
SoCs and TLM Compilation Verification Extra-functional Conclusion

Transaction-Level Models of Systems-on-a-Chip
Can they be Fast, Correct and Faithful?

Matthieu Moy

Laboratoire d’Informatique du Parallelisme
Lyon, France

February 2018

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 1 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

About me

2005 • Ph.D: formal verification of SoC models (ST/Verimag)

2006 • Post-doc: security of storage (Bangalore, Inde)

2006 • Assistant professor, Verimag / Ensimag
Work on SoC models & abstract interpretation

2014 • HDR: High-Level models for Embedded Systems

2017 • New CASH team leader, LIP / UCBL

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 2 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 3 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 3 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Modern Systems-on-a-Chip

Software

Hardware

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 4 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Modern Systems-on-a-Chip

Software

Hardware

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 4 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Hardware/Software Design Flow

Ti
m

e

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

Transaction-Level
Model based

Specification,
Algorithm

RTL Design

Synthesis

Software
Development

TLM Model

Integration

Factory

Validation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 5 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Hardware/Software Design Flow

Ti
m

e

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

cost > 1,000,000 $!

Transaction-Level
Model based

Specification,
Algorithm

RTL Design

Synthesis

Software
Development

TLM Model

Integration

Factory

Validation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 5 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Hardware/Software Design Flow

Ti
m

e

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

Transaction-Level
Model based

Specification,
Algorithm

RTL Design

Synthesis

Software
Development

TLM Model

Integration

Factory

Validation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 5 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Hardware/Software Design Flow

Ti
m

e

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

Transaction-Level
Model based

Specification,
Algorithm

RTL Design

Synthesis

Software
Development

TLM Model

Integration

Factory

Validation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 5 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Hardware/Software Design Flow

Ti
m

e

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

Transaction-Level
Model based

Specification,
Algorithm

RTL Design

Synthesis

Software
Development

TLM Model

Integration

Factory

Validation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 5 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Hardware/Software Design Flow

Ti
m

e

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

Transaction-Level
Model based

Specification,
Algorithm

RTL Design

Synthesis

Software
Development

TLM Model

Integration

Factory

Validation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 5 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Hardware/Software Design Flow

Ti
m

e

Traditional
Design-Flow

Specification,
Algorithm

RTL Design

Synthesis

Factory

Software
Development

Integration

Validation

Transaction-Level
Model based

Specification,
Algorithm

RTL Design

Synthesis

Software
Development

TLM Model

Integration

Factory

Validation

ga
in

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 5 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

The Transaction Level Model:
Principles and Objectives

A high level of abstraction,
that appears early in the design-flow

A virtual prototype of the system, to enable
I Early software development
I Integration of components
I Architecture exploration
I Reference model for validation

Abstract implementation details from RTL
I Fast simulation (' 1000x faster than RTL)
I Lightweight modeling effort (' 10x less than RTL)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 6 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

The Transaction Level Model:
Principles and Objectives

A high level of abstraction,
that appears early in the design-flow

A virtual prototype of the system, to enable
I Early software development
I Integration of components
I Architecture exploration
I Reference model for validation

Abstract implementation details from RTL
I Fast simulation (' 1000x faster than RTL)
I Lightweight modeling effort (' 10x less than RTL)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 6 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Content of a TLM Model
A first definition

Model what is needed for Software
Execution:

I Processors
I Address-map
I Concurrency

... and only that.
I No micro-architecture
I No bus protocol
I No pipeline
I No physical clock
I . . .

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 7 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

An example TLM Model

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 8 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Performance of TLM

x60

x20

Simulation time (second)
logarithmic scale

10000100101

x3

HW emulation

RTL + cosimulation

TLM

Pure RTL 1 hour

3 minutes

3 seconds

1 second

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 9 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Uses of Functional Models

Reference for
Hardware
Validation

SPEC

RTLTLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM ?
=

Virtual
Prototype

for Software
Development

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Unmodified
Software

?
⊇

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 10 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Uses of Functional Models

Reference for
Hardware
Validation

SPEC

RTL

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

?
=

Virtual
Prototype

for Software
Development

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Unmodified
Software

?
⊇

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 10 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Uses of Functional Models

Reference for
Hardware
Validation

SPEC

RTLTLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM ?
=

Virtual
Prototype

for Software
Development

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Unmodified
Software

?
⊇

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 10 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Uses of Functional Models

Reference for
Hardware
Validation

SPEC

RTLTLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM ?
=

Virtual
Prototype

for Software
Development

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Unmodified
Software

?
⊇

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 10 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Uses of Functional Models

Reference for
Hardware
Validation

SPEC

RTLTLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM ?
=

Virtual
Prototype

for Software
Development

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Unmodified
Software

?
⊇

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 10 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Uses of Functional Models

Reference for
Hardware
Validation

SPEC

RTLTLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM ?
=

Virtual
Prototype

for Software
Development

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Unmodified
Software

?
⊇

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 10 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Content of a TLM Model
A richer definition

