
Many-Core Timing Analysis of Real-Time Systems
and its application to an industrial processor

Hamza Rihani
Université Grenoble Alpes / Verimag

December 1, 2017

Jury:
Pr. Jan Reineke Saarland University Reviewer
Pr. Christine Rochange Université de Toulouse Reviewer
Dr. Robert I. Davis University of York Examiner
Dr. Benoît de Dinechin Kalray SA Examiner
Dr. Claire Maïza Université Grenoble Alpes Supervisor
Dr. Matthieu Moy Université Claude Bernard - Lyon 1 Advisor

Introduction: Real-Time Systems

Many-Core Timing Analysis of Real-Time Systems

Definition (Real-Time Systems)
A system that must produce valid outputs before a deadline.

◦ Soft Real-Time
◦ Global Positioning System device
◦ Smartphones

◦ Hard Real-Time

?

◦ Automatic Braking System
◦ Flight Management System

2 / 52

Introduction: Real-Time Systems

Many-Core Timing Analysis of Real-Time Systems

Definition (Real-Time Systems)
A system that must produce valid outputs before a deadline.

◦ Soft Real-Time
◦ Global Positioning System device
◦ Smartphones

◦ Hard Real-Time

?

◦ Automatic Braking System
◦ Flight Management System

2 / 52

Introduction: Real-Time Systems

Many-Core Timing Analysis of Real-Time Systems

Definition (Real-Time Systems)
A system that must produce valid outputs before a deadline.

◦ Soft Real-Time
◦ Global Positioning System device
◦ Smartphones

◦ Hard Real-Time?
◦ Automatic Braking System
◦ Flight Management System

2 / 52

Introduction: Timing Analysis of Arbitration Policies

Many-Core Timing Analysis of Real-Time Systems

How long will the truck wait to cross the road?









3 / 52

Introduction: Timing Analysis of Arbitration Policies

Many-Core Timing Analysis of Real-Time Systems

How long will the truck wait to cross the road?









waits for the green light

♂ grants each direction at a time

gives a priority to the cars

3 / 52

Introduction: Timing Analysis of Arbitration Policies

Many-Core Timing Analysis of Real-Time Systems

How long will the truck wait to cross the road?







♂

waits for the green light

♂ grants each direction at a time

gives a priority to the cars

3 / 52

Introduction: Timing Analysis of Arbitration Policies

Many-Core Timing Analysis of Real-Time Systems

How long will the truck wait to cross the road?









waits for the green light

♂ grants each direction at a time

gives a priority to the cars

3 / 52

Introduction: Timing Analysis of Arbitration Policies

Many-Core Timing Analysis of Real-Time Systems

How long will the truck wait to cross the road?









◦ Crossroad is a shared resource
◦ Vehicles request accesses to pass

◦ Arbitration Policies:

Time Division Multiple Access

♂ Round Robin

Fixed Priority

3 / 52

Introduction: Many-Cores in Real Time Systems

Many-Core Timing Analysis of Real-Time Systems

Cluster 0

Cluster 1

Cluster m

router router

router routerrouter

Network-on-Chip

2

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

…

I/O device

Timing analysis of cores
◦ Existing tools for pipeline and cache
analyses

Where is the potential interference?
1 Shared buses and memory

?

2 NoC routing
3 Shared I/O controllers

4 / 52

Introduction: Many-Cores in Real Time Systems

Many-Core Timing Analysis of Real-Time Systems

router router

router routerrouter

Network-on-Chip

2

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

…

I/O device

Timing analysis of cores
◦ Existing tools for pipeline and cache
analyses

Where is the potential interference?
1 Shared buses and memory?
2 NoC routing
3 Shared I/O controllers

4 / 52

Introduction: Many-Cores in Real Time Systems

Many-Core Timing Analysis of Real-Time Systems

router router

router routerrouter

Network-on-Chip
2

P0

DI

P1

DI

P2

DI

Pn

DI

…

1bus

shared memory

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

P0

DI

P1

DI

P2

DI

Pn

DI

…

bus

shared memory

…

I/O device

3 Timing analysis of cores
◦ Existing tools for pipeline and cache
analyses

Where is the potential interference?
1 Shared buses and memory?
2 NoC routing
3 Shared I/O controllers

4 / 52

Contributions

Contribution 1
Analysis of Time Division Multiple Access policy

◦ Approach based on Satisfiability Modulo Theory








Contribution 2
Response time analysis of a many-core processor

◦ Synchronous Data Flow programs
◦ Model of the shared bus arbiter

The High Five, Dallas, Texas, USA

5 / 52

Contributions

Contribution 1
Analysis of Time Division Multiple Access policy

◦ Approach based on Satisfiability Modulo Theory








Contribution 2
Response time analysis of a many-core processor

◦ Synchronous Data Flow programs
◦ Model of the shared bus arbiter

The High Five, Dallas, Texas, USA

5 / 52

Outline

I TDMA Bus Timing Analysis

II Many-Core Response Time Analysis

III Conclusion

6 / 52

TDMA Bus Timing Analysis

Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc req2 ackstall time acc req3 worst-case stall time
acc

time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π

8 / 52

Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc req2 ackstall time acc req3 worst-case stall time
acc

Core A Core ACore B Core C Core B Core C
time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π

8 / 52

Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc req2 ackstall time acc req3 worst-case stall time
acc

Core A Core A
time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π

8 / 52

Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc

req2 ackstall time acc req3 worst-case stall time
acc

time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π

8 / 52

Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc req2 ackstall time acc

req3 worst-case stall time
acc

time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π

8 / 52

Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc req2 ackstall time acc req3 worst-case stall time
acc

time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π

8 / 52

Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc req2 ackstall time acc req3 worst-case stall time
acc

time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π

8 / 52

Outline: TDMA Bus Timing Analysis

1 Approaches in WCET Analysis of TDMA

2 WCET Analysis by SMT Encoding
Naive SMT Approach
Offset-based SMT Encoding

3 Experimental Evaluation

4 Summary and Future Work of Part I

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

9 / 52

Outline: TDMA Bus Timing Analysis

1 Approaches in WCET Analysis of TDMA

2 WCET Analysis by SMT Encoding
Naive SMT Approach
Offset-based SMT Encoding

3 Experimental Evaluation

4 Summary and Future Work of Part I

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

10 / 52

Worst-Case Execution Time (WCET) Analysis of TDMA

� �
i n t f (i n t x) {
/* 3 cyc l e s */
i f (cond)
{

/* 10 cyc l e s */
}
i f (! cond)
{

/*bus access */
}
r e t u r n ;

}� �
B5:
return

B4:
/* bus access */

cost=π−σ+2 acc

B3:
if (!cond)

B2:
/*10 cycles*/

B1:
/*3 cycles*/
if (cond)

False

off1

True

off2

True

False

Goal: Estimate the WCET

,→ Existing approaches:
1 Worst-case everywhere

[Altmeyer et al., 2015; Rosèn et al., 2007…]

2 Capture all possible offsets
[Chattopadhyay et al., 2010; Kelter et al., 2014…]

,→ Combined with:
3 Feasible Path Analysis

off

slot length σ
TDMA period π

req ackacc

time

11 / 52

Worst-Case Execution Time (WCET) Analysis of TDMA

� �
i n t f (i n t x) {
/* 3 cyc l e s */
i f (cond)
{

/* 10 cyc l e s */
}
i f (! cond)
{

/*bus access */
}
r e t u r n ;

}� �
B5:
return

B4:
/* bus access */
cost=π−σ+2 acc

B3:
if (!cond)

B2:
/*10 cycles*/

B1:
/*3 cycles*/
if (cond)

