
N assigned by the library A.Y: 2008/2009
|_|_|_|_|_|_|_|_|_|_|

National Engineering School of Sousse
Sousse University, Tunisia

Master Thesis

Specialty: "Intelligent and Communicant Systems"
Option: micro-electronic embedded systems

presented and defended publicly

by

Nabila Abdessaied

Title:

Design of a Java Simulator for
Fast Prototyping of System-on-chip

Supervised by: Matthieu Moy (VERIMAG)
Giovanni Funchal (VERIMAG)
Younes Lahbib (ENISO)

VERIMAG Research Lab
Centre Equation

2, avenue de Vignate
38610 Gieres, France

i

ii

Acknowledgments

I would like to express my deep and sincere gratitude to my supervisors, Matthieu Moy, assis-
tant Professor in ENSIMAG engineering school and VERIMAG laboratory, and Giovanni Funchal,
Ph.D candidate in Computer Science at VERIMAG laboratory, their wide knowledge and their
logical way of thinking have been of great value for me. Their understanding, encouraging and
personal guidance have provided a good basis for the present thesis.

I am deeply grateful to my supervisor, Younes Lahbib for his detailed and constructive com-
ments, and for his important support.

I would like to express my gratitude to VERIMAG laboratory, who gave me the opportunity
to do this thesis. I am grateful to the assistant Christine Saunier who helped me to complete the
administrative papers. Thanks also to the system operators (Nicolas, Jean-Noél) who do a great
job for the lab.

During this work I have met many colleagues at VERIMAG, for whom I have great regard and
I will keep beautiful memories: Salwa, Ramzi, Unmesh, Raj, Hung, Laurie, Yanhong, Ronjgie
and all the other members.

I owe my most sincere gratitude to the ENISO director Miss Najoua Ben Amara and the re-
sponsible of the master, Mr Hachmi Dali for their help and their assistance. I warmly thank All
the ENISO institute members and Staff who helped me to carry out this work.

I also wish to thank all the friends at the crous residence Hector Berlioz, with whom I shared
great moments during my intern ship. Specially when we met together in the kitchen to prepare
our dinner: Lamin, Andy, Ibtissem, Anas, Djosepé, Nawel, Sandra and Dima. It was a good
opportunity for changing mood, sharing ideas and having fun.

I owe my loving thanks to my family. Without their encouragement and understanding it
would have been impossible for me to finish this work. My special gratitude to my brother, my
sisters and their families for their loving support. My loving thanks to my oncle Bouderbela, his
wife Fatouma and their children who always supported and encouraged me.

My last thanks go to all the people who have helped me, to all those who gave me the possi-
bility to complete my master thesis. Thank you all.

iii

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Working context . 2
1.3 Motivation . 3
1.4 Objectives . 4
1.5 Approach . 4
1.6 Expected results . 4
1.7 Faithfulness . 4
1.8 Related works . 5

1.8.1 SystemC . 5
1.8.2 Metropolis . 5
1.8.3 SpecC . 5
1.8.4 Milan . 6
1.8.5 Glonemo . 6
1.8.6 Ptolemy . 6

1.9 Overview of Thesis . 6

2 General context 9
2.1 The need for higher abstractions . 9
2.2 TLM . 10

2.2.1 Common concepts . 10
2.2.2 Various TLM applications . 11

2.3 TLM with SystemC . 12
2.4 Java . 13

2.4.1 What is a thread? . 13

3 Problem description 15
3.1 Introduction . 15
3.2 SystemC influences . 15
3.3 Our approach . 16
3.4 Parallelism . 20

3.4.1 Deadlock . 20
3.4.2 Livelock . 20

v

3.4.3 Threads Interference . 21
3.4.4 Memory Consistency Errors . 21

3.5 Synchronization . 22
3.5.1 The keyword synchronized . 22
3.5.2 Reentrant Synchronization . 23
3.5.3 The wait and notify . 23

4 Contributions 25
4.1 Introduction to JTLM . 26
4.2 Core language . 26

4.2.1 Components . 27
4.2.2 Transaction Ports . 27
4.2.3 Interrupt port . 28
4.2.4 Behaviors and Methods . 29
4.2.5 Constructor . 30
4.2.6 Debugging and tracing support . 30
4.2.7 Timed tasks in JTLM . 31
4.2.8 Time Manager . 32
4.2.9 Simulation . 35

4.3 Exception Handling . 35
4.4 Utilities and generic components . 36
4.5 Instantiation . 36
4.6 Evaluation . 37

4.6.1 Components test . 38
4.6.2 Generic components test . 38
4.6.3 Synchronization test . 38
4.6.4 Timed tasks test . 39
4.6.5 Time manager test . 39

4.7 Implementation choices . 41
4.8 JTLM limits . 42

5 Case study 43
5.1 Introduction . 43
5.2 Case representation . 43
5.3 JTLM Implementation . 45
5.4 Simulation outputs . 45

6 Conclusion 49
6.1 Results and Discussion . 49
6.2 Prospects . 50

Appendixes 50

vi

A Utilities description 51
A.1 Bus . 51
A.2 Memory . 52
A.3 LCDC . 53
A.4 ITC: Interrupt Controller . 55
A.5 DMA Controller . 56
A.6 Timer . 58

B MakeFile 61

Bibliography 65

vii

viii

List of Figures

1.1 The different types of TL models execution . 4

2.1 Simulation time for the encoding and decoding of one image in a MPEG4 codec . 10
2.2 An example of a TLM platform . 11
2.3 Example of a transactional model . 12

3.1 Simulation Time of a SystemC/TLM model . 16
3.2 JTLM simulation time comparing with the SystemC time 17
3.3 The time managment in SystemC and JTLM . 18
3.4 The time managment in SystemC . 18
3.5 Time management in JTLM . 19
3.6 Transaction models types . 19