Timing information
I May be needed for Software Execution
I Useful for Profiling Software

Power and Temperature
I Validate design choices
I Validate power-management policy

30

20

10

0

10

20

30

40

50

60

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 11 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Use of Extra-Functional Models
Timing, Power consumption, Temperature Estimation

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

30

20

10

0

10

20

30

40

50

60

Estimated

30

20

10

0

10

20

30

40

50

60

Actual

?
≈

Unmodified
Power/Temperature-Aware

Software

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 12 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Use of Extra-Functional Models
Timing, Power consumption, Temperature Estimation

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

30

20

10

0

10

20

30

40

50

60

Estimated

30

20

10

0

10

20

30

40

50

60

Actual

?
≈

Unmodified
Power/Temperature-Aware

Software

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 12 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Use of Extra-Functional Models
Timing, Power consumption, Temperature Estimation

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

30

20

10

0

10

20

30

40

50

60

Estimated

30

20

10

0

10

20

30

40

50

60

Actual

?
≈

Unmodified
Power/Temperature-Aware

Software

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 12 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Summary: Expected Properties of TLM Programs

SystemC/TLM Programs should
Simulate fast,
Satisfy correctness criterions,
Reflect faithfully functional and extra-functional properties of the
actual system.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 13 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 13 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC: Simple Example

N1 N2

SC_MODULE(not_gate) {
sc_in<bool> in;
sc_out<bool> out;

void compute (void) {
// Behavior
bool val = in.read();
out.write(!val);

}

SC_CTOR(not_gate) {
SC_METHOD(compute);
sensitive << in;

}
};

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
// Instantiate modules ...
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;
// ... and bind them together
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 14 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Compiling SystemC

$ g++ example.cpp -lsystemc
$./a.out

... end of section?

But ...
C++ compilers cannot do SystemC-aware optimizations
C++ analyzers do not know SystemC semantics

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 15 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Compiling SystemC

$ g++ example.cpp -lsystemc
$./a.out

... end of section?

But ...
C++ compilers cannot do SystemC-aware optimizations
C++ analyzers do not know SystemC semantics

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 15 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

This section

2 Compilation of SystemC/TLM
Front-end
Optimization and Fast Simulation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 15 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC Front-End

In this talk: Front-end = “Compiler front-end” (AKA “Parser”)

SystemC Front
end

Intermediate
Representation

Back
end

Intermediate Representation = Architecture + Behavior

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 16 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC Front-Ends

When you don’t need a front-end:
I Main application of SystemC: Simulation
I Testing, run-time verification, monitoring. . .

⇒ No reference front-end available on
http://www.accellera.org/

When you do need a front-end:
I Symbolic formal verification, High-level synthesis
I Visualization
I Introspection
I SystemC-specific Compiler Optimizations
I Advanced debugging features

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 17 / 70 >

http://www.accellera.org/

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC Front-Ends

When you don’t need a front-end:
I Main application of SystemC: Simulation
I Testing, run-time verification, monitoring. . .

⇒ No reference front-end available on
http://www.accellera.org/

When you do need a front-end:
I Symbolic formal verification, High-level synthesis
I Visualization
I Introspection
I SystemC-specific Compiler Optimizations
I Advanced debugging features

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 17 / 70 >

http://www.accellera.org/

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC Front-Ends

When you don’t need a front-end:
I Main application of SystemC: Simulation
I Testing, run-time verification, monitoring. . .

⇒ No reference front-end available on
http://www.accellera.org/

When you do need a front-end:
I Symbolic formal verification, High-level synthesis
I Visualization
I Introspection
I SystemC-specific Compiler Optimizations
I Advanced debugging features

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 17 / 70 >

http://www.accellera.org/

SoCs and TLM Compilation Verification Extra-functional Conclusion

Challenges and Solutions with SystemC Front-Ends
1 C++ is complex (e.g. clang ≈ 200,000 LOC)

; Write a C++ front-end or reuse one (g++, clang, EDG, . . .)

2 Architecture built at runtime, with C++ code

; Analyze elaboration phase or execute it

SC_MODULE(not_gate) {
sc_in<bool> in;
sc_out<bool> out;
void compute (void) {

// Behavior
bool val = in.read();
out.write(!val);

}

SC_CTOR(not_gate) {
SC_METHOD(compute);
sensitive << in;

}
};

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;
// Binding
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS); return 0;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 18 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Challenges and Solutions with SystemC Front-Ends
1 C++ is complex (e.g. clang ≈ 200,000 LOC)

; Write a C++ front-end or reuse one (g++, clang, EDG, . . .)
2 Architecture built at runtime, with C++ code

; Analyze elaboration phase or execute it

SC_MODULE(not_gate) {
sc_in<bool> in;
sc_out<bool> out;
void compute (void) {

// Behavior
bool val = in.read();
out.write(!val);