False

off1

True

off2

True

False

Goal: Estimate the WCET

,→ Existing approaches:
1 Worst-case everywhere

[Altmeyer et al., 2015; Rosèn et al., 2007…]

2 Capture all possible offsets
[Chattopadhyay et al., 2010; Kelter et al., 2014…]

,→ Combined with:
3 Feasible Path Analysis

off

slot length σ
TDMA period π

req ackacc

time

11 / 52

Worst-Case Execution Time (WCET) Analysis of TDMA

� �
i n t f (i n t x) {
/* 3 cyc l e s */
i f (cond)
{

/* 10 cyc l e s */
}
i f (! cond)
{

/*bus access */
}
r e t u r n ;

}� �
B5:
return

B4:
/* bus access */

cost=π−σ+2 acc

B3:
if (!cond)

B2:
/*10 cycles*/

B1:
/*3 cycles*/
if (cond)

False
off1

True

off2

True
{off ′

1, off ′
2}

False
{off ′

1, off ′
2}

Goal: Estimate the WCET

,→ Existing approaches:
1 Worst-case everywhere

[Altmeyer et al., 2015; Rosèn et al., 2007…]

2 Capture all possible offsets
[Chattopadhyay et al., 2010; Kelter et al., 2014…]

,→ Combined with:
3 Feasible Path Analysis

off

slot length σ
TDMA period π

req ackacc

time

11 / 52

Worst-Case Execution Time (WCET) Analysis of TDMA

� �
i n t f (i n t x) {
/* 3 cyc l e s */
i f (cond)
{

/* 10 cyc l e s */
}
i f (! cond)
{

/*bus access */
}
r e t u r n ;

}� �
B5:
return

B4:
/* bus access */

cost=π−σ+2 acc

B3:
if (!cond)

B2:
/*10 cycles*/

B1:
/*3 cycles*/
if (cond)

False
off1

True

off2

True
{off ′

1, off ′
2}

False
{off ′

1, off ′
2}

Goal: Estimate the WCET

,→ Existing approaches:
1 Worst-case everywhere

[Altmeyer et al., 2015; Rosèn et al., 2007…]

2 Capture all possible offsets
[Chattopadhyay et al., 2010; Kelter et al., 2014…]

,→ Combined with:
3 Feasible Path Analysis

off

slot length σ
TDMA period π

req ackacc

time

11 / 52

Approaches in WCET Analysis of TDMA

Feasible Path Analysis with SMT
[Henry et al., 2014]

3
Capture all possible offsets

[Kelter et al., 2014]
[Chattopadhyay et al., 2010]

2

Contribution (in RTNS 2015):

Compute WCET by encoding the
semantics and shared resource
accesses into an optimization

problem (SMT)

12 / 52

Approaches in WCET Analysis of TDMA

Feasible Path Analysis with SMT
[Henry et al., 2014]

3
Capture all possible offsets

[Kelter et al., 2014]
[Chattopadhyay et al., 2010]

2

Contribution (in RTNS 2015):

Compute WCET by encoding the
semantics and shared resource
accesses into an optimization

problem (SMT)

12 / 52

Outline: TDMA Bus Timing Analysis

1 Approaches in WCET Analysis of TDMA

2 WCET Analysis by SMT Encoding
Naive SMT Approach
Offset-based SMT Encoding

3 Experimental Evaluation

4 Summary and Future Work of Part I

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

13 / 52

WCET Analysis by SMT Encoding

◦ Bounded Model Checking
◦ Encode the semantics into a Satisfiability Modulo Theory problem

◦ Add execution times on the paths

SMT query︸ ︷︷ ︸
assert(∧expr)

= “Is there a trace with a feasible path?”

...such that the execution time is greater than X?”

◦ SMT-solver response:

◦ SAT:
◦ UNSAT:

Goal
Find the smallest X , such that Execution Time > X is UNSAT

14 / 52

WCET Analysis by SMT Encoding

◦ Bounded Model Checking
◦ Encode the semantics into a Satisfiability Modulo Theory problem

◦ Add execution times on the paths

SMT query︸ ︷︷ ︸
assert(∧expr)

= “Is there a trace with a feasible path?”

...such that the execution time is greater than X?”

◦ SMT-solver response:
◦ SAT: There is a feasible execution path
◦ UNSAT: There is no feasible execution path

Goal
Find the smallest X , such that Execution Time > X is UNSAT

14 / 52

WCET Analysis by SMT Encoding

◦ Bounded Model Checking
◦ Encode the semantics into a Satisfiability Modulo Theory problem

◦ Add execution times on the paths

SMT query︸ ︷︷ ︸
assert(∧expr)

= “Is there a trace with a feasible path

?”

...such that the execution time is greater than X?”

◦ SMT-solver response:
◦ SAT: There is a feasible path with an execution time > X
◦ UNSAT: X is an upper-bound on WCET

Goal
Find the smallest X , such that Execution Time > X is UNSAT

14 / 52

WCET Analysis by SMT Encoding

◦ Bounded Model Checking
◦ Encode the semantics into a Satisfiability Modulo Theory problem

◦ Add execution times on the paths

SMT query︸ ︷︷ ︸
assert(∧expr)

= “Is there a trace with a feasible path

?”

...such that the execution time is greater than X?”

◦ SMT-solver response:
◦ SAT: There is a feasible path with an execution time > X
◦ UNSAT: X is an upper-bound on WCET

Goal
Find the smallest X , such that Execution Time > X is UNSAT

14 / 52

Example: Semantics and Timing Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

pred=(y < 0)
t1,2= b1∧pred

b2= t1,2

t1,3= b1∧ !pred

b3= t1,3∧ t2,3b3= t1,3∧ t2,3

t3,5

start=0

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+

e3,4
e3,5

Previous work in [Henry et al., 2014]

Ï bi ”true” def⇐⇒ Bi executed
Ï ti ,j ”true” def⇐⇒ Bi →Bj taken

Ï ei ,j execution time at transition
Bi → Bj

Contribution
Ï tdma_cost() execution time of a bus

access

15 / 52

Example: Semantics and Timing Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

pred=(y < 0)
t1,2= b1∧pred

b2= t1,2

t1,3= b1∧ !pred

b3= t1,3∧ t2,3b3= t1,3∧ t2,3

t3,5

start=0

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+wcet(B4)

e3,4
e3,5

Previous work in [Henry et al., 2014]

Ï bi ”true” def⇐⇒ Bi executed
Ï ti ,j ”true” def⇐⇒ Bi →Bj taken
Ï ei ,j execution time at transition

Bi → Bj

Contribution
Ï tdma_cost() execution time of a bus

access

15 / 52

Example: Semantics and Timing Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

pred=(y < 0)
t1,2= b1∧pred

b2= t1,2

t1,3= b1∧ !pred

b3= t1,3∧ t2,3b3= t1,3∧ t2,3

t3,5

start=0

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(e3,4)

e3,4
e3,5

Previous work in [Henry et al., 2014]

Ï bi ”true” def⇐⇒ Bi executed
Ï ti ,j ”true” def⇐⇒ Bi →Bj taken
Ï ei ,j execution time at transition

Bi → Bj

Contribution
Ï tdma_cost() execution time of a bus

access

15 / 52

Naive SMT Encoding
π−offset(reqA

2) acc

TDMA period π

reqA
11 ackacc reqA

22 ack

slot length σ time

0 2 4 6 8 10 12 14 16 18

tdma_cost(eentry): returns the execution time of a bus access

off entry ← eentry mod π
/* is off entry inside the slot? */
if off entry ∈ [0,σ−acc[

return acc return (π−off entry)+acc

eentry

1 Yes 2No

16 / 52

Performance of the Naive Encoding

bus access

bus access

bus access

N

●

●

●

●

●

1

100

10000

5 10 15 20 25
N blocks

tim
e(

s)
 (

lo
g

sc
al

e)