4.1 The JTLM library . 26
4.2 Component declaration . 27
4.3 Master and Slave Port declaration . 28
4.4 Interrupt Port declaration . 28
4.5 Method and Behavior declaration . 29
4.6 Example of a platform using timed tasks . 31
4.7 The functionning of the timed tasks . 32
4.8 Example of a platform . 33
4.9 The Time manager algorithm . 34
4.10 Instantiation of a JTLM platform . 37
4.11 Example of a JTLM platform . 40

5.1 JTLM platform . 44
5.2 Diagram of the chronology of tasks execution 45
5.3 The content of the main class of the Platform 46

6.1 The execution tree of a polling process . 50

ix

x

Chapter 1

Introduction

Contents
1.1 Background . 1

1.2 Working context . 2

1.3 Motivation . 3

1.4 Objectives . 4

1.5 Approach . 4

1.6 Expected results . 4

1.7 Faithfulness . 4

1.8 Related works . 5

1.8.1 SystemC . 5

1.8.2 Metropolis . 5

1.8.3 SpecC . 5

1.8.4 Milan . 6

1.8.5 Glonemo . 6

1.8.6 Ptolemy . 6

1.9 Overview of Thesis . 6

1.1 Background
Nowadays, embedded systems are everywhere in our lives: cellular phones, digital cameras, MP3 mu-

sic players, digital video recorders and tuners, electronic systems in our cars, etc. Such devices require
satisfying strong constraints: they have to perform intensive computer processing (for instance to decode
digital video) while consuming very little energy, and at a reasonable production cost. Tremendous pro-
cessing power must be fitted into a very small surface. Traditional computer micro-processors are not well
suited for such applications, because they would consume a lot for the required processing and they are

1

Chapter 1. Introduction

expensive. The idea of a System-on-Chip (SoC) is to regroup all the hardware components necessary to
the systems operation on a single chip. This includes energy efficient micro processors, local memories,
radio-frequency analog parts and hardware blocks that are dedicated to speed-up specific, computing-
intensive tasks. Therefore, a System-on-Chip actually consists in hardware but also in embedded software
executing on its micro-processors.

Because of the complexity of these systems and time to market constraints, it is no longer tractable to
design the software and the hardware separately. The design process must take into account the interac-
tion between these heterogeneous parts. In particular, various models of the system are needed along the
design flow, for different usages and with different levels of details. For instance, Register Transfer Level
(RTL) models are a common entry point for producing the actual hardware. These models are developed
using hardware description languages such as VHDL or Verilog. They are destined to be transformed au-
tomatically into models with more details (using so called synthesis and place-and-route software), which
ultimately leads to the production of the hardware chip. Separately, developing the software requires its
execution on the chip. Because of time-to-market constraints, it is not acceptable that software developers
have to wait for the physical chip to be available to start their work. It could be possible to use the RTL
models as a support for executing the embedded software, but the slowness of simulation prevents any
practical use for complex chips. The fundamental reason why the RTL simulations do not scale well is
that the models contain too much detail.

Transaction Level Modeling (TLM) [CG03] is a relatively new type of model of Systems-on-Chip,
which has been developed initially to speed-up the execution of the embedded software. To write these
models, SystemC [Ini06, Gro02] has become the de facto standard language used in the industry. Transac-
tion Level Models are more abstract, so they are not only faster to simulate, but also require less effort to
build. They are thus available far before the RTL in the design flow and allow the embedded software de-
velopment to start earlier. However, TL models do not replace the RTL as a new entry point for designing
the hardware, because there is no way, at least for now, to automatically transform them into RTL.

1.2 Working context
The work presented in this document was carried out during my Master Project, started on 12/01/2009
and ends on 04/07/2009, done into the Synchronous Language and Reactive Systems (Synchrone) team
of the research laboratory Verimag [Lab09] in Grenoble, France. Verimag is a leading research center in
embedded systems. Over the last fifteen years, Verimag has actively contributed to the development of
the state-of-the-art, in particular for synchronous languages, verification, testing and modeling. Research
at Verimag provides theoretical and technical means for developing embedded systems, contributing to
scientific advancement and industrial progress.

Verimag’s strategy is to maintain a good balance between fundamental, experimental and applied
research. This is particularly visible in long term cooperation with academic and industrial partners.
For several years, one of the topics addressed by the laboratory concerned the SoCs validation at the
transactional level. This was realized in collaboration with STMicroelectronics.

In particular, a work [Moy05] on Formal Verification of Transaction Level Models written in Sys-
temC was carried out by Matthieu Moy and defended in 2005. Claude Helmstetter has then studied the
scheduling of SystemC/ TL Models in a thesis [Hel07] defended in 2007.

To get preliminary performance analysis to take some decisions about the RTL design Jerome Cornet,
in a thesis [Cor08] defended in 2008, participates of an ongoing research effort to construct "PV+T"
models from existing PV models. The idea is to introduce a new "T" model which is statically linked

2/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

1.3. Motivation

to a "PV" model in other to obtain a "PV+T" one. The "T" model, add the number and width of the
buses, whose main consequence is to fix the granularity of the transactions in the "T" model. Then, other
architectural artifacts, such as pipelines and time, must also be modeled. At last, the execution of both
"PV" and "T" models is tuned to achieve "PV+T" behavior.

Then Giovanni Funchal had compared these intermediate models ("PV+T" models) with the RTL
models in his master thesis [Fun07]. In the other hand Youssef Bouzouzou [Bou07] in collaboration with
ORANGE BUSINESS SERVICES has worked in Semantics-Preserving Parallelization of the SystemC Sched-
uler for Reduced Simulation Time he has focused on the parallelization of SystemC execution engine to
exploit at best the multiprocessors architectures while keeping the semantics of cooperative execution of
language.

