Transaction-Level Models of Systems-on-a-Chip
Can they be Fast, Correct and Faithful?

Matthieu Moy

Laboratoire d’Informatique du Parallelisme
Lyon, France

February 2018

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <1/70 >

2005
2006
2006

2014
2017

About me

Ph.D: formal verification of SoC models (ST/Verimag)

Post-doc: security of storage (Bangalore, Inde)

Assistant professor, Verimag / Ensimag
Work on SoC models & abstract interpretation

HDR: High-Level models for Embedded Systems
New CASH team leader, LIP / UCBL

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<2/70 >

Outline

0 Introduction: Systems-on-a-Chip, Transaction-Level Modeling
9 Compilation of SystemC/TLM

e Verification of SystemC/TLM

e Extra-Functional Properties in TLM

e Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<3/70 >

SoCs and TLM Compilation Verification Extra-functional

Outline

0 Introduction: Systems-on-a-Chip, Transaction-Level Modeling
Q Compilation of SystemC/TLM

Q Verification of SystemC/TLM

0 Extra-Functional Properties in TLM

0 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

Conclusion

<3/70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Modern Systems-on-a-Chip

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <4/70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Modern Systems-on-a-Chip

Software

Hardware

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <4/70 >

SoCs and TLM

Hardware/Software Design Flow

Traditional
Design-Flow

Specification,
Algorithm

RTL Design
Synthesis

Factory

Software
Development

Integration

Validation

Time

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <5/70 >

SoCs and TLM

Hardware/Software Design Flow

Time

Matthieu Moy (LIP)

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis
cost > 1,000,000 $!

Factory

Software
Development

Integration

Validation

Transaction-Level Models of SoCs

February 2018

<5/70 >

SoCs and TLM

Hardware/Software Design Flow

Time

Matthieu Moy (LIP)

Transaction-Level
Model based

Specification,
Algorithm
RTL Design

Synthesis

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

Transaction-Level Models of SoCs

February 2018

<5/70 >

SoCs and TLM

Hardware/Software Design Flow

Traditional Transaction-Level
Design-Flow Model based

Specification, Specification,
Algorith Algorithm
RTL Design RTL Design

Synthesis

Software
Development

Synthesis

Factory

Software
Development

Integration

Validation

Time

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <5/70 >

SoCs and TLM

Hardware/Software Design Flow

Traditional Transaction-Level
Design-Flow Model based

Al h Al h
goritl gorithm TLM Model
RTL Design RTL Design
Software
Development

Factory

J
I

Software
Development

Integration

Validation

Time

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <5/70 >

SoCs and TLM

Time

Matthieu Moy (LIP)

Hardware/Software Design Flow

Traditional Transaction-Level
Design-Flow Model based
Specification,
Algorith Al h
gorithm gorithm TLM Model

RTL Design RTL Design

i

Software
Development

Synthesis Synthesis

Integration

i

Factory Factory

Software

Development
> Validation

Integration

Validation

Transaction-Level Models of SoCs February 2018

<5/70 >

SoCs and TLM

Time

Matthieu Moy (LIP)

Hardware/Software Design Flow

Traditional Transaction-Level
Design-Flow Model based
Specification,
Algorith Al h
gorithm gorithm TLM Model

RTL Design RTL Design

i

Software
Development

Synthesis Synthesis

Integration

i

Factory Factory

Software
Development

Validation

Integration

gain

Validation

Transaction-Level Models of SoCs February 2018

<5/70 >

SoCs and TLM

The Transaction Level Model:
Principles and Objectives

A high level of abstraction,
that appears early in the design-flow

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<6/70>

SoCs and TLM

The Transaction Level Model:
Principles and Objectives

A high level of abstraction,
that appears early in the design-flow

@ A virtual prototype of the system, to enable
» Early software development
» Integration of components
» Architecture exploration
» Reference model for validation
@ Abstract implementation details from RTL

» Fast simulation (~ 1000x faster than RTL)
» Lightweight modeling effort (~ 10x less than RTL)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<6/70>

SoCs and TLM

Content of a TLM Model

A first definition

@ Model what is needed for Software
Execution:

» Processors
» Address-map
» Concurrency
@ ... and only that.
No micro-architecture
No bus protocol
No pipeline
No physical clock

vV VY VY VvVYYy

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <7/70 >

SoCs and TLM

An example TLM Model

CPU

process
C++ code

i

= Ev% ITC Jr% VGA L% Timer

TLM Bus

:

Data RAM

:

Instruction RAM

:

GPIO

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<8/70 >

SoCs and TLM

Performance of TLM

Pure RTL 1 hour
‘ ‘ ‘) x20

. . . /
RTL + cosimulation 3 minutes

[—

TLM 3 seconds

x3

HW emulation 1 second . I
Simulation time (second)
logarithmic scale

1 10 100 10000

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <9/70 >

SoCs and TLM

Reference for
Hardware
Validation

Uses of Functional Models

[SPEC)

Virtual
Prototype

for Software
Development

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<10/70 >

SoCs and TLM

Reference for
Hardware
Validation

Uses of Functional Models

Virtual
Prototype

for Software
Development

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<10/70 >

SoCs and TLM

Reference for
Hardware
Validation

Uses of Functional Models

Virtual
Prototype

for Software
Development

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<10/70 >

SoCs and TLM

Reference for
Hardware
Validation

Uses of Functional Models

Virtual
Prototype

for Software
Development

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<10/70 >

SoCs and TLM

Reference for
Hardware
Validation

Uses of Functional Models

Virtual
Prototype

for Software
Development

Matthieu Moy (LIP)

Unmodified
Software

Transaction-Level Models of SoCs February 2018 <10/70 >

SoCs and TLM

Reference for
Hardware
Validation

Uses of Functional Models

Virtual
Prototype

for Software
Development

Matthieu Moy (LIP)

