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Introduction: Real-Time Systems

Many-Core Timing Analysis of Real-Time Systems

Definition (Real-Time Systems)
A system that must produce valid outputs before a deadline.

◦ Soft Real-Time
◦ Global Positioning System device
◦ Smartphones

◦ Hard Real-Time

?

◦ Automatic Braking System
◦ Flight Management System
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Introduction: Timing Analysis of Arbitration Policies

Many-Core Timing Analysis of Real-Time Systems

How long will the truck wait to cross the road?








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Introduction: Timing Analysis of Arbitration Policies

Many-Core Timing Analysis of Real-Time Systems

How long will the truck wait to cross the road?









◦ Crossroad is a shared resource
◦ Vehicles request accesses to pass

◦ Arbitration Policies:

Time Division Multiple Access

♂ Round Robin

Fixed Priority
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Introduction: Many-Cores in Real Time Systems

Many-Core Timing Analysis of Real-Time Systems
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Timing analysis of cores
◦ Existing tools for pipeline and cache
analyses

Where is the potential interference?
1 Shared buses and memory

?

2 NoC routing
3 Shared I/O controllers
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Contributions

Contribution 1
Analysis of Time Division Multiple Access policy

◦ Approach based on Satisfiability Modulo Theory








Contribution 2
Response time analysis of a many-core processor

◦ Synchronous Data Flow programs
◦ Model of the shared bus arbiter

The High Five, Dallas, Texas, USA
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TDMA Bus Timing Analysis



Definition: Time Division Multiple Access

Core A viewpoint:

off 1

off 2

off 3

slot length σ
TDMA period π

req1 ackacc req2 ackstall time acc req3 worst-case stall time
acc

time

00 20 40 60 80 100 120 140 160 180

Worst-Case Stall Time = π - (σ - acc)

◦ Offsets off 1,off 2,off 3 relative to the TDMA period:
off{1,2,3} = time_instant(req{1,2,3}) mod π
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Outline: TDMA Bus Timing Analysis

1 Approaches in WCET Analysis of TDMA

2 WCET Analysis by SMT Encoding
Naive SMT Approach
Offset-based SMT Encoding

3 Experimental Evaluation

4 Summary and Future Work of Part I

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion
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Worst-Case Execution Time (WCET) Analysis of TDMA

� �
i n t f ( i n t x ) {
/* 3 cyc l e s */
i f ( cond )
{

/* 10 cyc l e s */
}
i f ( ! cond )
{

/*bus access */
}
r e t u r n ;

}� �
B5:
return

B4:
/* bus access */

cost=π−σ+2 acc

B3:
if (!cond)

B2:
/*10 cycles*/

B1:
/*3 cycles*/
if (cond)

False

off1

True

off2

True

False

Goal: Estimate the WCET

,→ Existing approaches:
1 Worst-case everywhere

[Altmeyer et al., 2015; Rosèn et al., 2007…]

2 Capture all possible offsets
[Chattopadhyay et al., 2010; Kelter et al., 2014…]

,→ Combined with:
3 Feasible Path Analysis

off

slot length σ
TDMA period π

req ackacc

time
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Approaches in WCET Analysis of TDMA

Feasible Path Analysis with SMT
[Henry et al., 2014]

3
Capture all possible offsets

[Kelter et al., 2014]
[Chattopadhyay et al., 2010]

2

Contribution (in RTNS 2015):

Compute WCET by encoding the
semantics and shared resource
accesses into an optimization

problem (SMT)
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Outline: TDMA Bus Timing Analysis
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WCET Analysis by SMT Encoding

◦ Bounded Model Checking
◦ Encode the semantics into a Satisfiability Modulo Theory problem

◦ Add execution times on the paths

SMT query︸ ︷︷ ︸
assert(∧expr)

= “Is there a trace with a feasible path?”

...such that the execution time is greater than X?”