1.3 Motivation
TLM models are most of the time represented using SystemC language. This due to the fact that SystemC
is faithful, largely, in representing the hardware chip to a virtual one. Our motivation, in this work, is
to prove that we could write the transactional models, while remaining faithful, even using an execution
model other than SystemC. We will work to build a faithful model of execution in capturing the real chips
platform in these sides:

1. Parallelism:
When we focus a physical chip closely, we remark that it’s composed of components and blocks
arranged in parallel, they work and communicate at the same time. To imitate this specification,
JTLM uses the Java Thread platform which allow the parallel description and the parallel execution
[OW04].

2. Synchronization:
Parallel programming is useful when one represents a parallel system but in the other hand we are
obliged to synchronize, which is an error-prone task, between concurrent components because they
share the same resources. Although it could represent parallel system i. e. parallel description,
SystemC has a cooperative scheduler [AHT+] that means sequential execution, that resolves a big
part of the synchronization problem.

For JTLM, it would be an opportunity to see another point of view of components functioning
since their behaviors are following a preemptive policy in their execution [LB00], i. e. in parallel
execution. But in the same time this way of parallel programming is difficult to be correctly syn-
chronized and difficult to debug, this due to the non reproducible bug, i. e. occurring randomly and
for reasons unknown. The main source of such bugs, in contemporary languages like Java, dues to
multi-task programming. Despite the Locking tools, it is often difficult to totally avoid unexpected
situations and concurrent access to shared resources in memory. As a remedy, Java provides tools
for synchronization that help to avoid concurrent access and memory consistency errors.

3. Time modeling:
To model the time that the physical chip may take to accomplish its work, the JTLM uses in the
model execution a variable that represents this time; it is called the simulation time. Whereas
the time that may take the simulation of the virtual platform is called the wall clock time. So to
summarize the wall clock time is used to designate the time of a platform simulation while the
simulation time is used to designate the time that may take the real hardware.

Nabila Abdessaied Master Thesis 3/67

Chapter 1. Introduction

1.4 Objectives
Our objective is to design a simulator for the rapid prototyping of systems-on-chip in order to view the
behavior of TLM platforms without recourse to SystemC language. It will help to identify what belongs
to TLM from those of SystemC. Our simulator should respect the faithfulness to the hardware and, why
not, bring innovative ideas.

1.5 Approach
In the first part of the training, we identify the constraints imposed on the execution of transactional model
by a simulator. Then, we design a transactional model simulator by defining a Java language library; we
will rely on the Java threads library which provides a set of functions to manage the execution queues.
The thread primitives allow to manage their life cycle and provide mechanisms for synchronization and
management of critical sections.

1.6 Expected results
As a result of this work, we prove the possibility of modeling transactional platform using JTLM and we
give a case study that shows what could this execution model offers for hardware modeling. Moreover we
will give a brief tutorial which will provide instructions for the use of JTLM.

1.7 Faithfulness
To be faithful to the physical chip, the simulation using a Transactional level platform should have the
same result as the simulation into an RTL platform. But TL models give more behaviors comparing to
RTL when executing software into it. Embedded software which works well in TLM platform must have
the same result in RTL, i.e. it musts run successfully into an RTL platform. However, the reverse is not
always true; it’s not guarantee all the time that the software can run well in the virtual TLM platforms,
this due to how much the parallelism of the implementation is applied in the execution of the platform.

Good synchronization
Software runs well

Too synchronization
Hidden bugs

No synchronization
Many bugs

SystemC/TLM JTLM

True
parallelism

Coroutine

Figure 1.1: The different types of TL models execution

SystemC language provides parallel description and sequential implementation, it facilitates the task
of synchronization between platform components but in the same time the big granularity of transactions
hides many bugs that programmers could not see them so the embedded software could not work properly.
To solve this problem, programmers are used to add instructions to split these transactions to give other
processes a chance to run.

4/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

1.8. Related works

In the other hand, if the TLM models are implemented with a language that has parallelism in execu-
tion such as Java; the embedded software could never run into theses models because of the absence of the
synchronization. For this reason we had add into the JTLM, since it’s written with Java, synchronization
tools to reduce the bugs number and to let the embedded software works correctly into the TL platform
realized with JTLM.

To conclude, as the figure shows 1.1, to guarantee that a software runs properly into a TL platform,
this last should not have nor a true parallel executions neither sequential execution but sharing at the same
time the two proprieties of execution.

1.8 Related works
There are already modeling approaches that deal with simulators. This section highlights a few of these
approaches.

1.8.1 SystemC
SystemC [Ini06] is a C++ based modeling platform supporting design abstractions at the register-

transfer, behavioral, and system levels. Consisting of a class library and a simulation kernel, the language
is standardized and supported by the Open SystemC Initiative (OSCI), a consortium of a wide range of
system houses, semiconductor companies, intellectual property (IP) providers, embedded software devel-
opers, and design automation tool vendors.

SystemC separates communication from computation by using port-interface calls. However, it lacks
all other separations of concerns, such as behavior-performance and function architecture.

As a result, it is less efficient in modeling reusable system level designs. SystemC also has standard
libraries for Transaction Level Modeling and Verification.

1.8.2 Metropolis
Metropolis [BWH+03], based on a meta-model with formal semantics that developers can use to cap-

ture designs, Metropolis provides an environment for complex electronic-system design that supports
simulation, formal analysis, and synthesis.