Unmodified
Software

Transaction-Level Models of SoCs February 2018 <10/70 >

SoCs and TLM

Content of a TLM Model

A richer definition

@ Timing information

» May be needed for Software Execution
» Useful for Profiling Software

@ Power and Temperature

» Validate design choices
» Validate power-management policy

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <11/70 >

SoCs and TLM

Use of Extra-Functional Models

Timing, Power consumption, Temperature Estimation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <12/70 >

SoCs and TLM

Use of Extra-Functional Models

Timing, Power consumption, Temperature Estimation

Estimated Actual

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <12/70 >

SoCs and TLM

Use of Extra-Functional Models

Timing, Power consumption, Temperature Estimation

Unmodified

Power/Temperature-Awarg
Software

MMMMMM

Estimated Actual

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<12/70 >

SoCs and TLM

Summary: Expected Properties of TLM Programs

SystemC/TLM Programs should
@ Simulate fast,
@ Satisfy correctness criterions,

@ Reflect faithfully functional and extra-functional properties of the
actual system.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <13/70 >

SoCs and TLM Compilation Verification Extra-functional

Outline

0 Introduction: Systems-on-a-Chip, Transaction-Level Modeling
e Compilation of SystemC/TLM

Q Verification of SystemC/TLM

0 Extra-Functional Properties in TLM

Q Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

Conclusion

< 13/70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC: Simple Example

o]

SC_MODULE (not_gate) { int sc_main(int argc, char xxargv) {
sc_in<bool> in; // Elaboration phase (Architecture)
sc_out<bool> out; // Instantiate modules

not_gate nl ("N1");
void compute (void) { not_gate n2 ("N2");
// Behavior sc_signal<bool> sl, s2;
bool val = in.read(); // ... and bind them together
out.write(!val); nl.out.bind(sl);
} n2.out.bind(s2);
nl.in.bind(s2);
SC_CTOR (not_gate) { n2.in.bind(sl);
SC_METHOD (compute) ;
sensitive << in; // Start simulation
} sc_start (100, SC_NS);
}i return 0;

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <14/70 >

Compilation

Compiling SystemC

$ g++ example.cpp —-lsystemc
$./a.out

... end of section?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <15/70 >

Compilation

Compiling SystemC

$ g++ example.cpp —-lsystemc
$./a.out

But ...
@ C++ compilers cannot do SystemC-aware optimizations
@ C++ analyzers do not know SystemC semantics

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<15/70 >

Compilation

This section

e Compilation of SystemC/TLM
@ Front-end

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <15/70 >

Compilation

SystemC Front-End

@ In this talk: Front-end = “Compiler front-end” (AKA “Parser”)

Intermediate Back
SystemC Representation

Intermediate Representation = Architecture + Behavior

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <16/70 >

Compilation

SystemC Front-Ends

@ When you don’t need a front-end:

» Main application of SystemC: Simulation
» Testing, run-time verification, monitoring. . .

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <17/70 >

http://www.accellera.org/

Compilation

SystemC Front-Ends

@ When you don’t need a front-end:

» Main application of SystemC: Simulation
» Testing, run-time verification, monitoring. . .

= No reference front-end available on
http://www.accellera.org/

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <17/70 >

http://www.accellera.org/

Compilation

SystemC Front-Ends

@ When you don’t need a front-end:
» Main application of SystemC: Simulation
» Testing, run-time verification, monitoring. . .
= No reference front-end available on
http://www.accellera.org/
@ When you do need a front-end:
Symbolic formal verification, High-level synthesis
Visualization
Introspection
SystemC-specific Compiler Optimizations
Advanced debugging features

vV vy vy VvYyy

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <17/70 >

http://www.accellera.org/

Compilation

Challenges and Solutions with SystemC Front-Ends
@ C++is complex (e.g. clang ~ 200,000 LOC)

@ Architecture built at runtime, with C++ code

SC_MODULE (not_gate) { int sc_main(int argc, char *xargv) {
sc_in<bool> in; // Elaboration phase (Architecture)
sc_out<bool> out; not_gate nl ("N1");
void compute (void) { not_gate n2 ("N2");

// Behavior sc_signal<bool> sl1l, s2;
bool val = in.read(); // Binding
out.write (!val); nl.out.bind(sl);

} n2.out.bind(s2);
nl.in.bind(s2);

SC_CTOR (not_gate) { n2.in.bind(sl);
SC_METHOD (compute) ;
sensitive << inj; // Start simulation

} sc_start (100, SC_NS); return 0;

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <18/70 >

Compilation

Challenges and Solutions with SystemC Front-Ends
@ C++is complex (e.g. clang ~ 200,000 LOC)
~ Write a C++ front-end or reuse one (g++, clang, EDG, ...)

@ Architecture built at runtime, with C++ code
~ Analyze elaboration phase or execute it

SC_MODULE (not_gate) { int sc_main(int argc, char *xargv) {
sc_in<bool> in; // Elaboration phase (Architecture)
sc_out<bool> out; not_gate nl ("N1");
void compute (void) { not_gate n2 ("N2");
// Behavior sc_signal<bool> sl1l, s2;
bool val = in.read(); // Binding
out.write (!val); nl.out.bind(sl);

} n2.out.bind(s2);

nl.in.bind(s2);

SC_CTOR (not_gate) { n2.in.bind(sl);
SC_METHOD (compute) ;
sensitive << inj; // Start simulation

} sc_start (100, SC_NS); return 0;

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <18/70 >

Compilation

Challenges and Solutions with SystemC Front-Ends
@ C++is complex (e.g. clang ~ 200,000 LOC)
~ Write a C++ front-end or reuse one (g++, clang, EDG, ...)