}

SC_CTOR(not_gate) {
SC_METHOD(compute);
sensitive << in;

}
};

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;
// Binding
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS); return 0;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 18 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Challenges and Solutions with SystemC Front-Ends
1 C++ is complex (e.g. clang ≈ 200,000 LOC)

; Write a C++ front-end or reuse one (g++, clang, EDG, . . .)
2 Architecture built at runtime, with C++ code

; Analyze elaboration phase or execute it

SC_MODULE(not_gate) {
sc_in<bool> in;
sc_out<bool> out;
void compute (void) {

// Behavior
bool val = in.read();
out.write(!val);

}

SC_CTOR(not_gate) {
SC_METHOD(compute);
sensitive << in;

}
};

int sc_main(int argc, char **argv) {
// Elaboration phase (Architecture)
not_gate n1("N1");
not_gate n2("N2");
sc_signal<bool> s1, s2;
// Binding
n1.out.bind(s1);
n2.out.bind(s2);
n1.in.bind(s2);
n2.in.bind(s1);

// Start simulation
sc_start(100, SC_NS); return 0;

}

Static Approaches

Dynamic Approaches

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 18 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with the architecture
When it becomes tricky. . .

int sc_main(int argc, char **argv) {
int n = atoi(argv[1]);
int m = atoi(argv[2]);
Node array[n][m];
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
array[i][j]

= new Node(...);
...

}
}

sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 19 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with the architecture
When it becomes tricky. . .

Static approach: cannot
deal with such code
Dynamic approach: can
extract the architecture for
individual instances of the
system

int sc_main(int argc, char **argv) {
int n = atoi(argv[1]);
int m = atoi(argv[2]);
Node array[n][m];
for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {
array[i][j]

= new Node(...);
...

}
}

sc_start(100, SC_NS);
return 0;

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 19 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with the architecture
When it becomes very tricky. . .

One can unroll the loop to
let i become constant,
Undecidable in the general
case.

void compute(void) {
for (int i = 0; i < n; i++) {

ports[i].write(true);
}
...

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 20 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with the architecture
When it becomes very tricky. . .

One can unroll the loop to
let i become constant,
Undecidable in the general
case.

void compute(void) {
for (int i = 0; i < n; i++) {

ports[i].write(true);
}
...

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 20 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

The beginning: Pinapa
AKA “my Ph.D’s front-end”

Pinapa’s principle:
I Use GCC’s C++ front-end
I Compile, dynamically load and execute the elaboration (sc_main)

Pinapa’s drawbacks:
I Uses GCC’s internals (hard to port to newer versions)
I Hard to install and use, no separate compilation
I Ad-hoc match of SystemC constructs in AST
I AST Vs SSA form in modern compilers

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 21 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

LLVM: Low Level Virtual Machine

Bitcode
Front
ends

Back
ends

C

C++

...
Optimizer

JIT
compilation

Code
Generation

Clean API
Clean SSA intermediate representation
Many tools available

Can we be here?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 22 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

LLVM: Low Level Virtual Machine

Bitcode
Front
ends

Back
ends

C

C++

...
Optimizer

JIT
compilation

Code
Generation

Clean API
Clean SSA intermediate representation
Many tools available

Can we be here?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 22 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

PinaVM: Enriching the bitcode
SystemC

Compilation
(llvm-g++, llvm-link)

LLVM bitcode

Execute
elaboration

Architecture

Identify
SC constructs

bitcode++

Intermediate
Representation

Execute
dependencies

...
%port = expr1(%this)
%data = expr2
SCWrite
- data = ??
- port = ??

...

SystemC construct
is still a normal function

%this
is fixed

%this not known
Cannot compute %port

...
port.write(data);
...

...
%port = expr1(%this)
%data = expr2
call write %port, %data
...

...
%port = expr1(%this)
%data = expr2
SCWrite

- data =

{
Process 0→ data d0
Process 1→ data d1

}

- port =

{
Process 0→ port p0
Process 1→ port p1

}
...

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 23 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

PinaVM: Enriching the bitcode
SystemC

Compilation
(llvm-g++, llvm-link)

LLVM bitcode

Execute
elaboration

Architecture

Identify
SC constructs

bitcode++

Intermediate
Representation

Execute
dependencies

...
%port = expr1(%this)
%data = expr2
SCWrite
- data = ??
- port = ??

...

SystemC construct
is still a normal function

%this
is fixed

%this not known
Cannot compute %port

...
port.write(data);
...

...
%port = expr1(%this)
%data = expr2
call write %port, %data
...

...
%port = expr1(%this)
%data = expr2
SCWrite

- data =

{
Process 0→ data d0
Process 1→ data d1

}

- port =

{
Process 0→ port p0
Process 1→ port p1

}
...