● 100% access (naive)

17 / 52

Performance of the Naive Encoding

bus access

bus access

bus access

N

●

●

●

●

●

1

100

10000

5 10 15 20 25
N blocks

tim
e(

s)
 (

lo
g

sc
al

e)

● 100% access (naive)

17 / 52

Naive SMT Encoding
π−offset(reqA

2) acc

TDMA period π

reqA
11 ackacc reqA

22 ack

slot length σ time

0 2 4 6 8 10 12 14 16 18

tdma_cost: returns the execution time of a bus access

off entry ← eentry mod π

/* is off entry inside the slot? */
if off entry ∈ [0,σ−acc[

return acc return (π−off entry)+acc

eentry

1 Yes 2No

18 / 52

Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

start=0

offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(e3,4)

off1,2=(offs +wcet(B1)) modπ

off2,3=(off1,2+10) modπ

off4,5= tdma_offset(off3,4)

◦ offi ,j = ei ,j mod π

◦ offi ,j offset at transition Bi →Bj

19 / 52

Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

start=0offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(off3,4)

off1,2=(offs +wcet(B1)) modπ

off2,3=(off1,2+10) modπ

off4,5= tdma_offset(off3,4)

◦ offi ,j = ei ,j mod π
◦ offi ,j offset at transition Bi →Bj

19 / 52

Offset-based SMT Encoding

π−offset(reqA
2) acc

TDMA period π

reqA
11 ackacc reqA

22 ack

slot length σ time

0 2 4 6 8 10 12 14 16 18

tdma_cost: returns the time after a bus
access

/* is off entry inside the slot? */
if off entry ∈ [0,σ−acc[

return acc return (π−off entry)+acc

offentry

1 Yes 2No

tdma_offset: returns the offset after a
bus access

/* is off entry inside the slot? */
if off entry ∈ [0,σ−acc[

return off entry +acc return acc

offentry

1 Yes 2No

20 / 52

Performance of the Offset-based Encoding

bus access

bus access

bus access

N

●

●

●

●

●

1e−01

1e+01

1e+03

10 100 1000
#basic blocks (log scale)

tim
e(

s)
 (

lo
g

sc
al

e)

● naive
offset based

21 / 52

Outline: TDMA Bus Timing Analysis

1 Approaches in WCET Analysis of TDMA

2 WCET Analysis by SMT Encoding
Naive SMT Approach
Offset-based SMT Encoding

3 Experimental Evaluation

4 Summary and Future Work of Part I

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

22 / 52

Proof-of-Concept Implementation

C code LLVM bitcode

Timing model

SMT clausesWCET

LLVM compiler

PAGAI

SMT-solving

23 / 52

Proof-of-Concept Implementation

C code
LLVM bitcode:

◦ Unrolled loops

Timing model:

◦ 1 instruction = 1 cycle

◦ Each load and store
requests a bus access

◦ Timing Compositional

SMT clausesWCET

LLVM compiler

PAGAI

SMT-solving

23 / 52

Evaluation: Benchmark Descriptions

Benchmark from TACLEBench suite 1

Name Description #LLVM instr. #bus access
bs Binary search 231 12

insertsort Insertion sort on
a reversed array 493 65

jfdctint Discrete Cosine
Transformation 2334 448

fdct
Fast Discrete
Cosine
Transform

2502 385

compressdata

Data
compression
program adopted
from SPEC95

674 131

fly-by-wire UAV fly-by-wire
software 2815 515

1https://github.com/tacle/tacle-bench
24 / 52

https://github.com/tacle/tacle-bench

Evaluation: Experiments

Comparison between estimated WCET and pessimistic WCET

bs

ins
ert
sor
t

jfd
cti
nt fdc

t

com
pre
ssd
ata

fly
-by
-w
ire

0

0.2

0.4

0.6

0.8

1

W
CE

T e
st

im
at

ed
W

CE
T p

es
s

π= 40, σ= 20, acc = 10

bs

ins
ert
sor
t

jfd
cti
nt fdc

t

com
pre
ssd
ata

fly
-by
-w
ire

0

0.2

0.4

0.6

0.8

1

W
CE

T e
st

im
at

ed
W

CE
T p

es
s

π= 400, σ= 200, acc = 40

Best-case of gain: All requests are within the TDMA slots
Worst-case of gain: All requests have worst-case delay

25 / 52

Outline: TDMA Bus Timing Analysis

1 Approaches in WCET Analysis of TDMA

2 WCET Analysis by SMT Encoding
Naive SMT Approach
Offset-based SMT Encoding

3 Experimental Evaluation

4 Summary and Future Work of Part I

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

26 / 52

Summary of Part I

◦ SMT encodings for TDMA access
◦ Feasible path analysis combined with the WCET computation
◦ Comparison between different encodings
◦ Validation with small but relevant benchmarks

Find in the manuscript:
◦ Linearization of SMT encoding (modulo operators)
◦ Other possible SMT encodings

27 / 52

Future Work of Part I

C code:
◦ Compositional analysis

◦ Partial loop unrolling

Research perspectives

LLVM bitcode

Timing model:
◦ Realistic timing values
(e.g. Otawa)

Implementation perspectives

SMT clausesWCET

Executable
binary

LLVM compiler

PAGAI

SMT-solving

 SMT is an interesting research direction for WCET Analysis

28 / 52

Future Work of Part I

C code:
◦ Compositional analysis

◦ Partial loop unrolling

Research perspectives

LLVM bitcode

Timing model:
◦ Realistic timing values
(e.g. Otawa)

Implementation perspectives

SMT clausesWCET

Executable
binary

LLVM compiler

PAGAI

SMT-solving

 SMT is an interesting research direction for WCET Analysis

28 / 52

From TDMA to Other Arbitration Policy

Full isolation with TDMA
Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus
 …

Linear complexity
in the number of tasks

No isolation ♂
Model

bus

task task task task

task task task task

task task task task

task task …


   

   

   

 

 States explosion!

29 / 52

From TDMA to Other Arbitration Policy

Full isolation with TDMA
Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus


Model

:
task

bus
 …

Linear complexity
in the number of tasks

No isolation ♂
Model

bus

task task task task

task task task task

task task task task

task task …


   

   

   

 

 States explosion!