@ Architecture built at runtime, with C++ code
~ Analyze elaboration phase or execute it

a . read(); //

; nl

n2
nl
SC_CTOR (not_gate) { n2
SC_METHOD (compute) ;
sensitive << in; //
} SC_.

int sc_

{ not_g¢
sc_

.in.bind (s
.in.bind (sl

main (i argc, char xxargv) {
Elaborat phase (Architecture)

signal<pboo - 7
Binding

.out.bind(sl);

.out.bind(s2);
)i
)i

2

Start simulation
start (100, SC_NS); return 0;

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <18/70 >

Compilation

Dealing with the architecture

When it becomes tricky. ..

int sc_main(int argc, char xxargv) {
int n = atoi(argv[l]);

int m = atoi(argv[2]);
Node array[n] [m];
for (int i = 0; 1 < n; i++) {

for (int 7 = 0; J < m; Jj++) {
array[i] [J]
= new Node(...);

}

sc_start (100, SC_NS);
return 0;

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <19/70 >

Compilation

Dealing with the architecture

When it becomes tricky. ..

int sc_main(int argc, char xxargv) {
int n = atoi(argv[1l]);

@ Static approach: cannot int m = atol(argv(2l);
; Node array[n] [m];
deal with such code for (int i = 0; i < n; i+4) {

for (int 7 = 0; J < m; Jj++) {
array[i] [J]

@ Dynamic approach: can

extract the architecture for = new Node(...);
individual instances of the ,
system }

sc_start (100, SC_NS);
return 0;

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <19/70 >

Compilation

Dealing with the architecture

When it becomes very tricky. . .

void compute (void) {
for (int i = 0; 1 < n; i++) {
ports[i].write (true);

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <20/70 >

Compilation

Dealing with the architecture

When it becomes very tricky. . .

@ One can unroll the loop to , ,
. void compute (void) {
let i become constant, for (int i = 0; i < n; i+4) {
@ Undecidable in the general ports(i].write(true);

}
case. .

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <20/70 >

Compilation

The beginning: Pinapa

AKA “my Ph.D’s front-end”

@ Pinapa’s principle:
» Use GCC’s C++ front-end
» Compile, dynamically load and execute the elaboration (sc_main)
@ Pinapa’s drawbacks:
Uses GCC'’s internals (hard to port to newer versions)
Hard to install and use, no separate compilation

Ad-hoc match of SystemC constructs in AST
AST Vs SSA form in modern compilers

v

v

v

v

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <21/70 >

Compilation

LLVM: Low Level Virtual Machine

JIT
C++ N
compilation
; Back
B Code
Generation
@ Clean API

@ Clean SSA intermediate representation .
@ Many tools available

)2 2003 2004 2005 2006 2007 2008 2009 2010

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <22/70 >

Compilation

LLVM: Low Level Virtual Machine

JIT
C++ T
compilation
: Back
C
B Code
Generation
@ Clean API Can we be here? /1
@ Clean SSA intermediate representation .

@ Many tools available

)2 2003 2004 2005 2006 2007 2008 2009 2010

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <22/70 >

Compilation

PinaVM: Enriching the bitcode

Compilation
(Ilvm-g++, llvm-link)

LLVM bitcode

Execute Identify
elaboration SC constructs

Architecture

Intermediate
Representation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <23/70 >

PinaVM: Enriching the bitcode
[Systemc]

Compilation
(Ilvm-g++, llvm-link)

$port = exprl (%this)
%data = expr2
call write %port, %data

$this not known
Cannot compute $port

port.write(data);

SystemC construct
is still a normal function

LLVM bitcode

Execute Identify -
elaboration SC constructs
$port = exprl (%this)
%data = expr2

%this
is fixed

Architecture SCWrite

- data
Execute
dependencies

- port
Intermediate
Representation

??

??

$port = exprl(%this)
%data = expr2
SCWrite
Process 0 — data oy
- data = { Process 1 — data d;

_ [Process 0 — port py
port = { Process 1 — port py

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <23/70 >

Compilation

Summary

@ PinaVM relies on executability (JIT Compiler) for execution of:

» elaboration phase (= like Pinapa)
» sliced pieces of code

@ Open Source: http://forge.imag.fr/projects/pinavm/
@ Still a prototype, but very few fundamental limitations
@ =~ 3000 lines of C++ code on top of LLVM

@ Experimental back-ends for

» Execution (Tweto)
» Model-checking (using SPIN)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <24/70 >

http://forge.imag.fr/projects/pinavm/

Compilation

This section

e Compilation of SystemC/TLM

@ Optimization and Fast Simulation

Matthieu Moy (LIP) Transaction-Level Models of SoCs

February 2018

<24/70 >

Compilation

Typical Transaction Journey

CcPU 0x6000
0x5000 RAM
0x3000
0x2000 T2
0x1000
0X0000 i

Bus
T T2
RAM

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <25/70 >

Compilation

Typical Transaction Journey

CPU

Matthieu Moy

0x6000
0x5000 R
port.write (addr,data) ; 0x3000 =
0x2000
0x1000
0x0000 ik
Bus
T T2
RAM
status write (addr,data) {
mem [addr] data;
}
(LIP) Transaction-Level Models of SoCs February 2018

<25/70 >

Compilation

Typical Transaction Journey

CPU 0x6000
0x5000 i
port.write (addr,data) ; 0x3000 7/_\
OX28 Address
Forward method Decoding

call to target socket

Call virtual method
on socket

Forwarded to
target socket

Another virtual
method call

status write (addr,data)
mem[addr] = data;

{

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <25/70 >

Compilation

Typical Transaction Journey

CPU 0x6000
0x5000 i
port.write (addr,data) ; 0x3000 7/_\
OX28 Address
Forward method Decoding

call to target socket

Call virtual method
on socket

Forwarded to
target socket

Another virtual
method call

Ends-up calling
target module’s
method

RAM

status write (addr,data) {
mem[addr] = data;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <25/70 >

Compilation

Typical Transaction Journey

0x6000
0x5000

CPU
OdeOO

W mzonn Address
Forward method Decoding
call to iarget socket
Call virtual method

on socket
Forwarded to
target socket
—

status write(addr,data) {
mem[addr] = data;

u

Another virtual
method call
< ¥

AM

Ends-up calling
target module’s
method

}

@ Many costly operations for a simple functionality

@ Work-around: backdoor access (DMI = Direct Memory Interface)