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 23 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Summary

PinaVM relies on executability (JIT Compiler) for execution of:
I elaboration phase (≈ like Pinapa)
I sliced pieces of code

Open Source: http://forge.imag.fr/projects/pinavm/
Still a prototype, but very few fundamental limitations
≈ 3000 lines of C++ code on top of LLVM
Experimental back-ends for

I Execution (Tweto)
I Model-checking (using SPIN)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 24 / 70 >

http://forge.imag.fr/projects/pinavm/

SoCs and TLM Compilation Verification Extra-functional Conclusion

This section

2 Compilation of SystemC/TLM
Front-end
Optimization and Fast Simulation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 24 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Typical Transaction Journey

Bus

CPU

RAM

T1 T2

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Call virtual method
on socket

Forward method
call to target socket

Address
Decoding

Another virtual
method call

Forwarded to
target socket

Ends-up calling
target module’s

method

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 25 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Typical Transaction Journey

Bus

CPU

RAM

T1 T2

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM
...

port.write(addr,data);
...

status write(addr,data) {
mem[addr] = data;

}

Call virtual method
on socket

Forward method
call to target socket

Address
Decoding

Another virtual
method call

Forwarded to
target socket

Ends-up calling
target module’s

method

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 25 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Typical Transaction Journey

Bus

CPU

RAM

T1 T2

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM
...

port.write(addr,data);
...

status write(addr,data) {
mem[addr] = data;

}

Call virtual method
on socket

Forward method
call to target socket

Address
Decoding

Another virtual
method call

Forwarded to
target socket

Ends-up calling
target module’s

method

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 25 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Typical Transaction Journey

Bus

CPU

RAM

T1 T2

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM
...

port.write(addr,data);
...

status write(addr,data) {
mem[addr] = data;

}

Call virtual method
on socket

Forward method
call to target socket

Address
Decoding

Another virtual
method call

Forwarded to
target socket

Ends-up calling
target module’s

method

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 25 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Typical Transaction Journey

Bus

CPU

RAM

T1 T2

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM
...

port.write(addr,data);
...

status write(addr,data) {
mem[addr] = data;

}

Call virtual method
on socket

Forward method
call to target socket

Address
Decoding

Another virtual
method call

Forwarded to
target socket

Ends-up calling
target module’s

method

Many costly operations for a simple functionality
Work-around: backdoor access (DMI = Direct Memory Interface)

I CPU get a pointer to RAM’s internal data
I Manual, dangerous optimization

Can a compiler be as good as DMI,
automatically and safely?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 25 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Typical Transaction Journey

Bus

CPU

RAM

T1 T2

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM
...

port.write(addr,data);
...

status write(addr,data) {
mem[addr] = data;

}

Call virtual method
on socket

Forward method
call to target socket

Address
Decoding

Another virtual
method call

Forwarded to
target socket

Ends-up calling
target module’s

method

Many costly operations for a simple functionality
Work-around: backdoor access (DMI = Direct Memory Interface)

I CPU get a pointer to RAM’s internal data
I Manual, dangerous optimization

Can a compiler be as good as DMI,
automatically and safely?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 25 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Basic Ideas

Do statically what can be done statically ...
... considering “statically” = “after elaboration”
Examples:

I Virtual function resolution
I Inlining through SystemC ports
I Static address resolution

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 26 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus

Address
Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Dealing with addresses Statically

Bus

CPU

RAM

...

port.write(0x5500,data);
...

status write(addr,data) {
mem[addr] = data;

}

0x0000
0x1000

T1

0x2000
0x3000

T2

0x5000
0x6000

RAM

Get actual
port addr

from PinaVM

Follow path
to bus Address

Decoding

Find target
socket at this

address

Find function
in target
module

Possible optimizations:
I Replace call to port.write() with RAM.write()
I Possibly inline it

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 27 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC

Encoding

Formal
language

Existing
verifier

Yes/No/Maybe

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 28 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 29 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 29 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

Scheduler

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 30 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

Scheduler

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 30 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

Scheduler

User code:

Automatic translation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 30 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

Scheduler

User code:

Automatic translation
SystemC kernel:

Direct semantics

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 30 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Translating a SystemC Program

Translation = Parse the source code, generate an automaton
Direct semantics = Read the specification, instantiate an
automaton

Scheduler

User code:

Automatic translation
SystemC kernel:

Direct semantics

Direct semantics

Communication:

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 30 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

The SystemC scheduler

Non-preemptive scheduler
Non-deterministic processes election

Init

Select process

Run Update Time elapse

(+ 1 automaton per process to reflect its state)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 31 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 32 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC to Spin: encoding events

notify/wait for event Ek :

p::wait(Ek):
Wp := k
blocked(Wp == 0)

p::notify(Ek):
∀i ∈ P|Wi == K

Wi := 0

Wp : integer associated to process p.
Wp = k ⇔ “process p is waiting for event Ek ”.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 33 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC to Spin: encoding time and events

discrete time
a deadline variable Tp is attached to each process p
Tp = next execution time for process p

p::wait(d):
Tp := Tp + d
blocked(Tp == min

i∈P

Wi==0

(Ti))