29 / 52

Analysis of Large Multi and Many-Cores

B5

B4

B3

B2

B1



B6

B5

B3 B4

B2

B1

1 •

t

P1

P0

• 2

Pessimism

Co
m

pl
ex

ity

1 Exact analysis
2 Account for any interference globally

during the task’s execution

3 Exploit any information about:

◦ The target architecture Kalray MPPA2

◦ Reduce the interference
◦ Model precisely the shared resources

◦ The target application model
Synchronous Data Flow

30 / 52

Analysis of Large Multi and Many-Cores

B5

B4

B3

B2

B1



B6

B5

B3 B4

B2

B1

1 •

t

P1

P0

• 2
3
•

Pessimism

Co
m

pl
ex

ity

1 Exact analysis
2 Account for any interference globally

during the task’s execution

3 Exploit any information about:

◦ The target architecture Kalray MPPA2

◦ Reduce the interference
◦ Model precisely the shared resources

◦ The target application model
Synchronous Data Flow

30 / 52

Many-Core Response Time Analysis

Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

32 / 52

Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

33 / 52

Implementation Choices: SDF on Multi/Many-Cores

High-level representation

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

3 Respect the dependency
constraints

3 account for
precise upper bounds
on the interference

code generation
Multi/Many-Core

Static, time triggered, non-preemptive scheduling

i n t NF (. . .)
{
// ta s k τ6

r e t u r n (. . .) ;
}

i n t NE (. . .)
{
// ta s k τ5

r e t u r n (. . .) ;
}

i n t ND (. . .)
{
// ta s k τ4

r e t u r n (. . .) ;
}

i n t NC (. . .)
{
// ta s k τ3

r e t u r n (. . .) ;
}

i n t NB (. . .)
{
// ta s k τ2

r e t u r n (. . .) ;
}

i n t NA (. . .)
{
// ta s k τ1

r e t u r n (. . .) ;
}

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5

34 / 52

Implementation Choices: SDF on Multi/Many-Cores

High-level representation

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

3 Respect the dependency
constraints

3 account for
precise upper bounds
on the interference

code generation
Multi/Many-Core

Static, time triggered, non-preemptive scheduling

i n t NF (. . .)
{
// ta s k τ6

r e t u r n (. . .) ;
}

i n t NE (. . .)
{
// ta s k τ5

r e t u r n (. . .) ;
}

i n t ND (. . .)
{
// ta s k τ4

r e t u r n (. . .) ;
}

i n t NC (. . .)
{
// ta s k τ3

r e t u r n (. . .) ;
}

i n t NB (. . .)
{
// ta s k τ2

r e t u r n (. . .) ;
}

i n t NA (. . .)
{
// ta s k τ1

r e t u r n (. . .) ;
}

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5

34 / 52

Implementation Choices: SDF on Multi/Many-Cores

High-level representation

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

3 Respect the dependency
constraints

3 account for
precise upper bounds
on the interference

code generation
Multi/Many-Core

Static, time triggered, non-preemptive scheduling

i n t NF (. . .)
{
// ta s k τ6

r e t u r n (. . .) ;
}

i n t NE (. . .)
{
// ta s k τ5

r e t u r n (. . .) ;
}

i n t ND (. . .)
{
// ta s k τ4

r e t u r n (. . .) ;
}

i n t NC (. . .)
{
// ta s k τ3

r e t u r n (. . .) ;
}

i n t NB (. . .)
{
// ta s k τ2

r e t u r n (. . .) ;
}

i n t NA (. . .)
{
// ta s k τ1

r e t u r n (. . .) ;
}

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5

34 / 52

Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order

Each task τi :
◦ Release date (rel i). Response time (Ri)

t

memory accesses
rel i

Ri

Interference

E

E0

35 / 52

Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order
Each task τi :

◦ Release date (rel i). Response time (Ri)

t

memory accesses
rel i

Ri

Interference

E

E0

35 / 52

Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order
Each task τi :

◦ Release date (rel i). Response time (Ri)

t

memory accesses

rel i

Ri

Interference

E

E0

35 / 52

Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order
Each task τi :
◦ Release date (rel i). Response time (Ri)

t

memory accesses

rel i

Ri

Ri

Interference

E

E0

35 / 52

Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order
Each task τi :
◦ Release date (rel i). Response time (Ri)

t

memory accesses

rel i

Ri

Ri

Interference

E

E0

35 / 52

Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order
Each task τi :
◦ Release date (rel i). Response time (Ri)

t

memory accesses

rel i

Ri

Interference

E

E0

35 / 52

Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order
Each task τi :
◦ Release date (rel i). Response time (Ri)

t

memory accesses

rel i

Ri

Interference

E

E0

35 / 52

Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

36 / 52

Response Time Analysis

Existing work [Altmeyer et al., 2015]

∀i : Ri = WCETi + IBUS(Ri) + . . .

For each task i :
◦ Response Time
◦ WCET in isolation
◦ Bus Interference

Independent tasks

t

PE0

PE1

00 40 80 120 160

T1 T1 T1 T1

T0

Contribution (in RTNS 2016)

∀i : Ri = WCETi + IBUS(Ri , Θ)+ . . .

◦ WCET in isolation
◦ Set of release dates of all tasks
◦ Bounded interference

Dependent tasks

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5

 Recursive formula ⇒ iterative algorithm.

37 / 52

Response Time Analysis

Existing work [Altmeyer et al., 2015]

∀i : Ri = WCETi + IBUS(Ri) + . . .

For each task i :
◦ Response Time
◦ WCET in isolation
◦ Bus Interference

Independent tasks

t

PE0

PE1

00 40 80 120 160

T1 T1 T1 T1

T0

Contribution (in RTNS 2016)

∀i : Ri = WCETi + IBUS(Ri , Θ)+ . . .

◦ WCET in isolation
◦ Set of release dates of all tasks
◦ Bounded interference

Dependent tasks

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5

 Recursive formula ⇒ iterative algorithm.

37 / 52

Response Time Analysis

Existing work [Altmeyer et al., 2015]

∀i : Ri = WCETi + IBUS(Ri) + . . .

For each task i :
◦ Response Time
◦ WCET in isolation
◦ Bus Interference

Independent tasks

t

PE0

PE1

00 40 80 120 160

T1 T1 T1 T1

T0

Contribution (in RTNS 2016)

∀i : Ri = WCETi + IBUS(Ri , Θ)+ . . .

◦ WCET in isolation
◦ Set of release dates of all tasks
◦ Bounded interference

Dependent tasks

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5

 Recursive formula ⇒ iterative algorithm.
37 / 52

Response Time Analysis with Dependencies

PE2

PE1

PE0 τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates

2 Compute response times

... a fixed-point is reached!

3 Update the release dates
4 Repeat

until no release date changes
(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0 R l+1
i 6=R l

i /
2 l = l +1
R l+1

i 6=R l
i /

l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2Ri

new rel i
repeat

4
new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4

38 / 52

Response Time Analysis with Dependencies

PE2

PE1

PE0 τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates
2 Compute response times

...

... ... a fixed-point is reached!

3 Update the release dates
4 Repeat

until no release date changes
(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0 R l+1
i 6=R l

i /
2 l = l +1

R l+1
i 6=R l

i /
l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2Ri

new rel i
repeat

4
new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4

38 / 52

Response Time Analysis with Dependencies

PE2

PE1

PE0 τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates
2 Compute response times

... ...

... a fixed-point is reached!

3 Update the release dates
4 Repeat

until no release date changes
(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0 R l+1
i 6=R l

i /
2 l = l +1

R l+1
i 6=R l

i /
l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2Ri

new rel i
repeat

4
new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4

38 / 52

Response Time Analysis with Dependencies

PE2

PE1

PE0 τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates
2 Compute response times

... a fixed-point is reached!

3 Update the release dates
4 Repeat

until no release date changes
(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0

R l+1
i 6=R l

i /
2 l = l +1

R l+1
i 6=R l

i /
l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2

Ri
new rel i
repeat

4
new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4

38 / 52

Response Time Analysis with Dependencies

PE2

PE1

PE0 τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates
2 Compute response times

... a fixed-point is reached!

3 Update the release dates

4 Repeat

until no release date changes
(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0

R l+1
i 6=R l

i /
2 l = l +1

R l+1
i 6=R l

i /
l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2

Ri

new rel i
repeat

4
new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4

38 / 52

Response Time Analysis with Dependencies

PE2

PE1

PE0

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates
2 Compute response times

... a fixed-point is reached!

3 Update the release dates
4 Repeat

until no release date changes
(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0

R l+1
i 6=R l

i /
2 l = l +1

R l+1
i 6=R l

i /
l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2

Ri
new rel i
repeat

4

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4

38 / 52

Response Time Analysis with Dependencies

PE2

PE1

PE0

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates
2 Compute response times

... a fixed-point is reached!