» CPU get a pointer to RAM’s internal data
» Manual, dangerous optimization

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<25/70 >

Compilation

Typical Transaction Journey

CPU 0x6000
0x5000 =l

port.urite (addr,data) ; Omgg

O)«ZO’m

W Address
Forward method Decoding
call to iarget socket
Call virtual method
on socket bRl
Forwarded to
target socket
—

status write(addr,data) {
mem[addr] = data;

u

Another virtual
method call
- ¥

AM

Ends-up calling
target module’s
method

}

@ Many costly operations for a simple functionality

@ Work-around: backdoor access (DMI = Direct Memory Interface)
» CPU get a pointer to RAM’s internal data
» Manual, dangerous optimization

Can a compiler be as good as DMI,
automatically and safely?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <25/70 >

Compilation

Basic Ideas

@ Do statically what can be done statically ...
@ ... considering “statically” = “after elaboration”

@ Examples:

» Virtual function resolution
» Inlining through SystemC ports
» Static address resolution

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <26/70 >

Compilation

Dealing with addresses Statically

CPU 0x6000
0x5000 RAM
port.write (0x5500,data) ; 0x3000 =
0x2000
0x1000
0x0000 ik
Bus
RAM

status write (addr,data) {
mem[addr] = data;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <27/70 >

Compilation

Dealing with addresses Statically

Matthieu Moy (LIP)

CPU 0x6000
0x5000 RAM
port.write (0x5500,data) ; 0x3000
I 0x2000 12
0x1000
0x0000 ik
Get actual
port addr
from PinaVM Bus
RAM

status write (addr,data)
mem[addr] = data;

}

{

Transaction-Level Models of SoCs

February 2018

<27/70 >

Compilation

Dealing with addresses Statically

CPU 0x6000
0x5000 RAM
port.write (0x5500,data) ; 0x3000 =
I 0x2000
Follow path 0x1000
to bus % T1
0x0000
Get actual

port addr
from PinaVM

Bus

RAM

status write (addr,data) {
mem[addr] = data;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<27/70 >

Compilation

Dealing with addresses Statically

CPU 0x6000
0x5000 RAM
port.write (0x5500,data) ; 0x3000 =
I 0x2000

Follow path

to bus 0%

0 Address

Decoding

Get actual
port addr
from PinaVM

Bus

RAM

status write (addr,data) {
mem[addr] = data;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <27/70 >

Compilation

Dealing with addresses Statically

CPU 0x6000
0x5000 RAM
port.write (0x5500,data) ; 0x3000 =
I 0x2000

Follow path

to bus 0%

0 Address

Decoding

/ Find target
socket at this

address

Get actual
port addr
from PinaVM

RAM

status write (addr,data) {
mem[addr] = data;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <27/70 >

Compilation

Dealing with addresses Statically

CPU 0x6000
0x5000 RAM
port.wrltg‘(OXSSOO,data) 2 0x3000 =
 — - 0x2000
ollow path
to bus 9% Address
0 Decoding

Get actual
port addr
from PinaVM

/ Find target
socket at this

address

Find function
in target
module

RAM .

status wfite(addr,data) {
mem[addr] = data;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <27/70 >

Compilation

Dealing with addresses Statically

CPU

0x6000
0x5000 RAM
powarxt?\tOxSSOO,data); 0x3000 >
- 0x2000
Follow path o
OX Address
Decoding
port addr <
from PinaVM .. Bus / Find target
e ¥ socket at this

address

Find function
in target
module

RAM

status write(addr,data) {
mem[addr] = data;

}

@ Possible optimizations:

» Replace call to port.write () with RAM.write ()
» Possibly inline it

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<27/70 >

SoCs and TLM Compilation Verification Extra-functional

Outline

o Introduction: Systems-on-a-Chip, Transaction-Level Modeling
9 Compilation of SystemC/TLM

e Verification of SystemC/TLM

Q Extra-Functional Properties in TLM

Q Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

Conclusion

<27/70 >

Verification

Encoding Approaches

SystemC

Formal
language

Existing
verifier

Yes/No/Maybe

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 28/70 >

Verification

Encoding Approaches

Ty x T, x T3 xSch T1®T2®T3
Synchronous automata Asynchronous automata
+ scheduler Dedicated product
SystemC
Concurrent
program
Ti x T, x Ty

Ty x Tp x T3 xSch
Asynchronous automata

Asynchronous product
shared variable

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<29/70 >

Verification

Encoding Approaches

. T X T x Ty xSch IHOIAOL]
: Synchronous automata Asynchronous automata
I + scheduler Dedicated product
SystemC
Concurrent
program
Ti x T, x Ty

Ty x Tp x T3 xSch
Asynchronous automata

Asynchronous product
shared variable

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<29/70 >

Verification

Translating a SystemC Program

@ Translation = Parse the source code, generate an automaton

@ Direct semantics = Read the specification, instantiate an
automaton

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <30/70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

@ Translation = Parse the source code, generate an automaton
@ Direct semantics = Read the specification, instantiate an

automaton
I Scheduler
&2

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <30/70 >

R
o2}

Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

SoCs and TLM

@ Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

User code:
Automatic translation

Scheduler

February 2018 <30/70 >

Transaction-Level Models of SoCs

Matthieu Moy (LIP)

Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

SoCs and TLM

@ Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

SystemC kernel:
Direct semantics

/

User code:
Automatic translation

Scheduler

February 2018 <30/70 >

Transaction-Level Models of SoCs

Matthieu Moy (LIP)

Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

SoCs and TLM

@ Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

SystemC kernel:
Direct semantics

/

User code:
Automatic translation

Scheduler

Communication:
Direct semantics

February 2018 <30/70 >

Transaction-Level Models of SoCs

Matthieu Moy (LIP)

Verification

The SystemC scheduler

@ Non-preemptive scheduler
@ Non-deterministic processes election

Select process

_/

Run Init Update Time elapse

(+ 1 automaton per process to reflect its state)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <31/70 >