“Set my next execution time to
now + d and wait until the current
execution time reaches it”

p::wait(Ek):
Wp := K
blocked(Wp == 0)

p::notify(Ek):
∀i ∈ P|Wi == K

Wi := 0
Ti := Tp

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 34 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC to Spin: encoding time and events

discrete time
a deadline variable Tp is attached to each process p
Tp = next execution time for process p

p::wait(d):
Tp := Tp + d
blocked(Tp == min

i∈P
Wi==0

(Ti))

“Set my next execution time to
now + d and wait until the current
execution time reaches it”

p::wait(Ek):
Wp := K
blocked(Wp == 0)

p::notify(Ek):
∀i ∈ P|Wi == K

Wi := 0
Ti := Tp

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 34 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SystemC to Spin: results

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 2 4 6 8 10 12 14 16 18 20 22

N
b

of
 s

ta
te

s

Nb of components

PinaVM

PinaVM
[SPIN 07]

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 35 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Encoding Approaches

SystemC
Concurrent

program

Synchronous automata
+ scheduler

T1 × T2 × T3 ×Sch

Asynchronous automata
T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

T1 × T2 × T3

Asynchronous product
shared variable

T1 × T2 × T3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 36 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 36 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

This section

4 Extra-Functional Properties in TLM
Time and Parallelism
Power and Temperature Estimation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 36 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Parallelization of Simulations

SPI

I2C

LIN

CAN Ethernet

USB

WIFI

GPU

MEM CTLR

CORE

ITC

MMU

TIMER

UART

PWM

PRCMU

CORE

ITC

MMU

TIMER

UART

Capteur

Capteur

DOCSIS

Compo

DISPLAY

Audio

H.265

C
O
R
E

I
T
C

M
M
U

T
I
M
E
R

U
A
R
T

C
O
R
E

I
T
C

M
M
U

T
I
M
E
R

U
A
R
T

DAC

DAC

ADC

ADC

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 37 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Parallelization of Simulations
System-level Simulation Vs HPC

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 38 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Problems and solutions for parallel execution of
SystemC/TLM

(1) Execution order imposed by SystemC semantics
(2) Concurrent access to shared resources

(e.g., x++ on a global variable)

; No 100% automatic and efficient solution for TLM

Our proposal = additional constructs:
Desynchronization (1) / Synchronization (2)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 39 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Problems and solutions for parallel execution of
SystemC/TLM

(1) Execution order imposed by SystemC semantics
(2) Concurrent access to shared resources

(e.g., x++ on a global variable)

; No 100% automatic and efficient solution for TLM

Our proposal = additional constructs:
Desynchronization (1) / Synchronization (2)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 39 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Problems and solutions for parallel execution of
SystemC/TLM

(1) Execution order imposed by SystemC semantics
(2) Concurrent access to shared resources

(e.g., x++ on a global variable)

; No 100% automatic and efficient solution for TLM

Our proposal = additional constructs:
Desynchronization (1) / Synchronization (2)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 39 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Approaches to parallelization

Efficient

Targets a
wide subset of

SystemC

Few/no
modifications

required

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 40 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: The Idea

SC_THREAD_1

SC_THREAD_2

...

SC_THREAD_N

OS thread_1

OS thread_2

OS thread_N

SystemC OS thread

Unmodified SystemC
Some computation delegated to other threads
Weak synchronization between SystemC and threads thanks to
tasks with duration
Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 41 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Simulated Time Vs Wall-Clock Time

Simulated time
0 10 20 30 40

W
al

l-c
lo

ck
tim

e
Time

elapse

Computation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 42 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Simulated Time in SystemC and SC-DURING
S

ys
te

m
C

sc
-d

ur
in

g

A

B

P

Q

Process A:
//Computation
f();
//Time taken by f
wait(20);

f()
wait(20)

Process P:
g();
wait(20);
during(15, h);

g()
wait(20)

h()

i() j()

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Simulated Time in SystemC and SC-DURING
S

ys
te

m
C

sc
-d

ur
in

g

A

B

P

Q

Process A:
//Computation
f();
//Time taken by f
wait(20);

f()
wait(20)

Process P:
g();
wait(20);
during(15, h);

g()
wait(20)

h()

i() j()

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Simulated Time in SystemC and SC-DURING
S

ys
te

m
C

sc
-d

ur
in

g

A

B

P

Q

Process A:
//Computation
f();
//Time taken by f
wait(20);

f()
wait(20)

Process P:
g();
wait(20);

during(15, h);

g()
wait(20)

h()

i() j()

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Simulated Time in SystemC and SC-DURING
S

ys
te

m
C

sc
-d

ur
in

g

A

B

P

Q

Process A:
//Computation
f();
//Time taken by f
wait(20);

f()
wait(20)

Process P:
g();
wait(20);
during(15, h);

g()
wait(20)

h()

i() j()