Metropolis is a modeling and simulation environment based on the platform-based design paradigm.
The key idea is to separate function, architecture, and model of computation into separate models. Al-
though Metropolis allows co-simulation of heterogeneous PEs as well as different models of computation,
a refinement or verification flow between different abstraction levels has not emerged. The Metropolis
project is supported by the Gigascale Silicon Research Center.

1.8.3 SpecC
SpecC [BWH+03] is a system-level design language (SLDL) and a system-level design methodology.

SpecC has been proposed as the standard system-level design language based on C programming language
which covers the design levels from specification to behaviors. It can describe both software and hardware
seamlessly and a useful tool for rapid prototyping as well.

Nabila Abdessaied Master Thesis 5/67

Chapter 1. Introduction

SpecC methodology and language have been designed and implemented to integrate the specification
and the design phases in the SOC design process. Originally developed at University of California, Irvine,
with sponsorship from several companies, SpecC language is a system specification description language
based on C. It allows the same semantics and syntax to be used to represent specifications for a system
concept, hardware, software, and, most importantly, intermediate specification and information during
hardware/software co-design stages.

1.8.4 Milan
MILAN [BPL01], a model based extensible framework that facilitates rapid, multi-granular perfor-

mance evaluation of a large class of embedded systems, by seamlessly integrating different widely used
simulators in to a unified environment. The MILAN modeling paradigms facilitate seamless integration
of a variety of simulators at multiple levels of granularity, into the framework. A single graphical user
interface allows designers to specify different aspects of embedded system hardware and software, and
performance requirements.

MILAN [LDNA03] provides an integrated environment where existing development and analysis
tools, primarily simulators, can work seamlessly together.

MILAN is a collaborative project between the University of Southern California (USC) and the Van-
derbilt University (VU).

1.8.5 Glonemo
GLONEMO [SMMM06]: Global and Accurate Formal Models for the Analysis of Ad-Hoc Sensor

Networks approach for the formal modeling and analysis of ad-hoc sensor networks, at various levels of
abstraction. It is global because it takes into account all the following aspects: a precise modeling of the
hardware that implements a single node; the protocol layers; the application code; an abstract model of
the physical environment as viewed by the sensors. The global model enables validation by simulations.
Glonemo is a collaborative project between the laboratory Verimag and France Telecom company.

1.8.6 Ptolemy
The Ptolemy project [THG+92] studies modeling, simulation, and design of concurrent, real-time, em-

bedded systems. The focus is on assembly of concurrent components. The key underlying principle in the
project is the use of well-defined models of computation that govern the interaction between components.
A major problem area being addressed is the use of heterogeneous mixtures of models of computation. A
software system called Ptolemy II is being constructed in Java. Ptolemy II differs from other commonly
used graphical block-diagram languages in that they typically support only one model of computation. In
addition, Ptolemy II is a more open architecture in that its infrastructure is open source, and the interfaces
to the core mechanisms in the software are published and documented. The Ptolemy project has been
under development in Java since 1997.

1.9 Overview of Thesis
This document contains 6 chapters; the first chapter is this introduction.

6/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

1.9. Overview of Thesis

• Chapter 2, "General context" presents the context of work. It was partly written on the basis of
Thesis of Matthieu Moy and Jérôme Cornet. We present a brief summary of the history of the
systems on chip design flow. Then we present the transactional approach (TLM) for modeling
systems on a chip, and then we give a technical presentation of the SystemC library and the Java
language.

• Chapter 3, "Problem description" presents the problems that belongs to SystemC. We give, in
detail, our approach of the design of a execution model for the rapid prototyping of SoCs. Then
we highlight the problems of parallel programming and we present the synchronization tools as a
solution to that issue.

• Chapter 4, "Contributions" present the JTLM library; what it consists of, what it offers to model
TLM platform. Then we give the tests performed in order to evaluate this model of execution.

• Chapter 5, "Case study" describes in detail a TLM platform implemented in JTLM to improve the
capability of the JTLM library to model TLM platform, also to show that TLM could be written in
JTLM as it can be written in SystemC.

Finally, chapter 6 "Conclusion", concludes the thesis and provides pointers to future work.

Nabila Abdessaied Master Thesis 7/67

Chapter 1. Introduction

8/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Chapter 2

General context

Contents
2.1 The need for higher abstractions . 9

2.2 TLM . 10

2.2.1 Common concepts . 10

2.2.2 Various TLM applications . 11

2.3 TLM with SystemC . 12

2.4 Java . 13

2.4.1 What is a thread? . 13

2.1 The need for higher abstractions
Transfer register level remains the common way which leads, using synthesis and placement and route
software, to the manufacturing of the physical chip. Meanwhile engineers can’t begin writing the software
parts of the system till the chip would be produced to execute their work on it.

This methodology is no longer realistic since it takes too much time and it does not minimize the time
to market. As an alternative to this problem, software developers use the RTL models as a support to
check their work. But the simulation into these models is too slowly because they contain many details,
specially the complex chips. In order to increase the simulation speed, a technique called co-simulation
was adopted, which consists of replacing complex components by other much simpler written in C like
replacing the memory by an array and the processor by an instruction set simulator (ISS). Hardware
devices called hardware emulators used for RTL simulation which they are efficient in terms of speed
but they require the RTL model to be available They are very costly and they provide limited debugging
capabilities.

Another solution to the problem is to raise the abstraction level by creating models with fewer de-
tails so they could be available before the RTL and would be used as simulation platform for embedded
software development. This new level is called the Transaction Level Model (TLM).

Figure 2.1 shows an example of compared simulation times for encoding and decoding a picture in a
MPEG4 codec.