Verification

Encoding Approaches

v T x To x T3 xSch
: Synchronous automata
1

TORXT

Asynchronous automata

+ scheduler Dedicated product
SystemC
Concurrent
program
Ti x T, x T3

Ty x T x T3 xSch
Asynchronous automata

Asynchronous product
shared variable

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<32/70 >

Verification

Encoding Approaches

T, x T x T3 xSch 3 TOLX® T 3
Synchronous automata Asynchronous automata :
+ scheduler Dedicated product 1
SystemC
Concurrent
program
Ti x T, x T3

Ty x T x T3 xSch
Asynchronous automata

Asynchronous product
shared variable

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<32/70 >

Verification

Encoding Approaches

Ti x T, x T3 xSch TOL®T
Synchronous automata Asynchronous automata
+ scheduler Dedicated product
SystemC
Concurrent
program
Tih x T, x Tz S & im==-m==c========

T X To x T3 xSch

Asynchronous product ' Asynchronous automata '
shared variable 1 1

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <32/70 >

Verification

Encoding Approaches

Ty x T x T3 xSch TOL®T
Synchronous automata Asynchronous automata
+ scheduler Dedicated product
SystemC
Concurrent
'---7-}-;-7'2-;-'@---.: program

Ty x T x T3 xSch
Asynchronous automata

1
1 Asynchronous product !
1 shared variable 1

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <32/70 >

Verification

SystemC to Spin: encoding events

@ notify/wait for event EX:

p::WGit(Ek): p::n.otify(Ek):
e W :=0
blocked(W, == 0) e

@ W, : integer associated to process p.
W, = k < “process p is waiting for event EX”.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 33/70 >

Verification

SystemC to Spin: encoding time and events
@ discrete time

@ a deadline variable T, is attached to each process p
Tp = next execution time for process p

p::wait(d): “Set my next execution time to
Tp:=Tp+d _ now + d and wait until the current
blocked(Tp, == mig (T7)) execution time reaches it’

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 34/70 >

Verification

SystemC to Spin: encoding time and events
@ discrete time

@ a deadline variable T, is attached to each process p
Tp = next execution time for process p

p::wait(d): “Set my next execution time to
Tp:=Tp+d _ now + d and wait until the current
blocked(Tp == min (T7)) execution time reaches it”
p::wait(EX): p::notify(EX):
W, =K Vi e P|W; == K
blocked(W, == 0) W,.=0

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 34/70 >

Nb of states

Verification

SystemC to Spin: results

7e+06 T

6e+06

5e+06 |-

4e+06 -

3e+06 |-

2e+06

1le+06 |

Y /A

RV 1 L 1

" PinavM ' ——
[SPIN 07] -----

0 .
ISV

2 4
Matthieu Moy (LIP)

6 8 10 12 14 16
Transaction-Level Models of SoCs

18 20 22

February 2018 <35/70 >

Verification

Encoding Approaches

Ty x T x T3 xSch TOL®T
Synchronous automata Asynchronous automata
+ scheduler Dedicated product
SystemC
Concurrent
program
Ti x T, x T

Ty x T, x T3 xSch
Asynchronous automata

Asynchronous product
shared variable

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<36/70 >

SoCs and TLM Compilation Verification Extra-functional

Outline

o Introduction: Systems-on-a-Chip, Transaction-Level Modeling
9 Compilation of SystemC/TLM

0 Verification of SystemC/TLM

° Extra-Functional Properties in TLM

Q Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

Conclusion

< 36/70 >

Extra-functional

This section

e Extra-Functional Properties in TLM
@ Time and Parallelism

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <36/70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Parallelization of Simulations

] i
—
o

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 37/70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Parallelization of Simulations
System-level Simulation Vs HPC

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 38/70 >

Extra-functional

Problems and solutions for parallel execution of
SystemC/TLM

(1) Execution order imposed by SystemC semantics

(2) Concurrent access to shared resources
(e.g., x++ on a global variable)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <39/70 >

Extra-functional

Problems and solutions for parallel execution of
SystemC/TLM

(1) Execution order imposed by SystemC semantics

(2) Concurrent access to shared resources
(e.g., x++ on a global variable)

~» No 100% automatic and efficient solution for TLM

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <39/70 >

Extra-functional

Problems and solutions for parallel execution of
SystemC/TLM

(1) Execution order imposed by SystemC semantics

(2) Concurrent access to shared resources
(e.g., x++ on a global variable)

~» No 100% automatic and efficient solution for TLM

Our proposal = additional constructs:
Desynchronization (1) / Synchronization (2)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <39/70 >

Extra-functional

Approaches to parallelization

Efficient
Targets a Few/no
wide subset of modifications
SystemC required

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 40/70 >

Extra-functional

SC-DURING: The Idea

SC_THREAD 1

OS thread_1

SC_THREAD_2

OS thread_2

SC_THREAD_N

OS thread_N

SystemC

@ Unmodified SystemC

OS thread

@ Some computation delegated to other threads

@ Weak synchronization between SystemC and threads thanks to

tasks with duration

Matthieu Moy (LIP) Transaction-Level Models of SoCs

February 2018

Extra-functional

Simulated Time Vs Wall-Clock Time

|

()

ET1 ~__ Time
S ' elapse
EU | : Computation

]]]]
T T T T

0 10 20 30 40
Simulated time

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <42/70 >

Extra-functional

Simulated Time in SystemC and SC-DURING

(@)
EA
(]
23
coB
2P
=
o
3 Q

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43/70 >

Extra-functional

Simulated Time in SystemC and SC-DURING

fQ/\Iait(ZO) Process A: |
O A | // Computation
E | £0);
*i 5 | | //ITlme taken by f
) | | wait (20);
2P
3
% Q

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43/70 >

Extra-functional

Simulated Time in SystemC and SC-DURING

fQ/\Iait(ZO) Process A: |
O A | // Computation
E | £0);
*i | | //Time taken by f
o B | | wait (20) ;
g(gqait (20) Process P:
g’ P g();
5 wailt (20);
©
2 Q