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Simulated Time in SystemC and SC-DURING
S

ys
te

m
C

sc
-d

ur
in

g

A

B

P

Q

Process A:
//Computation
f();
//Time taken by f
wait(20);

f()
wait(20)

Process P:
g();
wait(20);
during(15, h);

g()
wait(20)

h()

i() j()

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 43 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Impact on Parallelism

P1

P2

P3

P4

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 44 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Concurrency in an industrial platform

Number of SystemC threads active within a cycle (ST set-top-box case
study) :

0 % 50 % 100 %

boot+init

mpeg2

h264

mpeg2→ h264

0 Proc. 1 2 3 4 and more

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 45 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Impact on Parallelism

P1

P2

P3

P4

Overlap between tasks ; parallel execution in
sc-during

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 46 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Impact on Parallelism

P1

P2

P3

P4

Overlap between tasks ; parallel execution in
sc-during

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 46 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Impact on Parallelism

P1

P2

P3

P4

Overlap between tasks ; parallel execution in
sc-during

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 46 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Execution of during(T)

Slow computation

Simulated time
0 10 20 30 40

W
al

l-c
lo

ck
tim

e

Task starts

Simulated
time

blocked

Task
finishes

Fast computation

Simulated time
0 10 20 30 40

W
al

l-c
lo

ck
tim

e

Task starts

Computation
ends

Task
finishes

Rest of the
platform

drives time

idle

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 47 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

during(d, f);

création du
thread

f

2 wait(d)
join()

3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

during(d, f);

création du
thread

f

2 wait(d)
join()

3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

1

during(d, f);

création du
thread

f

2 wait(d)
join()

3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

1

during(d, f);

création du
thread

f

2 wait(d)

join()

3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

1

during(d, f);

création du
thread

f

2 wait(d)

join()

3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

1

during(d, f);

création du
thread

f

2 wait(d)
join()

3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,

std::function<void()> f) {

1 std::thread t(f); // Thread creation

2 sc_core::wait(d); // SystemC executes

3 t.join(); // Wait for completion
}

A

B

C

Thread

1

during(d, f);

création du
thread

f

2 wait(d)
join()

3

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 48 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: New Synchronization Primitives
extra_time(t): Increase duration of current task

P
wait(5)

initial
duration extra time

catch_up(): Wait for SystemC to reach the end of the task

while (!c) {
extra_time(10);
catch_up(); // Ensures fairness

}

sc_call(f): Call function f in the context of SystemC

x++; // Forbidden in
// sc-during task

sc_call([]{ x++; }); // OK

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 49 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: New Synchronization Primitives
extra_time(t): Increase duration of current task

P
wait(5)

initial
duration extra time

catch_up(): Wait for SystemC to reach the end of the task

while (!c) {
extra_time(10);
catch_up(); // Ensures fairness

}

sc_call(f): Call function f in the context of SystemC

x++; // Forbidden in
// sc-during task

sc_call([]{ x++; }); // OK

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 49 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: New Synchronization Primitives
extra_time(t): Increase duration of current task

P
wait(5)

initial
duration extra time

catch_up(): Wait for SystemC to reach the end of the task

while (!c) {
extra_time(10);
catch_up(); // Ensures fairness

}

sc_call(f): Call function f in the context of SystemC

x++; // Forbidden in
// sc-during task

sc_call([]{ x++; }); // OK

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 49 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: Implementations

SC_THREAD_1

SC_THREAD_2

...

SC_THREAD_N

sync_task_1 OS thread_1

sync_task_2 OS thread_2

sync_task_N OS thread_N

SystemC OS Thread

Strategies:
SEQ Sequential (= reference)

THREAD Thread creation + destruction for each task
POOL Pre-allocated set of threads

ONDEMAND Thread created on demand and reused
Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 50 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING: Results

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60

Sp
ee

du
p

Number of processors in the model

Loose timing
(explicit synchronization)

Fine-grained synchronization

Test machine : 4× 12 = 48 cores
Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 51 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Addressing the Faithfulness Issue: Exposing Bugs

Example bug: mis-placed synchronization:

imgReady = true;
wait(5, SC_US);
writeIMG();
wait(10, SC_US);

||

while(!imgReady)
wait(1, SC_US);

wait(10, SC_US);
readIMG();

⇒ bug never seen in simulation

during(15, SC_US, []{
imgReady = true;
writeIMG();

});

||

while(!imgReady)
wait(1, SC_US);

wait(10, SC_US);
readIMG();

⇒ strictly more behaviors, including the buggy one

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 52 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Addressing the Faithfulness Issue: Exposing Bugs

Example bug: mis-placed synchronization:

imgReady = true;
wait(5, SC_US);
writeIMG();
wait(10, SC_US);

||

while(!imgReady)
wait(1, SC_US);

wait(10, SC_US);
readIMG();

⇒ bug never seen in simulation

during(15, SC_US, []{
imgReady = true;
writeIMG();