◦ SMT-solver response:

◦ SAT:
◦ UNSAT:

Goal
Find the smallest X , such that Execution Time > X is UNSAT
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Example: Semantics and Timing Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

pred=(y < 0)
t1,2= b1∧pred

b2= t1,2

t1,3= b1∧ !pred

b3= t1,3∧ t2,3b3= t1,3∧ t2,3

t3,5

start=0

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+

e3,4
e3,5

Previous work in [Henry et al., 2014]

Ï bi ”true” def⇐⇒ Bi executed
Ï ti ,j ”true” def⇐⇒ Bi →Bj taken

Ï ei ,j execution time at transition
Bi → Bj

Contribution
Ï tdma_cost() execution time of a bus

access
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Naive SMT Encoding
π−offset(reqA

2 ) acc

TDMA period π

reqA
11 ackacc reqA

22 ack

slot length σ time

0 2 4 6 8 10 12 14 16 18

tdma_cost(eentry ): returns the execution time of a bus access

off entry ← eentry mod π
/* is off entry inside the slot? */
if off entry ∈ [0,σ−acc[

return acc return (π−off entry )+acc

eentry

1 Yes 2No
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Performance of the Naive Encoding

bus access
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Naive SMT Encoding
π−offset(reqA

2 ) acc

TDMA period π
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22 ack
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Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

start=0

offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(e3,4)

off1,2=(offs +wcet(B1)) modπ

off2,3=(off1,2+10) modπ

off4,5= tdma_offset(off3,4)

◦ offi ,j = ei ,j mod π

◦ offi ,j offset at transition Bi →Bj
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Offset-based SMT Encoding

π−offset(reqA
2 ) acc

TDMA period π

reqA
11 ackacc reqA

22 ack

slot length σ time

0 2 4 6 8 10 12 14 16 18

tdma_cost: returns the time after a bus
access

/* is off entry inside the slot? */
if off entry ∈ [0,σ−acc[

return acc return (π−off entry )+acc

offentry

1 Yes 2No

tdma_offset: returns the offset after a
bus access

/* is off entry inside the slot? */
if off entry ∈ [0,σ−acc[

return off entry +acc return acc

offentry

1 Yes 2No
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Performance of the Offset-based Encoding
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Outline: TDMA Bus Timing Analysis
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Proof-of-Concept Implementation

C code LLVM bitcode

Timing model

SMT clausesWCET

LLVM compiler

PAGAI
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Proof-of-Concept Implementation

C code
LLVM bitcode:

◦ Unrolled loops

Timing model:

◦ 1 instruction = 1 cycle

◦ Each load and store
requests a bus access

◦ Timing Compositional

SMT clausesWCET

LLVM compiler

PAGAI

SMT-solving
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Evaluation: Benchmark Descriptions

Benchmark from TACLEBench suite 1

Name Description #LLVM instr. #bus access
bs Binary search 231 12

insertsort Insertion sort on
a reversed array 493 65

jfdctint Discrete Cosine
Transformation 2334 448

fdct
Fast Discrete
Cosine
Transform

2502 385

compressdata

Data
compression
program adopted
from SPEC95

674 131

fly-by-wire UAV fly-by-wire
software 2815 515

1https://github.com/tacle/tacle-bench
24 / 52
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Evaluation: Experiments

Comparison between estimated WCET and pessimistic WCET
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I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion
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Summary of Part I

◦ SMT encodings for TDMA access
◦ Feasible path analysis combined with the WCET computation
◦ Comparison between different encodings
◦ Validation with small but relevant benchmarks

Find in the manuscript:
◦ Linearization of SMT encoding (modulo operators)
◦ Other possible SMT encodings
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Future Work of Part I

C code:
◦ Compositional analysis

◦ Partial loop unrolling

Research perspectives

LLVM bitcode

Timing model:
◦ Realistic timing values
(e.g. Otawa)

Implementation perspectives

SMT clausesWCET

Executable
binary

LLVM compiler

PAGAI

SMT-solving

 SMT is an interesting research direction for WCET Analysis
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From TDMA to Other Arbitration Policy
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Analysis of Large Multi and Many-Cores

B5
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B1
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B3 B4

B2

B1

1 •

t

P1

P0

• 2

Pessimism

Co
m

pl
ex

ity

1 Exact analysis
2 Account for any interference globally

during the task’s execution

3 Exploit any information about:

◦ The target architecture Kalray MPPA2

◦ Reduce the interference
◦ Model precisely the shared resources

◦ The target application model
Synchronous Data Flow
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Many-Core Response Time Analysis



Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II

I TDMA Bus Timing Analysis II Many-Core Response Time Analysis III Conclusion
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Implementation Choices: SDF on Multi/Many-Cores

High-level representation

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

3 Respect the dependency
constraints

3 account for
precise upper bounds
on the interference

code generation
Multi/Many-Core

Static, time triggered, non-preemptive scheduling

i n t NF ( . . . )
{
// ta s k τ6

r e t u r n ( . . . ) ;
}

i n t NE ( . . . )
{
// ta s k τ5

r e t u r n ( . . . ) ;
}

i n t ND ( . . . )
{
// ta s k τ4

r e t u r n ( . . . ) ;
}

i n t NC ( . . . )
{
// ta s k τ3

r e t u r n ( . . . ) ;
}

i n t NB ( . . . )
{
// ta s k τ2

r e t u r n ( . . . ) ;
}

i n t NA ( . . . )
{
// ta s k τ1

r e t u r n ( . . . ) ;
}

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5
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Model of the Application