9

Chapter 2. General context

Figure 2.1: Simulation time for the encoding and decoding of one image in a MPEG4 codec

2.2 TLM

2.2.1 Common concepts
A full description of the TLM approach can be found in the book [Ghe05]: Transaction-Level Modeling
with SystemC. TLM: Concepts and Application for Embedded Systems.

TLM models represent architecture. The architecture is defined by a set of components, connected by
channels, see figure 2.2. Each component contains one or more concurrent processes, ports, and other
components. A component could be a master (initiator) which is a component that starts a transaction or
a slave (target) which is a component that receives and serves transactional requests. The ports represent
the inputs and the outputs of components. Components communicate with each other directly or through
out a communication channel.

In transactional models, we distinguish two types of communication: transactions and interrupts.

• An interrupt is a unidirectional data exchange between components. It proceeds directly to the
target module. It is a simple point-to-point communication that do not require target address or to
be routed by the bus.

• A transaction is an atomic data exchange between an initiator and a target. It is an exchange of a
data or an event between two components through a bus model that routes the transaction from an
initiator to a target.

The information exchanged via a transaction depends on the bus protocol. However, some of them are
generally common to all protocols:

1. The type of transaction determines the direction of the data exchange, it is generally read or write,

2. The address is an integer determining the target component and the register or internal component
memory address,

3. The data that is sent or received.

10/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

2.2. TLM

Module 1

Module 2
Process 1

Process 2

Module 3

Process 1

process 2

Slave
component

Interrupt
Port

Master Slave
Component

Master
Component

Target Port
Master Port

Interrupt Input
Interrupt Output

Process 3

Process

Bus

Figure 2.2: An example of a TLM platform

The most basic functionality shared by all buses is to route the transactions to their destination depending
on their address. The destination is determined by the global memory address map which associates a
memory range to each target port.

2.2.2 Various TLM applications
Depending on their uses, the TLM models are divided into two parts: Programmer View (PV) models
called functional models, and Programmer View + Timing (PVT) called Timing models.

• Programmer View (PV) model:
Used as a platform for developing and executing the embedded software because it is ready early
and offers a high speed simulation, this amount to the fact that these models abstract so many
details. It just contains only the details that allow the software to function as in the final chip. PV
model is also more efficient in finding and fixing bugs than in the physical chips because it lets the
developers insert debug messages so they can pick out the origin of the bug instead of seeing no
output coming from the real chip.

Functional models are used also to validate the behavior of an RTL block since they are seen as the
reference model for the hardware.

• Programmer View + Timing (PVT) model:
This model contains more details than PV models: timing information and new communication
granularity that allow to TLM to perform another application which consists of the evaluation of
the chip performance, to help architects determine the best compromise between the various factors
involved(performance, area, costs,..).

Nabila Abdessaied Master Thesis 11/67

Chapter 2. General context

2.3 TLM with SystemC
To implement and execute TL models, a computer language is required. Verilog and VHDL couldn’t be
the appropriate choice for this task because they were defined basically to describe low levels of abstrac-
tion such as RTL. Also we could not depend on the programming languages like C/C++ to satisfy such
requirement that’s dues to the fact that theses languages don’t support hardware description. SystemC
[Ini06] was the best alternative because it can satisfy all the needs: hardware and software description,
rapid simulation platform and parallel execution semantics.

SystemC is a C/C++ library that has been standardized by the IEEE in 2005 [Ini06]. It affords classes
to describe the TL model architecture, which consists of a set of components connected to each other
(sc_module, sc_port...). It’s behavior is implemented using processes (sc_thread...). Components be-
have in parallel and synchronized by the mechanism of events (sc_event...). After instantiating the mod-
ules and connecting their ports, communications between components are done by function calls through
communication channels or directly to the target component. The first type of communication is called
transaction and the other one is called interrupt used to model a point-to-point communication.

The granularity is the size of the data transported by the transaction. Depending on the real bus width
and its capability to bursts transactions, a transfer for example of a picture in memory will actually be
transferred line by line, or worse: pixel by pixel. To increase the simulation speed, a SystemC/TLM bus
makes the transfer of the whole picture at once, making use of what we will call block transactions. It
would be easier and more efficient to transfer big granularity transactions to avoid memory errors and
make the simulation speed more important.

The SystemC simulator schedules the SystemC processes. At the first time all the process are eligible,
only one process selected by the scheduler go in running phase and the others are waiting for time to
elapse or a SystemC event. A process suspends itself by executing a wait instruction in order to let the
other process execute their jobs; this is called cooperative scheduling policy.

The figure 2.3 gives an example of a transactional model.

Initiator

Slave

process(){
I.write(a,d) ;

 d=I.read(a) ;
}

void write(int,int){
...

 }

int read(int,int){
 ...

 }

Bus = Communication channel
I

C

Figure 2.3: Example of a transactional model

12/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

2.4. Java

2.4 Java
Java [AGH05] is a programming language originally developed by James Gosling at Sun Micro sys-
tems. The essential components in the Java platform are the Java language compiler, the libraries, and
the runtime environment, called also virtual Java machine [LY99], in which Java intermediate byte code
"executes" according to the rules laid out in the virtual machine specification.

The implementation of Java compilers, virtual machines, and class libraries were developed by Sun
from 1995. In May 2007, Sun made most of their Java technologies as free software under the GNU
(General Public License).

We have chosen Java as a programming language to carry out the building of the JTLM library for
these reasons:

1. It allows parallel programming [Lea99] through its class thread.

2. Java threads are generally preemptive, the virtual machine is allowed to step in and hand control
from one thread to another at any time. This preemptive scheduling would help us to view in
different way the behaviors of TLM models.