});

||

while(!imgReady)
wait(1, SC_US);

wait(10, SC_US);
readIMG();

⇒ strictly more behaviors, including the buggy one

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 52 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Model Faithfulness

model actual

Extra behaviors
of the model

(A)

Unmodeled
behaviors

(B)

Exactly modeled
behaviors

(C)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 53 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

SC-DURING

New way to express concurrency in the platform
Allows parallel execution of loosely-timed systems
Exposes more bugs (faithfulness Vs correction)
Next steps (skipped from this talk):

I Worker threads Vs platform partitioning: DistemC
I Exploit FIFO-based communication: FOFIFON
I Integration in the design-flow: HLS code wrapping

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 54 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

This section

4 Extra-Functional Properties in TLM
Time and Parallelism
Power and Temperature Estimation

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 54 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power and Temperature Estimation
An example

“How to validate embedded software that
regulates the chip’s temperature?”

while (true) {
// Temperature of one or more
// locations of the chip
read_sensors();

compute();

// Reduce frequency/voltage,
// emergency stop, ...
control_actuators();

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 55 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power and Temperature Estimation
What precision? What applications?

control_actuators()

read_sensors()

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Arbitrary TemperatureScenarioComputation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power and Temperature Estimation
What precision? What applications?

control_actuators()

read_sensors()

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Arbitrary TemperatureScenarioComputation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power and Temperature Estimation
What precision? What applications?

control_actuators()

read_sensors()

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Arbitrary Temperature

ScenarioComputation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power and Temperature Estimation
What precision? What applications?

control_actuators()

read_sensors()

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Arbitrary Temperature

Scenario

Computation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power and Temperature Estimation
What precision? What applications?

control_actuators()

read_sensors()

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Arbitrary TemperatureScenario

Computation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power and Temperature Estimation
What precision? What applications?

control_actuators()

read_sensors()

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

TLM

Arbitrary TemperatureScenario

Computation on a model

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 56 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power Consumption, Temperature, Heat Dissipation

Component

Power
(Joule effect)

Dissipation
(to environment)

Dissipation

(to another
component)

Dissipation

(from another
component)

; differential equations, solved by dedicated solvers

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 57 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Power Consumption, Temperature, Heat Dissipation

Component

Power
(Joule effect)

Dissipation
(to environment)

Dissipation

(to another
component)

Dissipation

(from another
component)

; differential equations, solved by dedicated solvers

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 57 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Estimation with Power-State Models

SPI

I2C

LIN

CAN Ethernet

USB

WIFI

GPU

MEM CTLR

CORE

ITC

MMU

TIMER

UART

PWM

PRCMU

CORE

ITC

MMU

TIMER

UART

Capteur

Capteur

DOCSIS

Compo

DISPLAY

Audio

H.265

C
O
R
E

I
T
C

M
M
U

T
I
M
E
R

U
A
R
T

C
O
R
E

I
T
C

M
M
U

T
I
M
E
R

U
A
R
T

DAC

DAC

ADC

ADC

Sleep Idle

Run

0 watt 0.1 watt

0.4 watt

// SystemC Process
void compute() {

while (true) {

set_state("run");

f();
wait(10);

set_state("idle");

wait();
}

}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 58 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Estimation with Power-State Models

SPI

I2C

LIN

CAN Ethernet

USB

WIFI

GPU

MEM CTLR

CORE

ITC

MMU

TIMER

UART

PWM

PRCMU

CORE

ITC

MMU

TIMER

UART

Capteur

Capteur

DOCSIS

Compo

DISPLAY

Audio

H.265

C
O
R
E

I
T
C

M
M
U

T
I
M
E
R

U
A
R
T

C
O
R
E

I
T
C

M
M
U

T
I
M
E
R

U
A
R
T

DAC

DAC

ADC

ADC

Sleep Idle

Run

0 watt 0.1 watt

0.4 watt
// SystemC Process
void compute() {

while (true) {
set_state("run");
f();
wait(10);
set_state("idle");
wait();

}
}

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 58 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

From States to Consumption

State sleep run idle run

Consumption
0 watt

0.4 watt

0.1 watt

0.4 watt

Energy
(Consumption

× Time)

Total

2.5
Joules

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 59 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

From Power to Temperature

State sleep run idle run

Consumption
0 watt

0.4 watt

0.1 watt

0.4 watt

Temperature

20oC

40oC

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 60 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Models

TLM Bus

CPU

process =
C++ code

ITC

Data RAM Instruction RAM GPIO

VGA Timer

Consumption =
f (bits transmitted)

Consumption =
f ′(bits processed)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 61 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Traffic Model and Loosely Timed Models
Real System

f(); wait(40); g(); wait(35);
Loosely-Timed

Model

Energy
+3

+6
total=9

Temperature

Unrealistic
peaks

Frequency 3
40 trans/sec 6

35 trans/sec

Energy

total=9

Temperature

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 62 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation SystemC and Extra-Functional Solver

SystemC
Power/Temperature

Solver

States

Temperature

Functionality can depend on extra-functional data
(e.g.: temperature sensor)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 63 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Simulation
Instant

t = 3

...Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t

2 SystemC sends a request for extra-functional simulation on
[t , t + d]

3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2

3
4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d]

3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d]
3 Extra-functional solver does the computation on the interval

4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Cosimulation of SystemC and Extra-Functional Solver

SystemC

P/To

Function

Simulation
Instant

t = 0

P/To

Simulation
Interval

t ∈]0,3[

Fonction

Simulation
Instant

t = 3

...