τ0 τ1 τ2

τ3

τ4 τ5

i1

i2

o

Static Non-Preemptive Scheduling
 Find Ri including interference
 Find rel i respecting dependencies

An execution instance is:
◦ Direct Acyclic Task Graph
◦ Mono-rate (or at least harmonic rates)
◦ Fixed mapping and execution order

Each task τi :
◦ Release date (rel i). Response time (Ri)

t

memory accesses
rel i

Ri

Interference

E

E0
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Outline: Many-Core Response Time Analysis

5 Implementation Choices of Synchronous Data Flow Programs

6 Multicore Response Time Analysis of SDF Programs

7 Target Many-Core: Kalray MPPA2

8 Evaluation

9 Summary and Future Work of Part II
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Response Time Analysis

Existing work [Altmeyer et al., 2015]

∀i : Ri = WCETi + IBUS(Ri) + . . .

For each task i :
◦ Response Time
◦ WCET in isolation
◦ Bus Interference

Independent tasks

t

PE0

PE1

00 40 80 120 160

T1 T1 T1 T1

T0

Contribution (in RTNS 2016)

∀i : Ri = WCETi + IBUS(Ri , Θ )+ . . .

◦ WCET in isolation
◦ Set of release dates of all tasks
◦ Bounded interference

Dependent tasks

PE2

PE1

PE0

τ0 τ1

τ2τ3

τ4 τ5

 Recursive formula ⇒ iterative algorithm.
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Response Time Analysis with Dependencies

PE2

PE1

PE0 τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

τ0 τ1 τ2

τ3

τ4 τ5

1 Start with initial release dates

2 Compute response times

... ... ... a fixed-point is reached!

3 Update the release dates
4 Repeat

until no release date changes
(another fixed-point iteration).

WCRT analysis
for all i do

R l+1
i ←WCETi + IBUS(R l

i ,Θ)
end for

1 initial rel i/
iteration l = 0

initial rel 0
i /

iteration l = 0 R l+1
i 6=R l

i /
2 l = l +1
R l+1

i 6=R l
i /

l = l +1

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

3

Ri
2Ri

new rel i
repeat

4
new rel i
repeat

rel i did not change
Return: (rel i ,Ri)

4
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Convergence Toward a Fixed-point

P0
τ0 τ1 τ2

P1
τ3

P2
τ4 τ5

t

◦ Convergence of the 1st fixed-point iteration:

◦ Monotonic and bounded 3

◦ Convergence of the 2nd fixed-point iteration:

◦ No monotonicity: Ri and rel i may grow or
shrink at each iteration. ?

Theorem
At each iteration, at least one task finds its final
release date.

Full proof in the manuscript.

WCRT analysis
for all i do

R l+1
i ←PDi + IBUS(R l

i ,Θ)
end for

initial rel 0
i R l+1

i 6=R l
i

R l+1
i 6=R l

i

Update release dates
for all i do
rel i ← latest finish time of all the de-
pendencies
end for

Ri

Ri

new rel i
repeat

new rel i
repeat

rel i did not change
Return: (rel i ,Ri)
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Target Many-Core: Kalray MPPA2
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◦ Kalray MPPA2 (codenamed Bostan)

◦ 16 compute clusters + 4 I/O clusters

◦ Dual NoC
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Case Study: ROSACE, a Flight Management System Controller 2
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Evaluation: ROSACE Case Study

Function WCET (cycles) Memory accesses
altitude 275 22
az_filter 274 22
h_filter 326 24
q_filter 338 24

va_control 303 24
va_filter 301 23
vz_control 320 25
vz_filter 334 25

◦ Values obtained from measurements
◦ Memory accesses from data and instruction cache misses + communications
◦ Moreover:

◦ NoC Rx : writes 5 words
◦ NoC Tx : reads 2 words

 Experiments: Find the smallest schedulable hyper-period
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Evaluation: Experiments
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Evaluation: CAPACITES Project
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Summary of Part II

◦ A response time analysis of synchronous data flow programs on the Kalray MPPA2

◦ Given:
◦ Task profiles: WCET in isolation and number of accesses
◦ Mapping of Tasks
◦ Execution Order

