS thread_1

OS thread_2

OS thread_N

SystemC OS thread

Unmodified SystemC
Some computation delegated to other threads
Weak synchronization between SystemC and threads thanks to
tasks with duration
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Simulated Time Vs Wall-Clock Time
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Simulated Time in SystemC and SC-DURING
S
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i() j()
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Impact on Parallelism

P1

P2

P3

P4
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Concurrency in an industrial platform

Number of SystemC threads active within a cycle (ST set-top-box case
study) :

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2→ h264

0 Proc. 1 2 3 4 and more
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Impact on Parallelism

P1

P2

P3

P4

Overlap between tasks ; parallel execution in
sc-during
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Execution of during(T)

Slow computation
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SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

during(d, f);

création du
thread

f

2 wait(d)
join()

3
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SC-DURING: New Synchronization Primitives
extra_time(t): Increase duration of current task

P
wait(5)

initial
duration extra time

catch_up(): Wait for SystemC to reach the end of the task

while (!c) {
extra_time(10);
catch_up(); // Ensures fairness

}

sc_call(f): Call function f in the context of SystemC

x++; // Forbidden in
// sc-during task

sc_call([]{ x++; }); // OK
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SC-DURING: Implementations

SC_THREAD_1

SC_THREAD_2

...

SC_THREAD_N

sync_task_1 OS thread_1

sync_task_2 OS thread_2

sync_task_N OS thread_N

SystemC OS Thread

Strategies:
SEQ Sequential (= reference)

THREAD Thread creation + destruction for each task
POOL Pre-allocated set of threads

ONDEMAND Thread created on demand and reused
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SC-DURING: Results

 0

 2

 4

 6

 8

 10

 12

 14

 10  20  30  40  50  60

Sp
ee

du
p

Number of processors in the model

Loose timing
(explicit synchronization)

Fine-grained synchronization

Test machine : 4× 12 = 48 cores
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Addressing the Faithfulness Issue: Exposing Bugs

Example bug: mis-placed synchronization:

imgReady = true;
wait(5, SC_US);
writeIMG();
wait(10, SC_US);

||

while(!imgReady)
wait(1, SC_US);

wait(10, SC_US);
readIMG();

⇒ bug never seen in simulation

during(15, SC_US, []{
imgReady = true;
writeIMG();

});

||

while(!imgReady)
wait(1, SC_US);

wait(10, SC_US);
readIMG();

⇒ strictly more behaviors, including the buggy one
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Model Faithfulness

model actual

Extra behaviors
of the model

(A)

Unmodeled
behaviors

(B)

Exactly modeled
behaviors

(C)
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SC-DURING

New way to express concurrency in the platform
Allows parallel execution of loosely-timed systems
Exposes more bugs ( faithfulness Vs correction)
Next steps (skipped from this talk):

I Worker threads Vs platform partitioning: DistemC
I Exploit FIFO-based communication: FOFIFON
I Integration in the design-flow: HLS code wrapping

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 54 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

This section

4 Extra-Functional Properties in TLM
Time and Parallelism
Power and Temperature Estimation
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Power and Temperature Estimation
An example

“How to validate embedded software that
regulates the chip’s temperature?”

while (true) {
// Temperature of one or more
// locations of the chip
read_sensors();

compute();

// Reduce frequency/voltage,
// emergency stop, ...
control_actuators();

}
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Power and Temperature Estimation
What precision? What applications?

control_actuators()

read_sensors()

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Arbitrary TemperatureScenarioComputation on a model
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Power Consumption, Temperature, Heat Dissipation

Component

Power
(Joule effect)

Dissipation
(to environment)

Dissipation

(to another
component)

Dissipation

(from another
component)

; differential equations, solved by dedicated solvers
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Estimation with Power-State Models

SPI 

I2C 

LIN 

CAN Ethernet 

USB 

WIFI 

GPU 

MEM CTLR 

CORE 
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TIMER 

UART 

PWM 
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UART 

Capteur 

Capteur 
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U
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R
T 

DAC 

DAC 

ADC 

ADC 

Sleep Idle

Run

0 watt 0.1 watt

0.4 watt

// SystemC Process
void compute() {

while (true) {

set_state("run");

f();
wait(10);

set_state("idle");

wait();
}

}
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From States to Consumption

State sleep run idle run

Consumption
0 watt

0.4 watt

0.1 watt

0.4 watt

Energy
(Consumption

× Time)

Total

2.5
Joules
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From Power to Temperature

State sleep run idle run

Consumption
0 watt

0.4 watt

0.1 watt

0.4 watt

Temperature

20oC

40oC
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Traffic Models

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

Consumption =
f (bits transmitted)

Consumption =
f ′(bits processed)
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Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature
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Cosimulation SystemC and Extra-Functional Solver

SystemC
Power/Temperature

Solver

States

Temperature

Functionality can depend on extra-functional data
(e.g.: temperature sensor)
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Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Simulation
Instant

t = 3

...Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d ]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d ]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d ]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d ]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t

2 SystemC sends a request for extra-functional simulation on
[t , t + d ]

3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2

3
4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d ]

3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d ]
3 Extra-functional solver does the computation on the interval

4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d ]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >



SoCs and TLM Compilation Verification Extra-functional Conclusion

Extra-Functional Events

SystemC

P/To

End of instant

1

Next instant

2

3
Too hot!

4

Fire IT

...

1 SystemC runs simulation until end of instant t

2 SystemC requests a extra-functional simulation in [t , t + d ] or until
“too hot”

3 Extra-functional runs simulation, encounters stop condition
4 SystemC resumes earlier than expected with interrupt.
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Results
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Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion
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Conclusion

Transaction-Level Models of
Systems-on-a-Chip

Can they be
Fast, Correct and Faithful?
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Conclusion

Fast
I Optimized compiler
I Parallelization techniques
I High abstraction level (Loose Timing)

Correct
I Formal verification

Faithful
I More ways to express concurrency
I Preserve Faithfulness of Temperature Models for Loose Timing
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Questions?
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