Simulation Instant
(Zero-time)

Simulation
Interval

1

2
3

4

1 SystemC runs simulation up to end of instant t
2 SystemC sends a request for extra-functional simulation on

[t , t + d]
3 Extra-functional solver does the computation on the interval
4 SystemC resumes simulation at beginning of instant t + d

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 64 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Extra-Functional Events

SystemC

P/To

End of instant

1

Next instant

2

3
Too hot!

4

Fire IT

...

1 SystemC runs simulation until end of instant t

2 SystemC requests a extra-functional simulation in [t , t + d] or until
“too hot”

3 Extra-functional runs simulation, encounters stop condition
4 SystemC resumes earlier than expected with interrupt.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Extra-Functional Events

SystemC

P/To

End of instant

1

Next instant

2

3
Too hot!

4

Fire IT

...

1 SystemC runs simulation until end of instant t
2 SystemC requests a extra-functional simulation in [t , t + d] or until

“too hot”

3 Extra-functional runs simulation, encounters stop condition
4 SystemC resumes earlier than expected with interrupt.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Extra-Functional Events

SystemC

P/To

End of instant

1

Next instant

2

3
Too hot!

4

Fire IT

...

1 SystemC runs simulation until end of instant t
2 SystemC requests a extra-functional simulation in [t , t + d] or until

“too hot”
3 Extra-functional runs simulation, encounters stop condition

4 SystemC resumes earlier than expected with interrupt.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Extra-Functional Events

SystemC

P/To

End of instant

1

Next instant

2

3
Too hot!

4

Fire IT

...

1 SystemC runs simulation until end of instant t
2 SystemC requests a extra-functional simulation in [t , t + d] or until

“too hot”
3 Extra-functional runs simulation, encounters stop condition
4 SystemC resumes earlier than expected with interrupt.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Extra-Functional Events

SystemC

P/To

End of instant

1

Next instant

2

3
Too hot!

4

Fire IT

...

1 SystemC runs simulation until end of instant t
2 SystemC requests a extra-functional simulation in [t , t + d] or until

“too hot”
3 Extra-functional runs simulation, encounters stop condition
4 SystemC resumes earlier than expected with interrupt.

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 65 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Results

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 66 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Outline

1 Introduction: Systems-on-a-Chip, Transaction-Level Modeling

2 Compilation of SystemC/TLM

3 Verification of SystemC/TLM

4 Extra-Functional Properties in TLM

5 Conclusion

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 66 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Conclusion

Transaction-Level Models of
Systems-on-a-Chip

Can they be
Fast, Correct and Faithful?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 67 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Conclusion

Fast
I Optimized compiler
I Parallelization techniques
I High abstraction level (Loose Timing)

Correct
I Formal verification

Faithful
I More ways to express concurrency
I Preserve Faithfulness of Temperature Models for Loose Timing

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 68 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

The new CASH Team, LIP (ENS-Lyon)

Compilation and
Analysis for
Software and
Hardware

Sequential
Program

Parallel
Program

H
P

C
A

p
p

lic
at

io
n

s Parallelism
Extraction Intermediate

Parallel
Representation

Code
Generation

Hardware
(FPGA)

Software
(CPU & accelerators)

Optimization

Dataflow Semantics

Analysis
Abstract

Interpretation

Simulation

Polyhedral
Model

Christophe Alias, Laure Gonnord, Matthieu Moy

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 69 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Questions?

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 70 / 70 >

SoCs and TLM Compilation Verification Extra-functional Conclusion

Sources

http://en.wikipedia.org/wiki/File:Diopsis.jpg
(Peter John Bishop, CC Attribution-Share Alike 3.0 Unported)

http://www.fotopedia.com/items/flickr-367843750
(oskay@fotopedia, CC Attribution 2.0 Generic)

Matthieu Moy (LIP) Transaction-Level Models of SoCs February 2018 < 70 / 70 >

http://en.wikipedia.org/wiki/File:Diopsis.jpg
http://www.fotopedia.com/items/flickr-367843750

	Introduction: Systems-on-a-Chip, Transaction-Level Modeling
	Compilation of SystemC/TLM
	Front-end
	Optimization and Fast Simulation

	Verification of SystemC/TLM
	Extra-Functional Properties in TLM
	Time and Parallelism
	Power and Temperature Estimation

	Conclusion