3. Java offers a reliable mechanism for the synchronization between JTLM components.

2.4.1 What is a thread?
To avoid ambiguity, it is important to clarify that Thread is not a process. Indeed, the process live in virtual
isolation while Threads are lightweight processes that live together in a single process. Unlike process,
the threads share the same memory. A Thread is a portion of code to run in parallel with others.
We will use Java threading in order to implement the behaviors of JTLM components.

Nabila Abdessaied Master Thesis 13/67

Chapter 2. General context

14/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Chapter 3

Problem description

Contents
3.1 Introduction . 15

3.2 SystemC influences . 15

3.3 Our approach . 16

3.4 Parallelism . 20

3.4.1 Deadlock . 20

3.4.2 Livelock . 20

3.4.3 Threads Interference . 21

3.4.4 Memory Consistency Errors . 21

3.5 Synchronization . 22

3.5.1 The keyword synchronized . 22

3.5.2 Reentrant Synchronization . 23

3.5.3 The wait and notify . 23

3.1 Introduction
In this chapter, we will present our approach trying to avoid the bad side of SystemC while remaining
faithful to the real hardware characteristics.

3.2 SystemC influences
Among the potentially bad habits in SystemC that we try to avoid them in JTLM, we invoke:

• SystemC was firstly designed to write RTL and cycle accurate models. After the adoption of TLM
level in the design flow of SoCs, SystemC was chosen as a standard language to write TLM models,

15

Chapter 3. Problem description

some of SystemC primitives were imported to implement the SystemC/TLM library. This fact of
copying/pasting has led to having difference between what a SystemC/TLM model represents and
what a real TLM model represents. SystemC designs are a bit far from the transaction level.

• SystemC does not model the duration that a task could take. It only invokes the waits between them
so, when a SystemC transaction is running, the time remains constant and it elapses when there no
eligible process. As the figure 3.1shows, the simulation time does not progress when a transaction
is running.

Figure 3.1: Simulation Time of a SystemC/TLM model

• Because SystemC scheduler is cooperative, once a process is given control; it continues to run until
it explicitly yields control or it blocks by invoking a waiting statement. For this reason if a process
is polling another module it leads to a livelock since it does not give the hand to another module to
make it goes out from this kind of looping by modifying the polling value.

• The big granularity of a SystemC transaction is quite good in the term that it helps to avoid memory
errors but the problem of this approach is that although it works well in the virtual platform, it does
neither guarantee that it works well in the real hardware nor help to find hardware bugs.

3.3 Our approach
In the first part of the JTLM construction, after defining them, we have to implement the basics el-

ements called the core library. It would contain the required element for modeling transactional models
such as components, ports, communication channel and interrupts.
All components behaviors are conceptually working in parallel, they are used to model components func-
tionality. The Java programming language provides multi-threaded programming and offer constructs,
such as synchronization, for creating functional programs. So we will exploit Java thread class for this
issue.

16/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

3.3. Our approach

In the second part, we have to design generic components, so called utilities that could be used in each
platform such as the router or the memory.

After that we have to do several examples in order to validate the two packages JTLM core language
and JTLM utilities but the important thing of this part is the verification of some notion and viewing the
behavior of a TLM model implemented in JTLM this stage would help us to distinguish what comes from
SystemC from those of TLM. Because programmers get used to to represent TLM models with SystemC,
and since SystemC has few properties like having a cooperative scheduler, programmers tend to say that
TLM also is cooperative. We can confirm, after using JTLM, which has a preemptive scheduler, that TLM
can be cooperative as it can be preemptive. That depends on the language of implementation of a TLM
model not on the TLM him self.

Later, to be more faithful, we will add the notion of time on our execution model so it could inform us
about the time that may take the real chip. We call it the simulation time in the virtual platform. At this
step we will develop examples to resolve some problems that exist already in SystemC/TLM and to know
if they are attached to SystemC core language or not.

JTLm Simulation time

JTLM Simulation time
SystemC Simulation Time

Figure 3.2: JTLM simulation time comparing with the SystemC time

Finally, to innovate, and since SystemC does not manage the tasks duration, JTLM will deal with this
limitation, it will give the possibility to make timed tasks and it’s benefits in reducing the time of a plat-
form simulation. As the figure 3.2 shows a comparison in simulation time between JTLM and SystemC.

The figure 3.3 represent the difference between the way of SystemC and JTLM to model the duration
of a process.

Nabila Abdessaied Master Thesis 17/67

Chapter 3. Problem description

.

Figure 3.3: The time managment in SystemC and JTLM

In SystemC, the scheduler gives the hand to run to only one component. Suppose for example we have
two components executing their work as described in the figure 3.4, the scheduler will give the hand to
the first component to execute its first instruction while the other component enter in wait of 5 ns. When
the first component finishes its first instruction, the scheduler increase the simulation time to 5 ns, then it
gives the hand to the second component to execute its first instruction till it finishes, then the scheduler
increase the simulation time to 10 ns and let the first component do its second instruction. As we see, this
was the global idea for SystemC to model parallelism between components. In fact SystemC do not allow
for two components to execute their work at the same time, for this reason to model the parallelism, the
one use the wait between components instructions to enable the explicit parallelism between components
and to model the execution time.

Component 1 Component 2

Instruction 1

waits 10 ns

Instruction 1 Instruction 2

waits 5 ns

Instruction 1
waits 10 ns
Instruction 2

waits 5 ns
Instruction 2

.

Figure 3.4: The time managment in SystemC

18/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

3.3. Our approach

In JTLM, timed tasks is a way to model the simulation time, it allows the parallelism of components
execution, For example, we consider two component that are executing their instructions using the du-
ration as the figure 3.5 shows, the instructions of the two component are running in parallel. Even it is
modeled to take 10 ns to achieve its job; the first component may finish before the second. In this case, it
musts wait for the end of execution of the second component to continue the rest of its work.