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43/70 >

Extra-functional

Simulated Time in SystemC and SC-DURING

f .
()wait (20) | Process A:

// Computation

| £0);

| | //Time taken by f
| wait (20);

wait (20) Process P:

P h) —— g0;
wailt (20);

during (15, h);

sc-during

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43/70 >

Extra-functional

Simulated Time in SystemC and SC-DURING

f) Lt (20 Process A:

walt (20) | // Computation

| £0);

| | //Time taken by f
| wait (20);

wait (20) Process P:

P h) —— g0;

wailt (20);
during (15, h);

sc-during

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43/70 >

Extra-functional

Impact on Parallelism

P1

P2

P3

P4

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 44/70 >

Extra-functional

Concurrency in an industrial platform

Number of SystemC threads active within a cycle (ST set-top-box case
study) :

mpeg2 — h264 [|
h264
mpeg2
bootinit R |
‘ ‘
0% 50l % 106 %
[CJO0Proc. A 71 2 3 Il 4 and more |

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <45/70 >

Extra-functional

Impact on Parallelism

P1

P2

P3

P4

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 46/70 >

Extra-functional

Impact on Parallelism

P — |

P2 | |

P3 I |

P4 | |

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 46/70 >

Extra-functional

Impact on Parallelism

Pt —
P2 —— —
P8 ———— —
P4 —

Overlap between tasks ~ parallel execution in
sc—during

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 46/70 >

Wall-clock time

Extra-functional

Execution of during (T)

Slow computation
Simulated

-
-
-
-
.-

0 10 20 30 40
Simulated time

time L/ finishes

Fast computation

Task o Computation Task
£ ends finishes
é]) Rest of the
© -7 platform
2 4& Task s’[artsdnves time

0 10 20 30 40
Simulated time

— AN] idle |,

Matthieu Moy (LIP)

Transaction-Level Models of SoCs February 2018 < 47/70 >

Extra-functional

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion
}
A
C
Thread

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48/70 >

Extra-functional

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion

}

during(d, f);

Y

Thread

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48/70 >

Extra-functional

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(f); // Thread creation
C) sc_core::wait(d); // SystemC executes
@ t.join(); // Wait for completion

}

during(d, f);

Y

c @

création du
thread

Y

Thread — f

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48/70 >

Extra-functional

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion

}

during(d, f);

Y

C @
création du @ walit(d)
thread
Thread —— f

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48/70 >

SC-DURING: First (Naive) Implementation

void during(sc_c

std:
C) std::thread t
C) sc_core::wait

() t.join(); //
}

Extra-functional

ore::sc_time d,
:function<void()> £) {
(£); // Thread creation
(d); // SystemC executes
Wait for completion

during(d, f);

—

—

T

c @

création du
thread

N

(2) wait(d)

Thread

Matthieu Moy (LIP)

f

Transaction-Level Models of SoCs February 2018

<48/70 >

SC-DURING: First (Naive) Implementation

Extra-functional

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion

}

during(d, f);

—

—

T

c @

création du
thread

N

(2) wait(d)

Thread

Matthieu Moy (LIP)

f

join()

Transaction-Level Models of SoCs

February 2018

<48/70 >

SC-DURING: First (Naive) Implementation

Extra-functional

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion

}

during(d, f);

—

—

T

c @

création du
thread

N

(2) wait(d)

Thread

Matthieu Moy (LIP)

f

join()

Transaction-Level Models of SoCs

February 2018

<48/70 >

Extra-functional

SC-DURING: New Synchronization Primitives

extra_time(t): Increase duration of current task

wait (5)
P initial
duration

extra time

Matthieu Moy (LIP) Transaction-Level Models of SoCs

February 2018 <49/70 >

Extra-functional

SC-DURING: New Synchronization Primitives

extra_time(t): Increase duration of current task

wait (5) —
i ‘? dlIJrl]‘g.lt?cl)n extra time ——

catch_up(): Wait for SystemC to reach the end of the task

while (!c) {
extra_time (10);
catch_up(); // Ensures fairness

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<49/70 >

Extra-functional

SC-DURING: New Synchronization Primitives

extra_time(t): Increase duration of current task

catch_up():

sc_call(f):

wait (5) —
i ‘? dlIJrl]‘g.lt?cl)n extra time ——

Wait for SystemC to reach the end of the task

while (!c) {
extra_time (10);
catch_up(); // Ensures fairness

}

Call function £ in the context of SystemC

x++; // Forbidden in
// sc—during task
sc_call([]l{ =x++; }); // OK

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<49/70 >

Extra-functional

SC-DURING: Implementations

SC_THREAD _1 sync_task_1 OS thread_1

SC_THREAD 2 sync_task_2 OS thread_2

SC_THREAD_N sync_task_N OS thread_N

SystemC OS Thread

Strategies:
SEQ Sequential (= reference)
THREAD Thread creation + destruction for each task
POOL Pre-allocated set of threads
ONDEMAND Thread created on demand and reused

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <50/70 >

Extra-functional

SC-DURING: Resulis

Loose timing \
12 + (explicit synchronization) I A /S

Number of procgssors in the mpdel . .
10 20 30 40 50 60

Test machine : 4 x 12 = 48 cores

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <51/70 >

Extra-functional

Addressing the Faithfulness Issue: Exposing Bugs

Example bug: mis-placed synchronization:

imgReady = true; while (!imgReady)

wait (5, SC_US); ” wait (1, SC_US);
writeIMG () ; wait (10, SC_US);
wait (10, SC_US); readIMG () ;

= bug never seen in simulation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 52/70 >

Extra-functional

Addressing the Faithfulness Issue: Exposing Bugs

Example bug: mis-placed synchronization:

imgReady = true;
wait (5, SC_US);
writeIMG () ;

wait (10, SC_US);