◦ We compute:
◦ Tight response times taking into account the interference
◦ Release dates respecting the dependency constraints

◦ Find in the manuscript:
◦ Execution phases: execution phase + communication phase
◦ Support of: accesses pipelining, blocking and non-blocking accesses, bursts of accesses
◦ More experiments with randomly generated task graphs

model of the
multi-level arbiter

double fixed-point
algorithm
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◦ Multi/Many-cores in Real-Time Systems
◦ Full isolation: for example TDMA
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◦ Precise modeling of hardware components
◦ Research directions for multi-core analysis:
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Evaluation: Runtime Perfomance

Analysis time of randomly generated task graphs in log-log scale
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Theoretical complexity O(n4). Experimental complexity O(n3.87).



Randomly Generated Task Graphs
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Cached Memory Operations

32KB
8-way

I-Cache
8KB
2-way
32B lines

D-Cache

8 entries
64 bits

Write Buffer

mem. operation

store load

0 SMEM access

write in D-Cache
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data in
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load check WB

1/ flush WB
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In isolation:
1 access = 10 cycles / 1 cache line refill = 17 cycles



Offset-based SMT Encoding

B1
y = read_value()

if (y < 0)

B2

/* 10 cycles*/

B3

if (y ≥ 0)

B4

/* bus access */

B5

start= 0
off_s ∈ [0,π[

c1,2 = ite t1,2 wcet(B1) 0

c2,3 = ite t2,3 10 0
off2,3 = get_offset(off1,2,10)

c4,5 = ite t4,5 tdma_cost(off3,4) 0
off4,5 = tdma_offset(off3,4)

c3,5
off3,5

execution time =
∑

ci ,j

◦ offi ,j = ei ,j mod π

Encode the costs of the basic blocks

ei ,j (absolute time) −−−−→ ci ,j (cost)

ci ,j= ite ti ,j cost 0

“ite C A B” ⇔ “if C then A else B”



Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

off2,3=(off1,2+10) modπ

start=0offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(off3,4)

off1,2=(offs +wcet(B1)) modπ

off4,5= tdma_offset(off3,4)

off2,3= get_offset(off1,2,10)



Offset-based SMT Encoding
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Offset-based SMT Encoding

B5:
return

B4:
/*bus access*/

B3:
if (y ≥ 0)

B2:
/*10 cycles*/

B1:
y =read_value();
if (y < 0)

False

True

True

False

start=0offs ∈ [0,π[

e1,2= start+wcet(B1)

e2,3= e1,2+10

execution time = if t3,5 then e3,5 else e4,5

e4,5= e3,4+ tdma_cost(off3,4)

off1,2=(offs +wcet(B1)) modπ

off4,5= tdma_offset(off3,4)

off2,3= get_offset(off1,2,10)



Using TDMA functions

◦ if..then..else encoding
off = ite t13 off13 off23
off35 = off
off34 = off

BB 1
y = read_value()

if (y < 0)

BB 2

/* 10 cycles*/

BB 3

if (y ≥ 0)

BB 4

/* bus access */

BB 5
write_value(y)

return()

◦ sum encoding
off = off13 + off23
off35 = ite t35 off 0
off34 = ite t34 off 0



Using TDMA functions

block

K

if..then..else (ite) encoding:

offi ,j = ( if t1,i then off1,i
else if t2,i then off2,i
else ...
else if tK ,i then offK ,i else 0)

sum encoding:

offi =
k=K∑
k=1

offk,i

offi ,j = if ti ,j then offi else 0



Performance 3
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How it works?

◦ Example with binary search:

Testing wcet >= 0... SAT (value found = 18).
New interval = [18, 73].

Testing wcet >= 46... UNSAT. New interval = [18, 45].
Testing wcet >= 32... UNSAT. New interval = [18, 31].
Testing wcet >= 25... UNSAT. New interval = [18, 24].
Testing wcet >= 21... UNSAT. New interval = [18, 20].
Testing wcet >= 19... UNSAT. New interval = [18, 18].
The maximum value of wcet is 18 .
Computation time is 0.010000s



Evaluation: Analysis Time

Analysis time

Name π= 40, σ= 20, acc = 10 π= 400, σ= 200, acc = 40
bs 0.45s 0.80s
insertsort 1.37s 7.19s
jfdctint 44.10s 55.47s
fdct 41.36s 34.42s
compressdata 4.66s 3.44s
fly-by-wire 28.78s 109.37s
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