3 Update the release dates
4 Repeat until no release date changes

(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0

R l+1
i 6=R l

i /
2 l = l +1

R l+1
i 6=R l

i /
l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2

Ri

new rel i
repeat

4

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4

38 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ No monotonicity: Ri and rel i may grow or
shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i R l+1

i 6=R l
i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:
◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ No monotonicity: Ri and rel i may grow or
shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i R l+1

i 6=R l
i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:
◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ No monotonicity: Ri and rel i may grow or
shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i

R l+1
i 6=R l

i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:
◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ No monotonicity: Ri and rel i may grow or

shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i

R l+1
i 6=R l

i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:
◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ No monotonicity: Ri and rel i may grow or

shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i

R l+1
i 6=R l

i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:
◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ No monotonicity: Ri and rel i may grow or

shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i

R l+1
i 6=R l

i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:
◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ No monotonicity: Ri and rel i may grow or

shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i

R l+1
i 6=R l

i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:
◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:
◦ No monotonicity: Ri and rel i may grow or

shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i

R l+1
i 6=R l

i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

39 / 52

Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

40 / 52

Target Many-Core: Kalray MPPA2

I/
O

Et
he

rn
et

0 I/O
Ethernet1

I/O DDR 0

I/O DDR 1

P0

P1

P15

bus arbiter

bus arbiter

bus arbiter

memory bank
b0

memory bank
b1

memory bank
b15

…

Rx

Rx

Rx

Tx

Tx

Tx

DSU

DSU

DSU

RM

RM

RM

◦ Kalray MPPA2 (codenamed Bostan)

◦ 16 compute clusters + 4 I/O clusters

◦ Dual NoC

41 / 52

Target Many-Core: Kalray MPPA2
I/

O
Et

he
rn

et
0 I/O

Ethernet1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
ar
ed

m
em

or
y
ba
nk
s 8

shared
m
em

ory
banks

P0

P1

P15

bus arbiter

bus arbiter

bus arbiter

memory bank
b0

memory bank
b1

memory bank
b15

…

Rx

Rx

Rx

Tx

Tx

Tx

DSU

DSU

DSU

RM

RM

RM

Per cluster:

◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total: 2 MB)

◦ 1 bus arbiter per memory bank

41 / 52

Target Many-Core: Kalray MPPA2
I/

O
Et

he
rn

et
0 I/O

Ethernet1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
ar
ed

m
em

or
y
ba
nk
s 8

shared
m
em

ory
banks

P0

P1

P15

bus arbiter

bus arbiter

bus arbiter

memory bank
b0

memory bank
b1

memory bank
b15

…
Rx

Rx

Rx

Tx

Tx

Tx

DSU

DSU

DSU

RM

RM

RM

Per cluster:

◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total: 2 MB)

◦ 1 bus arbiter per memory bank

41 / 52

Target Many-Core: Kalray MPPA2
I/

O
Et

he
rn

et
0 I/O

Ethernet1

I/O DDR 0

I/O DDR 1

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
ar
ed

m
em

or
y
ba
nk
s 8

shared
m
em

ory
banks

P0

P1

P15

bus arbiter

bus arbiter

bus arbiter

memory bank
b0

memory bank
b1

memory bank
b15

…
Rx

Rx

Rx

Tx

Tx

Tx

DSU

DSU

DSU

RM

RM

RM

Per cluster:

◦ 16 cores + 1 Resource Manager

◦ NoC Tx, NoC Rx, Debug Unit

◦ 16 shared memory banks (total: 2 MB)

◦ 1 bus arbiter per memory bank

◦ Possible spatial isolation
assigning memory banks to cores

◦ Task execution model:
◦ execute in a “local” bank
◦ write to a “remote” bank

◦ Interference from communications

41 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


P1

DSU

RM

Tx

…

1

2

known upper-bound
on the number of
memory accesses

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(P)) + min(E(Y), E(X)) + E(Rx)
X =

∑
{Tx ,RM,DSU}

42 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


P1

DSU

RM

Tx

…

1

2

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(P)) + min(E(Y), E(X)) + E(Rx)
X =

∑
{Tx ,RM,DSU}

42 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


P1

DSU

RM

Tx

…

1

2

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(P)) + min(E(Y), E(X)) + E(Rx)
X =

∑
{Tx ,RM,DSU}

42 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


P1

DSU

RM

Tx

…

1

2

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(P1))

+ min(E(Y), E(X)) + E(Rx)
X =

∑
{Tx ,RM,DSU}

42 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

Y

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


P1

X

DSU

RM

Tx

…

1

2

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(P1)) + min(E(Y), E(X))

+ E(Rx)
X =

∑
{Tx ,RM,DSU}

42 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

Y

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


P1

X

DSU

RM

Tx

…

1

2

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(P1)) + min(E(Y), E(X)) + E(Rx)

X =
∑

{Tx ,RM,DSU}

42 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

Y

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


X

…

P15

DSU

RM

Tx

…

1

2

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(Pi)) + min(E(Y), E(X)) + E(Rx)

X =
∑

{Tx ,RM,DSU}

42 / 52

Model of the MPPA2 Bus

bus arbiter

round
robin

♂

Y

round
robin

round
robin

♂

fixed
priority

high priority
Rx

memory bank
b

P0


…

P15

DSU

RM

Tx

…

1

2

Shared Bus Model
IBUS(Ri ,Θ)=

∑
b∈B

IBUS
b (Ri ,Θ)

where B: a set of memory banks

Bus interference IBUSb (Ri ,Θ):

1 E(P0)=

: : :

. . .

:

2 E(P1)=

: : :

. . .

:

∑
1≤i≤15

min(E(P0), E(Pi)) + min(E(Y), E(X)) + E(Rx)
X =

∑
{Tx ,RM,DSU}

42 / 52

Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

43 / 52

Case Study: ROSACE, a Flight Management System Controller 2

High level representation

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Unrolled execution

Rx

Tx

P4

P3

P2

P1

P0 va_filter
100 Hz

va_control
50 Hz

va_filter
100 Hz

q_filter
100 Hz

q_filter
100 Hz

vz_filter
100 Hz

vz_filter
100 Hz

az_filter
100 Hz

az_filter
100 Hz

h_filter
100 Hz

altitude
50 Hz

vz_control
50 Hz

h_filter
100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

2 Pagetti et al., 2014
44 / 52

Case Study: ROSACE, a Flight Management System Controller 2

High level representation

va_filter
(100Hz)

q_filter
(100Hz)

vz_filter
(100Hz)

az_filter
(100Hz)

h_filter
(100Hz)

altitude
(50Hz)

vz_control
(50Hz)

va_control
(50Hz)va (200Hz)

q (200Hz)

vz (200Hz)

az (200Hz)

h (200Hz)

δec

δthe

Unrolled execution

Rx

Tx

P4

P3

P2

P1

P0 va_filter
100 Hz

va_control
50 Hz

va_filter
100 Hz

q_filter
100 Hz

q_filter
100 Hz

vz_filter
100 Hz

vz_filter
100 Hz

az_filter
100 Hz

az_filter
100 Hz

h_filter
100 Hz

altitude
50 Hz

vz_control
50 Hz

h_filter
100 Hz

transmit
50 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

receive
200 Hz

Hyper-period

2 Pagetti et al., 2014
44 / 52

Evaluation: ROSACE Case Study

Function WCET (cycles) Memory accesses
altitude 275 22
az_filter 274 22
h_filter 326 24
q_filter 338 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