= bug never seen in simulation

during (15,
imgReady = true;
writeIMG () ;

P

SC_Us, [1{

while (!imgReady)
wait (1, SC_US);

wait (10, SC_US);

readIMG () ;

while (!imgReady)
wait (1, SC_US);
” wait (10, SC_US);
readIMG () ;

= strictly more behaviors, including the buggy one

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<52/70 >

Extra-functional

Model Faithfulness

model actual
Unmodeled
behaviors
(B)
Extra behaviors
of the model
(A) Exactly modeled
behaviors

(C)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 53/70 >

Extra-functional

SC-DURING

@ New way to express concurrency in the platform
@ Allows parallel execution of loosely-timed systems
@ Exposes more bugs (< faithfulness Vs correction)

@ Next steps (skipped from this talk):

» Worker threads Vs platform partitioning: DistemC
» Exploit FIFO-based communication: FOFIFON
» Integration in the design-flow: HLS code wrapping

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

< 54/70 >

Extra-functional

This section

e Extra-Functional Properties in TLM

@ Power and Temperature Estimation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 54/70 >

Extra-functional

Power and Temperature Estimation

An example

“How to validate embedded software that
regulates the chip’s temperature?”

while (true) {
// Temperature of one or more
// locations of the chip
read_sensors () ;

compute () ;
// Reduce frequency/voltage,

// emergency stop,
control_actuators();

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 55/70 >

Extra-functional

Power and Temperature Estimation

What precision? What applications?

control actuators ()

read_sensors ()

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56/70 >

Extra-functional

Power and Temperature Estimation

What precision? What applications?

control actuators ()

read_sensors ()

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56/70 >

Extra-functional

Power and Temperature Estimation

What precision? What applications?

control actuators ()

read_sensors ()

Arbitrary Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56/70 >

Extra-functional

Power and Temperature Estimation

What precision? What applications?

control actuators ()

read_sensors ()

Scenario

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56/70 >

Extra-functional

Power and Temperature Estimation

What precision? What applications?

control actuators ()

read_sensors ()

Computation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56/70 >

Extra-functional

Power and Temperature Estimation

What precision? What applications?

control actuators ()

read_sensors ()

Computation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56/70 >

Extra-functional

Power Consumption, Temperature, Heat Dissipation

Power
(Joule effect)

| A2
Dissipation Dissipation
»f Component >
(from another (to another
component) component)
Dissipation

(to environment)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 57/70 >

Extra-functional

Power Consumption, Temperature, Heat Dissipation

Dissipation

Power

(Joule effect)

(from another
component)

A

| ¥
Dissipation
Component >
(to another
component)
Dissipation

(to environment)

~ differential equations, solved by dedicated solvers

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

< 57/70 >

SoCs and TLM Compilation Verification Extra-functional

Estimation with Power-State Models

// SystemC Process
void compute () {
while (true) {

£0) 7
wait (10);

wait ();

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

Conclusion

< 58/70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Estimation with Power-State Models

// SystemC Process
void compute () {
while (true) {

set_state("run");
£0);
wait (10);
set_state("idle");
wait ();

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 58/70 >

Extra-functional

From States to Consumption

State 1 sleep run idle run .
0.4 watt 0.4 watt
. 0 watt
Consumption 0.1 watt
n
o5
g5
Energy 2
(Consumption
x Time)
Transaction-Level Models of SoCs February 2018 <59/70 >

Matthieu Moy (LIP)

Extra-functional

From Power to Temperature

State 1 sleep run idle run —

0.4 watt 0.4 watt

0 watt 0.1 watt

Consumption

40°C

20°C

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 60/70 >

CPU

Traffic Models

Extra-functional

process =
C++ code

i

ITC VGA

TLM Bus i/
f

Consumption =
(bits transmitted)

;

:

Data RAM Instruction RAM

GPIO

Matthieu Moy (LIP)

Consumption =
f'(bits processed)

Transaction-Level Models of SoCs

February 2018

<61/70 >

Extra-functional

Traffic Model and Loosely Timed Models
Real System T T T T T TTT T

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Extra-functional

Traffic Model ang Loosely Timed Models

Real System T : T T T TTT T
£0O; wait (40); g(); wait(33);
Loosely-Timed T v
Model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Extra-functional

Traffic Model ang Loosely Timed Models

Real System T : T T T TTT T
£0O; wait (40); g(); wait(33);
Loosely-Timed T v
Model

total=9
+6

|43

Energy

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Extra-functional

Traffic Model anfl Loosely Timed Models

Real System T : T T T TTT T
£0O; wait (40); g(); wait(33);
Loosely-Timed T v
Model

total=9
+6

|43

I

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Energy

Temperature

Extra-functional

Traffic Model anfl Loosely Timed Models

Real System T : T T T TTT T
£0O; wait (40); g(); wait(33);
Loosely-Timed T v
Model

total=9
+6

|43

Energy

Unrealistic
peaks

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Extra-functional

Traffic Model ang Loosely Timed Models

Real System T : T T T TTT T
£0O; wait (40); g(); wait(33);
Loosely-Timed T v
Model

Frequency — 2 trans/sec = trans/sec b

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Extra-functional

Traffic Model ang Loosely Timed Models

Real System T : T T T TTT T
£(); wait(40); g(); wait(35);

Loosely-Timed T v
Model
Frequency — 2 trans/sec = trans/sec b
total=9
Energy

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Extra-functional

Traffic Model anfl Loosely Timed Models

Real System T : T T T TTT T
£(); wait(40); g(); wait(35);

Loosely-Timed T v
Model
Frequency — 2 trans/sec = trans/sec b
total=9
Energy

- —

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62/70 >

Temperature

Extra-functional

Cosimulation SystemC and Extra-Functional Solver

SystemC

States

Temperature

Power/Temperature
Solver

Functionality can depend on extra-functional data
(e.g.: temperature sensor)

Matthieu Moy (LIP)

Transaction-Level Models of SoCs

February 2018

<63/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

SystemC I I

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

SystemC

Matthieu Moy (LIP)