Component 1 Component 2

Instruction 1
in 10 ns

Instruction 1 and 2
in 5 ns

consume(){

 Instruction 1
 Instruction 2

}.during(10ns)

consume(){

 Instruction 1

}.during(5ns)

Figure 3.5: Time management in JTLM

Since the build of the real chip takes a lot of time to be ready and the RTL platforms are slowly in
simulation, the TL level was born firstly to satisfy the need of developers to an auxiliary platform to test
the embedded software and also to provide a faster time of simulation comparing to RTL platforms. Even

Good and fast
TLM

TLM interesting
in demo

Bad and slow
TLM

RTL Wall clock
 time

Simulation time

Figure 3.6: Transaction models types

Nabila Abdessaied Master Thesis 19/67

Chapter 3. Problem description

its various advantages, Transactional models could no longer be good enough in term of the time that could
take a platform simulation. As we can see in the figure 3.6, the one can find three types of TL models:
The first are similar to the RTL simulation time, they are called bad TL models, the seconds provide a
reasonable wall clock time when simulating a platform, they are good to make demo. The last ones are
those which provide a fast simulation, they are called as good TL models. Researchers and engineers are
working to reach this TL modeling type so that developers can test the embedded software in a short time
so they could finish in the same time as or before the physical chip would be ready.

As a consequence of the use of timed tasks, many behaviors are eligible at the same time. This result
will increase the speed of the simulation so the JTLM will represent a kind of the third type of TL models
as explained above.

3.4 Parallelism
Parallelism between JTLM Behaviors let them communicate primarily by sharing access to fields and
common resources. This mechanism is extremely efficient because it reduces the time of execution but
in the other hand, it makes many kinds of errors. It can lead to the classic problems of parallelism such
as deadlock, threads Interference and memory consistency errors and other problems related to the JTLM
time manager like the livelock.

3.4.1 Deadlock
A "deadlock" condition can occur when there is a circular chain of tasks that lock on each other. Deadlock
refers to a specific condition when two or more processes are each waiting for each other to release a
resource, or more than two processes are waiting for resources in a circular chain. For example, thread
C waiting on thread B, which is waiting on Behavior A, which is waiting on Behavior C is a deadlock
condition. In such a case, no tasks will continue because none has received a signal from the one it is
waiting for.

3.4.2 Livelock
A livelock is an infinite branch in the execution tree, in which, from a certain point there is no progress,
i.e. no new state is visited. Livelock is a special case of resource starvation; the general definition only
states that a specific process is not progressing. As with deadlock, livelocked threads are unable to make
further progress. However, the threads are not blocked; they are simply too busy responding to each other
to resume work. For example, consider two threads are sharing a variable x initially set to 0.

Suppose Thread A modifies the value of x before thread B begin its work, in this case it will lead to

Thread A Thread B
x = 1 while(x!=0) { +//do nothing }

print(x)

a livelock situation. No progress in the program, but thread B remains busy with the infinite periodic
reading of the value of x.

20/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

3.4. Parallelism

3.4.3 Threads Interference
It happens when two operations, running in different threads, but acting on the same data, interleave. This
means that the two operations consist of multiple steps, and the sequences of steps overlap.
For example, suppose that two threads are sharing a variable c as described in the following table: Suppose

Thread A Thread B
Retrieve the current value of c Retrieve the current value of c

Increment the retrieved value by 1 Decrement the retrieved value by 1
Store the incremented value back in c Store the decremented value back in c

Thread A invokes increment at about the same time Thread B invokes decrement. If the initial value
of c is 0, their interleaved actions might follow this sequence:

1. Thread A: Retrieve c.

2. Thread B: Retrieve c.

3. Thread A: Increment retrieved value; result is 1.

4. Thread B: Decrement retrieved value; result is -1.

5. Thread A: Store result in c; c is now 1.

6. Thread B: Store result in c; c is now -1.

Thread A’s result is lost, overwritten by Thread B. This particular interleaving is only one possibility.
Under different circumstances it might be Thread B’s result that gets lost, or there could be no error at all.

3.4.4 Memory Consistency Errors
It occurs when different threads have inconsistent views of what should be the same data. For example
two thread are sharing a variable x which is set to 0.

Thread A Thread B
x = 1 print(x)

If the two statements had been executed in the same thread, it would be safe to assume that the
value printed out would be "1". But if the two statements are executed in separate threads, the value
printed out might well be "0", because there’s no guarantee that thread A’s change to x will be before the
execution of the tread B. The key to avoiding memory consistency errors is understanding the happens-
before relationship [MPA05]. This relationship is simply a guarantee that memory writes by one specific
statement are visible to another specific statement.

Nabila Abdessaied Master Thesis 21/67

Chapter 3. Problem description

3.5 Synchronization
The tool needed to prevent multi-threading errors is the synchronization. Java has constructs for synchro-
nization [Mic08] that, when used properly, can ensure that only one thread is accessing a particular object
at any given point in the computation. The synchronization construct in Java is the lock.

3.5.1 The keyword synchronized
The Java keyword synchronized is used to manipulate locks. This mechanism provides the possibility to
ensure atomic transaction so we can avoid memory consistency errors and threads interference.
To synchronize the behaviors communications, we have used block synchronization and method synchro-
nization.