◦ Values obtained from measurements
◦ Memory accesses from data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

 Experiments: Find the smallest schedulable hyper-period

45 / 52

Evaluation: ROSACE Case Study

Function WCET (cycles) Memory accesses
altitude 275 22
az_filter 274 22
h_filter 326 24
q_filter 338 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

◦ Values obtained from measurements
◦ Memory accesses from data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

 Experiments: Find the smallest schedulable hyper-period

45 / 52

Evaluation: Experiments

1 bank 5 banks

+709%

+110.57%
+42.62%

+0%

+709%

+27.24% +11.21% +0%

0

5000

10000

15000

MPPA bus MPPA bus
Bus policy

P
ro

ce
ss

or
 c

yc
le

s

Naive
Ignoring overlaps
Our approach
Optimistic

Smallest schedulable hyper-period

46 / 52

Evaluation: Experiments

1 bank 5 banks

+709%

+110.57%
+42.62%

+0%

+709%

+27.24% +11.21% +0%

0

5000

10000

15000

MPPA bus MPPA bus
Bus policy

P
ro

ce
ss

or
 c

yc
le

s

Naive
Ignoring overlaps
Our approach
Optimistic

Smallest schedulable hyper-period

Naive:
- All accesses interfere
- Rx bounded by
1 access per bank

Ignoring overlap:
We don’t use
the release dates

Our approach:
We use the release dates

Optimistic:
No bus interference

46 / 52

Evaluation: Experiments

1 bank 5 banks

+709%

+110.57%
+42.62%

+0%

+709%

+27.24% +11.21% +0%

0

5000

10000

15000

MPPA bus MPPA bus
Bus policy

P
ro

ce
ss

or
 c

yc
le

s

Naive
Ignoring overlaps
Our approach
Optimistic

Smallest schedulable hyper-period

Naive:
- All accesses interfere
- Rx bounded by
1 access per bank

Ignoring overlap:
We don’t use
the release dates

Our approach:
We use the release dates

Optimistic:
No bus interference

46 / 52

Evaluation: Experiments

1 bank 5 banks

+709%

+110.57%
+42.62%

+0%

+709%

+27.24% +11.21% +0%

0

5000

10000

15000

MPPA bus MPPA bus
Bus policy

P
ro

ce
ss

or
 c

yc
le

s

Naive
Ignoring overlaps
Our approach
Optimistic

Smallest schedulable hyper-period

Naive:
- All accesses interfere
- Rx bounded by
1 access per bank

Ignoring overlap:
We don’t use
the release dates

Our approach:
We use the release dates

Optimistic:
No bus interference

46 / 52

Evaluation: Experiments

1 bank 5 banks

+709%

+110.57%
+42.62%

+0%

+709%

+27.24% +11.21% +0%

0

5000

10000

15000

MPPA bus MPPA bus
Bus policy

P
ro

ce
ss

or
 c

yc
le

s

Naive
Ignoring overlaps
Our approach
Optimistic

Smallest schedulable hyper-period

Naive:
- All accesses interfere
- Rx bounded by
1 access per bank

Ignoring overlap:
We don’t use
the release dates

Our approach:
We use the release dates

Optimistic:
No bus interference

46 / 52

Evaluation: Experiments

1 bank 5 banks

+709%

+110.57%
+42.62%

+0%

+709%

+27.24% +11.21% +0%

0

5000

10000

15000

MPPA bus MPPA bus
Bus policy

P
ro

ce
ss

or
 c

yc
le

s

Naive
Ignoring overlaps
Our approach
Optimistic

Smallest schedulable hyper-period

Naive:
- All accesses interfere
- Rx bounded by
1 access per bank

Ignoring overlap:
We don’t use
the release dates

Our approach:
We use the release dates

Optimistic:
No bus interference

46 / 52

Evaluation: CAPACITES Project

Traditional steps for single-cores

SCADE/Lustre
application

Input

Code generation 1 pre-scheduling
WCET analysis

Task mapping and
scheduling

Code generation 2:
Add the schedul-
ing/mapping in the
binary

post-scheduling
WCET analysis and
Shared Resource
analysis

Response times and
release dates
computation

Code generation 3:
Add the response time
and release dates in
the binaries

Executable binary
for the Kalray
MPPA Bostan

Output

binary +
task graph

initialW
CETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

les

Response times,
Release dates

ma
pp
ing
s a
nd

exe
c.
ord
er

47 / 52

Evaluation: CAPACITES Project

Traditional steps for single-cores

SCADE/Lustre
application

Input

Code generation 1 pre-scheduling
WCET analysis

Task mapping and
scheduling

Code generation 2:
Add the schedul-
ing/mapping in the
binary

post-scheduling
WCET analysis and
Shared Resource
analysis

Response times and
release dates
computation

Code generation 3:
Add the response time
and release dates in
the binaries

Executable binary
for the Kalray
MPPA Bostan

Output

binary +
task graph

initialW
CETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

les

Response times,
Release dates

ma
pp
ing
s a
nd

exe
c.
ord
er

47 / 52

Evaluation: CAPACITES Project

Traditional steps for single-cores

SCADE/Lustre
application

Input

Code generation 1 pre-scheduling
WCET analysis

Task mapping and
scheduling

Code generation 2:
Add the schedul-
ing/mapping in the
binary

post-scheduling
WCET analysis and
Shared Resource
analysis

Response times and
release dates
computation

Code generation 3:
Add the response time
and release dates in
the binaries

Executable binary
for the Kalray
MPPA Bostan

Output

binary +
task graph

initialW
CETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

les

Response times,
Release dates

ma
pp
ing
s a
nd

exe
c.
ord
er

47 / 52

Evaluation: CAPACITES Project

Traditional steps for single-cores

SCADE/Lustre
application

Input

Code generation 1 pre-scheduling
WCET analysis

Task mapping and
scheduling

Code generation 2:
Add the schedul-
ing/mapping in the
binary

post-scheduling
WCET analysis and
Shared Resource
analysis

Response times and
release dates
computation

Code generation 3:
Add the response time
and release dates in
the binaries

Executable binary
for the Kalray
MPPA Bostan

Output

binary +
task graph

initialW
CETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

les

Response times,
Release dates

ma
pp
ing
s a
nd

exe
c.
ord
er

47 / 52

Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion

48 / 52

Summary of Part II

◦ A response time analysis of synchronous data flow programs on the Kalray MPPA2

◦ Given:
◦ Task profiles: WCET in isolation and number of accesses
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference
◦ Release dates respecting the dependency constraints

◦ Find in the manuscript:
◦ Execution phases: execution phase + communication phase
◦ Support of: accesses pipelining, blocking and non-blocking accesses, bursts of accesses
◦ More experiments with randomly generated task graphs

model of the
multi-level arbiter

double fixed-point
algorithm

49 / 52

Summary of Part II

◦ A response time analysis of synchronous data flow programs on the Kalray MPPA2

◦ Given:
◦ Task profiles: WCET in isolation and number of accesses
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference
◦ Release dates respecting the dependency constraints

◦ Find in the manuscript:
◦ Execution phases: execution phase + communication phase
◦ Support of: accesses pipelining, blocking and non-blocking accesses, bursts of accesses
◦ More experiments with randomly generated task graphs

model of the
multi-level arbiter

double fixed-point
algorithm

49 / 52

Summary of Part II

◦ A response time analysis of synchronous data flow programs on the Kalray MPPA2

◦ Given:
◦ Task profiles: WCET in isolation and number of accesses
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference
◦ Release dates respecting the dependency constraints