I

Simulation Instant

(Zero-time)

Simulation
Interval

Transaction-Level Models of SoCs

February 2018

<64/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

SystemC -1 Function Foncton ——
Simulation Simulation Simulation
Instant Interval Instant
t=0 t €]0, 3[t=3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

SystemC -

Function

P/TO

Fonction ——

Matthieu Moy (LIP)

P/TO

Transaction-Level Models of SoCs

February 2018

<64/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

ﬂl\

U,

SystemC -1 Function Foncton ——
P/T® P/T®

(1) SystemC runs simulation up to end of instant t

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

ﬂl\
I\
SystemC -1 Function Foncton ——
2
P/T® P/T®

(1) SystemC runs simulation up to end of instant t

(2) SystemC sends a request for extra-functional simulation on
[t,t+ d]

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

ﬂl\
I\
SystemC -1 Function Foncton ——
2
3
P/T® P/T®

(1) SystemC runs simulation up to end of instant t

(2) SystemC sends a request for extra-functional simulation on
[t,t+ d]
(8) Extra-functional solver does the computation on the interval

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64/70 >

Extra-functional

Cosimulation of SystemC and Extra-Functional Solver

/1\
I\
SystemC -1 Function Foncton ——
2 4
3
P/T® P/T®

(1) SystemC runs simulation up to end of instant t

(2) SystemC sends a request for extra-functional simulation on
[t,t+ d]

(8) Extra-functional solver does the computation on the interval

(4) SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64/70 >

Extra-functional

Extra-Functional Events

End of instant

/1\
N

SystemC -

P/TO

(1) SystemC runs simulation until end of instant ¢

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

<65/70 >

Extra-functional

Extra-Functional Events

End of instant Next instant
~

O,

SystemC -

P/TO

(1) SystemC runs simulation until end of instant ¢
(2) SystemC requests a extra-functional simulation in [t, t + d] or until
“too hot”

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65/70 >

Extra-functional
Extra-Functional Events

End of instant

/1\
N

SystemC -

3)
3
P/T® Too hot!

(1) SystemC runs simulation until end of instant ¢
(2) SystemC requests a extra-functional simulation in [t, t + d] or until

“too hot”
@ Extra-functional runs simulation, encounters stop condition

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65/70 >

Extra-functional

Extra-Functional Events

End of instant Fire IT

/1\
N

SystemC -

3)
3
P/T® Too hot!

(1) SystemC runs simulation until end of instant ¢

(2) SystemC requests a extra-functional simulation in [t, t + d] or until
“too hot”

% Extra-functional runs simulation, encounters stop condition

SystemC resumes earlier than expected with interrupt.
Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65/70 >

Extra-functional

Extra-Functional Events

End of instant Fire IT

/1\
N

SystemC -

3)
3
P/T® Too hot!

(1) SystemC runs simulation until end of instant ¢

(2) SystemC requests a extra-functional simulation in [t, t + d] or until
“too hot”

% Extra-functional runs simulation, encounters stop condition

SystemC resumes earlier than expected with interrupt.
Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65/70 >

SoC

s and TLM Compilation

Verification

Results

Extra-functional Conclusion

MM P Litel SE@E

Temperature (°C)

26 O
44 o m]
42 O
40 o u
i
384 &
1
36
1 (m)
344
]
32—
i T T T T T T T 1
] 05 35 4]

1 15 2 2.5 g
SystemC time (seconds)

TOR.SRAM

TOPINST_RAM

TOPBUS

TOP.POWER_CTRL:

TOPVGA:

TOP.TEMP_SENSOR:

TOPINTC:

TOPMB_WRAPPER_0:

TOP.GPIO:

Run brake

SystemC time = 4.781s

39.20°C

42.85°C

48.21°C

37.17°C

43.26°C

41,59°C

39.50°C

45,89°C

38.36°C

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 66/70 >

SoCs and TLM Compilation Verification Extra-functional

Outline

o Introduction: Systems-on-a-Chip, Transaction-Level Modeling
e Compilation of SystemC/TLM

e Verification of SystemC/TLM

0 Extra-Functional Properties in TLM

6 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018

Conclusion

< 66/70 >

Conclusion

Conclusion

Transaction-Level Models of
Systems-on-a-Chip
Can they be
Fast, Correct and Faithful?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 67/70 >

Conclusion

Conclusion

@ Fast
» Optimized compiler
» Parallelization techniques
» High abstraction level (Loose Timing)

@ Correct
» Formal verification
@ Faithful

» More ways to express concurrency
» Preserve Faithfulness of Temperature Models for Loose Timing

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 68/70 >

HPC
Applications

Conclusion

The new CASH Team, LIP (ENS-Lyon)

Compilation and
Analysis for
Software and
Hardware

Analysis Abstract Hardware
Interpretation (FPGA)
Code
Generation

Sequential [Polyhedral]_. Optimization

Program Model ’
Parallelism)

Extraction

Intermediate
Parallel
Representation

Parallel Software
Program (CPU & accelerators)

Christophe Alias, Laure Gonnord, Matthieu Moy

(Dataflow Semantics] (Simulation)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 69/70 >

Conclusion

Questions?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <70/70 >

Conclusion

Sources

http://en.wikipedia.org/wiki/File:Diopsis. jpg
(Peter John Bishop, CC Attribution-Share Alike 3.0 Unported)

http://www.fotopedia.com/items/flickr-367843750
(oskay@fotopedia, CC Attribution 2.0 Generic)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 <70/70 >

http://en.wikipedia.org/wiki/File:Diopsis.jpg
http://www.fotopedia.com/items/flickr-367843750

	Introduction: Systems-on-a-Chip, Transaction-Level Modeling
	Compilation of SystemC/TLM
	Front-end
	Optimization and Fast Simulation

	Verification of SystemC/TLM
	Extra-Functional Properties in TLM
	Time and Parallelism
	Power and Temperature Estimation

	Conclusion