◦ Find in the manuscript:
◦ Execution phases: execution phase + communication phase
◦ Support of: accesses pipelining, blocking and non-blocking accesses, bursts of accesses
◦ More experiments with randomly generated task graphs

model of the
multi-level arbiter

double fixed-point
algorithm

49 / 52

Summary of Part II

◦ A response time analysis of synchronous data flow programs on the Kalray MPPA2

◦ Given:
◦ Task profiles: WCET in isolation and number of accesses
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference
◦ Release dates respecting the dependency constraints

◦ Find in the manuscript:
◦ Execution phases: execution phase + communication phase
◦ Support of: accesses pipelining, blocking and non-blocking accesses, bursts of accesses
◦ More experiments with randomly generated task graphs

model of the
multi-level arbiter

double fixed-point
algorithm

49 / 52

Summary of Part II

◦ A response time analysis of synchronous data flow programs on the Kalray MPPA2

◦ Given:
◦ Task profiles: WCET in isolation and number of accesses
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference
◦ Release dates respecting the dependency constraints

◦ Find in the manuscript:
◦ Execution phases: execution phase + communication phase
◦ Support of: accesses pipelining, blocking and non-blocking accesses, bursts of accesses
◦ More experiments with randomly generated task graphs

model of the
multi-level arbiter

double fixed-point
algorithm

49 / 52

Summary of Part II

◦ A response time analysis of synchronous data flow programs on the Kalray MPPA2

◦ Given:
◦ Task profiles: WCET in isolation and number of accesses
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference
◦ Release dates respecting the dependency constraints

◦ Find in the manuscript:
◦ Execution phases: execution phase + communication phase
◦ Support of: accesses pipelining, blocking and non-blocking accesses, bursts of accesses
◦ More experiments with randomly generated task graphs

model of the
multi-level arbiter

double fixed-point
algorithm

49 / 52

Future Work of Part II

◦ Model of the Resource Manager
◦ Analysis with a Real-Time Operating System

◦ Model of the NoC accesses.
◦ Comparison between estimated and measured response times

tighter estimation of
context switches and

other interrupts

use the output of
any NoC analysis

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
ar
ed

m
em

or
y
ba
nk
s 8

shared
m
em

ory
banks

50 / 52

Future Work of Part II

◦ Model of the Resource Manager
◦ Analysis with a Real-Time Operating System

◦ Model of the NoC accesses.
◦ Comparison between estimated and measured response times

tighter estimation of
context switches and

other interrupts

use the output of
any NoC analysis

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
ar
ed

m
em

or
y
ba
nk
s 8

shared
m
em

ory
banks

50 / 52

Future Work of Part II

◦ Model of the Resource Manager
◦ Analysis with a Real-Time Operating System

◦ Model of the NoC accesses.

◦ Comparison between estimated and measured response times

tighter estimation of
context switches and

other interrupts

use the output of
any NoC analysis

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
ar
ed

m
em

or
y
ba
nk
s 8

shared
m
em

ory
banks

50 / 52

Future Work of Part II

◦ Model of the Resource Manager
◦ Analysis with a Real-Time Operating System

◦ Model of the NoC accesses.
◦ Comparison between estimated and measured response times

tighter estimation of
context switches and

other interrupts

use the output of
any NoC analysis

P0 P1

P2 P3

P4 P5

P6 P7

RM

NoC Rx

P8 P9

P10 P11

P12 P13

P14 P15

DSU

NoC Tx

8
sh
ar
ed

m
em

or
y
ba
nk
s 8

shared
m
em

ory
banks

50 / 52

Conclusion

Conclusion

◦ Multi/Many-cores in Real-Time Systems
◦ Full isolation: for example TDMA
◦ Bounded interference

◦ Precise modeling of hardware components
◦ Research directions for multi-core analysis:

Multi-core scheduling and timing analysis framework (in RTSOPS 2016)

SCADE/Lustre
application

Input

Code generation 1 WCET analysis

Task mapping and
scheduling

Code generation 2:
Add the schedul-
ing/mapping in the
binary

WCET analysis and
Shared Resource
analysis

Response times and
release dates
computation

Code generation 3:
Add the response time
and release dates in
the binaries

Executable binary
for the Kalray
MPPA Bostan

Output

binary +
task graph

initialW
CETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

les

Response times,
Release dates

ma
pp
ing
s a
nd

exe
c.
ord
er

Timing information

52 / 52

Conclusion

◦ Multi/Many-cores in Real-Time Systems
◦ Full isolation: for example TDMA
◦ Bounded interference

◦ Precise modeling of hardware components

◦ Research directions for multi-core analysis:
Multi-core scheduling and timing analysis framework (in RTSOPS 2016)

SCADE/Lustre
application

Input

Code generation 1 WCET analysis

Task mapping and
scheduling

Code generation 2:
Add the schedul-
ing/mapping in the
binary

WCET analysis and
Shared Resource
analysis

Response times and
release dates
computation

Code generation 3:
Add the response time
and release dates in
the binaries

Executable binary
for the Kalray
MPPA Bostan

Output

binary +
task graph

initialW
CETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

les

Response times,
Release dates

ma
pp
ing
s a
nd

exe
c.
ord
er

Timing information

52 / 52

Conclusion

◦ Multi/Many-cores in Real-Time Systems
◦ Full isolation: for example TDMA
◦ Bounded interference

◦ Precise modeling of hardware components
◦ Research directions for multi-core analysis:

Multi-core scheduling and timing analysis framework (in RTSOPS 2016)

SCADE/Lustre
application

Input

Code generation 1 WCET analysis

Task mapping and
scheduling

Code generation 2:
Add the schedul-
ing/mapping in the
binary

WCET analysis and
Shared Resource
analysis

Response times and
release dates
computation

Code generation 3:
Add the response time
and release dates in
the binaries

Executable binary
for the Kalray
MPPA Bostan

Output

binary +
task graph

initialW
CETs

task mapping +
execution order

binary with
mappings

Ta
sk

pr
ofi

les

Response times,
Release dates

ma
pp
ing
s a
nd

exe
c.
ord
er

Timing information

52 / 52

Many-Core Timing Analysis of Real-Time Systems
and its application to an industrial processor

Hamza Rihani
Université Grenoble Alpes / Verimag

Publications:
Rihani, Hamza et al. (2015). “WCET analysis in shared resources real-time systems with TDMA buses”. In: Proceedings

of the 23rd International Conference on Real-Time Networks and Systems.
Rihani, Hamza, Claire Maiza, and Matthieu Moy (2016a). “Efficient Execution of Dependent Tasks on Many-Core
Processors”. In: RTSOPS 2016. 7th International Real-Time Scheduling Open Problems Seminar. Toulouse, France.
Rihani, Hamza et al. (2016b). “Response Time Analysis of Synchronous Data Flow Programs on a Many-Core Proces-
sor”. In: Proceedings of the 24th International Conference on Real-Time Networks and Systems (RTNS).

This work is funded by grant CAPACITES (PIA-FSN2 n◦P3425-146798)
from the French Ministère de l’économie, des finances et de l’industrie.

References I

Altmeyer, Sebastian et al. (2015). “A Generic and Compositional Framework for Multicore Response Time Analysis”.
In: Proceedings of the 23rd International Conference on Real Time and Networks Systems (RTNS), pp. 129–138.
Chattopadhyay, Sudipta, Abhik Roychoudhury, and Tulika Mitra (2010). “Modeling Shared Cache and Bus in Multi-
cores for Timing Analysis”. In: Proceedings of the 13th International Workshop on Software and Compilers for Embedded
Systems. SCOPES ’10. St. Goar, Germany: ACM, 6:1–6:10.
Henry, Julien et al. (2014). “How to Compute Worst-case Execution Time by Optimization Modulo Theory and a Clever
Encoding of Program Semantics”. In: Proceedings of the 2014 SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems (LCTES), pp. 43–52.
Kelter, Timon et al. (2014). “Static Analysis of Multi-core TDMA Resource Arbitration Delays”. In: Real-Time Syst.
50.2, pp. 185–229.
Rosèn, Jacob et al. (2007). “Bus Access Optimization for Predictable Implementation of Real-Time Applications on
Multiprocessor Systems-on-Chip”. In: RTSS 2007.

BACKUP

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0= 10+3×10 (response time in isolation)

R1= 10+3×10+2×10= 60
R2= 10+3×10+2×10+2×10= 80
R3= 10+3×10+2×10+2×10+0= 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0= 10+3×10 (response time in isolation)
R1= 10+3×10+2×10= 60

R2= 10+3×10+2×10+2×10= 80
R3= 10+3×10+2×10+2×10+0= 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0= 10+3×10 (response time in isolation)
R1= 10+3×10+2×10= 60
R2= 10+3×10+2×10+2×10= 80

R3= 10+3×10+2×10+2×10+0= 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Multicore Response Time Analysis

Example: Fixed Priority bus arbiter, PE1 > PE0
Bus access delay = 10

t

PE0

PE1

00 40 80 120 160

2 accesses 2 accesses

T1

2 accesses

T1

2 accesses

T1 T1

3 accesses

T0

3 accesses

Response time

◦ Task of interest running on PE0:
R0= 10+3×10 (response time in isolation)
R1= 10+3×10+2×10= 60
R2= 10+3×10+2×10+2×10= 80
R3= 10+3×10+2×10+2×10+0= 80 (fixed-point)

1Altmeyer et al., RTNS 2015

Evaluation: Runtime Perfomance

Analysis time of randomly generated task graphs in log-log scale

O(n3)

O(n4)2

20

200

2000

20000

50

100

150

200

250

300

350

400

500

600

700

800

number of nodes n

tim
e

(s
ec

on
d)

Theoretical complexity O(n4). Experimental complexity O(n3.87).

Randomly Generated Task Graphs

Fat Task Graph

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

S
ch

ed
ul

ab
le

 T
as

ks

Multi−bank
Multi−bank (w/o release)
Pessimistic
Single−bank
Single−bank (w/o release)

Long Task Graph

0

25

50

75

100

0.0 0.2 0.4 0.6 0.8 1.0
Utilization

S
ch

ed
ul

ab
le

 T
as

ks

Multi−bank
Multi−bank (w/o release)
Pessimistic
Single−bank
Single−bank (w/o release)

Cached Memory Operations

32KB
8-way

I-Cache
8KB
2-way
32B lines

D-Cache

8 entries
64 bits

Write Buffer

mem. operation

store load

0 SMEM access

write in D-Cache

write in WB

updatecheck size
of WB S

1/evict
2/store

1/store
2/evict

store
(WB)

Hit

Miss

data in
WB

data not
in WB

S = 8 S = 7 S < 7

load check WB

1/ flush WB
2/ load data

load data
(SMEM)

Hit Miss

data in
WBdata not

in WB

1 SMEM write
access
(non-blocking)

1 SMEM write
access
(blocking)

x SMEM write accesses
(x ∈ [1,8]) +
8 SMEM read accesses

8 SMEM read
accesses (cache
line refill)

Static analysis
tool
Our response time
analysis tool

In isolation:
1 access = 10 cycles / 1 cache line refill = 17 cycles

Offset-based SMT Encoding

B1
y = read_value()

if (y < 0)

B2

/* 10 cycles*/

B3

if (y ≥ 0)

B4

/* bus access */

B5

start= 0
off_s ∈ [0,π[

c1,2 = ite t1,2 wcet(B1) 0

c2,3 = ite t2,3 10 0
off2,3 = get_offset(off1,2,10)

c4,5 = ite t4,5 tdma_cost(off3,4) 0
off4,5 = tdma_offset(off3,4)

c3,5
off3,5

execution time =
∑

ci ,j

◦ offi ,j = ei ,j mod π

Encode the costs of the basic blocks

ei ,j (absolute time) −−−−→ ci ,j (cost)

ci ,j= ite ti ,j cost 0

“ite C A B” ⇔ “if C then A else B”

Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

off2,3=(off1,2+10) modπ

start=0offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(off3,4)

off1,2=(offs +wcet(B1)) modπ

off4,5= tdma_offset(off3,4)

off2,3= get_offset(off1,2,10)

Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

off2,3=(off1,2+10) modπ

start=0offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(off3,4)

off1,2=(offs +wcet(B1)) modπ

off4,5= tdma_offset(off3,4)

off2,3= get_offset(off1,2,10)

(

<π︷︸︸︷
offi ,j +c) mod π

m

(

def
= α < 2π︷ ︸︸ ︷

offi ,j +c mod π) mod π

↓
if α <π then α else α−π

Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

start=0offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(off3,4)

off1,2=(offs +wcet(B1)) modπ

off4,5= tdma_offset(off3,4)

off2,3= get_offset(off1,2,10)

Using TDMA functions

◦ if..then..else encoding
off = ite t13 off13 off23
off35 = off
off34 = off

BB 1
y = read_value()

if (y < 0)

BB 2

/* 10 cycles*/

BB 3

if (y ≥ 0)

BB 4

/* bus access */

BB 5
write_value(y)

return()

◦ sum encoding
off = off13 + off23
off35 = ite t35 off 0
off34 = ite t34 off 0

Using TDMA functions

block

K

if..then..else (ite) encoding:

offi ,j = (if t1,i then off1,i
else if t2,i then off2,i
else ...
else if tK ,i then offK ,i else 0)

sum encoding:

offi =
k=K∑
k=1

offk,i

offi ,j = if ti ,j then offi else 0

Performance 3

block

100

×N
●

●

●

●

●

●

●

●

●

●

100

1000

10000

1 2 3 4 5 6 7 8 9 10
N

tim
e(

s)
 (

lo
g

sc
al

e)

●

sum
ite

How it works?

◦ Example with binary search:

Testing wcet >= 0... SAT (value found = 18).
New interval = [18, 73].

Testing wcet >= 46... UNSAT. New interval = [18, 45].
Testing wcet >= 32... UNSAT. New interval = [18, 31].
Testing wcet >= 25... UNSAT. New interval = [18, 24].
Testing wcet >= 21... UNSAT. New interval = [18, 20].
Testing wcet >= 19... UNSAT. New interval = [18, 18].
The maximum value of wcet is 18 .
Computation time is 0.010000s

Evaluation: Analysis Time

Analysis time

Name π= 40, σ= 20, acc = 10 π= 400, σ= 200, acc = 40
bs 0.45s 0.80s
insertsort 1.37s 7.19s
jfdctint 44.10s 55.47s
fdct 41.36s 34.42s
compressdata 4.66s 3.44s
fly-by-wire 28.78s 109.37s

	Approaches in WCET Analysis of TDMA
	WCET Analysis by SMT Encoding
	Naive SMT Approach
	Offset-based SMT Encoding

	Experimental Evaluation
	Summary and Future Work of Part I
	Many-Core Response Time Analysis
	Implementation Choices of Synchronous Data Flow Programs
	Multicore Response Time Analysis of SDF Programs
	Target Many-Core: Kalray MPPA2
	Evaluation
	Summary and Future Work of Part II

	Conclusion
	Appendix