Block synchronization allows you to lock any object, anywhere in your code. The syntax for block
synchronization is:

Object x = new Object();
void foo() {

synchronized(x) { // acquire lock on x on entry

// I hold the lock on object x in block

} // release lock on x on exit
}

Method synchronization is exactly equivalent to block synchronization of the entire method. The
syntax for method synchronization is to add the keyword synchronized at the beginning of a method
declaration, such as:

synchronized void foo() {

//Locked method: critical section

}

This method is equivalent to the block synchronization of the entire method bellow:

void foo() {

synchronized (this) {

//Locked block of code: critical section

}
}

22/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

3.5. Synchronization

3.5.2 Reentrant Synchronization
Recall that a thread cannot acquire a lock owned by another thread. But a thread can acquire a lock that it
already owns. Allowing a thread to acquire the same lock more than once enables reentrant synchroniza-
tion. Reentered synchronization is a solution to the deadlock situation.

3.5.3 The wait and notify
The Java language includes three important methods that effectively allow one thread to signal to another.
This facility helps to resolve memory consistency errors and livelock errors. The following table gives a
solution to the livelock problem highlighted above.

Thread A Thread B
wait() while(!x) { }
x = 1 notify()

• The wait() method of any Java object suspends the thread which call it. The thread is said to be
"waiting on" the given object.

• The notify() or notifyAll() method of the same Java object, when called by another thread, will
"wake up" the threads waiting on that object.

If the wait() and notify() methods are not used properly, they will lead to a deadlock, for example when
the notification of a thread is done before it starts waiting for this notification.

Nabila Abdessaied Master Thesis 23/67

Chapter 3. Problem description

24/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Chapter 4

Contributions

Contents
4.1 Introduction to JTLM . 26

4.2 Core language . 26

4.2.1 Components . 27

4.2.2 Transaction Ports . 27

4.2.3 Interrupt port . 28

4.2.4 Behaviors and Methods . 29

4.2.5 Constructor . 30

4.2.6 Debugging and tracing support . 30

4.2.7 Timed tasks in JTLM . 31

4.2.8 Time Manager . 32

4.2.9 Simulation . 35

4.3 Exception Handling . 35

4.4 Utilities and generic components . 36

4.5 Instantiation . 36

4.6 Evaluation . 37

4.6.1 Components test . 38

4.6.2 Generic components test . 38

4.6.3 Synchronization test . 38

4.6.4 Timed tasks test . 39

4.6.5 Time manager test . 39

4.7 Implementation choices . 41

4.8 JTLM limits . 42

25

Chapter 4. Contributions

4.1 Introduction to JTLM
JTLM is an extension of the Java language, designed to represent transactional models. It includes a Java
class library containing hardware models and all building blocks to model a hardware system.

This library, as the figure 4.1 shows, is composed of the core language package which contains all
the necessary elements to capture a physical hardware to a virtual one, the utility package regrouping
generic components and the test package used to validate both of the two other packages and to verify
other functionalities.

Core language

Utilities

ExceptionsBase

Test

Platform
 n

Platform
 1

Generic
components

Platform
i

... ...
.

Figure 4.1: The JTLM library

JTLM used as a simulation platform to test the embedded software. JTLM is not created, in this
step, as a professional language concurrent to SystemC but to prove that it is possible to implement TLM
models using another language rather than SystemC.

4.2 Core language
Before we jump into the details of JTLM language, let’s looks at how JTLM models hardware in brief.

A JTLM system consists of one or more components which are linked through a communication
channel or by interrupt ports. Each component typically contains:

1. Behaviors.

2. Ports.

3. Interrupt ports.

4. Methods.

26/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.2. Core language

5. Internal data.

And Constructor.
In JTLM, components, ports, channels and behaviors are classes from which objects are created.

4.2.1 Components
Components are the basic building block within JTLM to partition a design. Components allow designers
to hide internal data representation and algorithms from other components. They are similar to module in
SystemC and Verilog and Entity in VHDL. By definition, components communicate with other compo-
nents through channels and via ports. Typically a component will contain numerous concurrent behaviors
used to implement their required behavior. Components are similar to module in SystemC.

In JTLM, any component has to be derived from the existing class Component. Below, the figure 4.2
is syntax of a component.

Component

.

Figure 4.2: Component declaration

The source code is available at jtlm/base/Component.

4.2.2 Transaction Ports
Components could not pass or receive data directly to or from another one; they use ports to communicate
to each other through the communication channel which will decode addresses and route transactions.
Ports are used by components as a gateway to and from the bus. In a simplistic way, one can consider a
port like the pin of a hardware component.

JTLM has two types of ports: Slave and Master ports:

• Slave port: This port is found in a slave or master-slave component, it is used to receive or serve
transactions.
The source code is available at jtlm/base/SlavePort.

• Master port: This port is found in a master or master-slave component, it is used to send transaction
to another component.
The source code is available at jtlm/base/MasterPort.

The figure 4.3 shows the way to declare a port in JTLM.
The ports have two functions that will be used to communicate through them:

Nabila Abdessaied Master Thesis 27/67

Chapter 4. Contributions

Component

Slave Port

Master Port

Figure 4.3: Master and Slave Port declaration

• port_name.write(value, address)// For writing value to port.

• port_name.read(address) // For reading value from port.

4.2.3 Interrupt port
Interrupts are asynchronous signals transmitted by wires indicating the need for attention. To model this
idea, JTLM uses an interrupt Port. When a component sends an interrupt through its interrupt Port, it leads
to the call of another component function in order to make it do a specific work like for example waking
it up from sleeping or processing another job.

Unlike transaction ports, interrupt ports proceed directly to the target component without going through
bus. Since interrupts do not pass by the communication channel, neither address decoding nor routing is
needed to send interrupts from a component to another.
Bellow the figure 4.4 gives the syntax of an interrupt port declaration.
To wait for an interrupt, a behavior or a method should execute the instruction bellow:

Component

Slave Port

Master Port

Interrupt Port

Figure 4.4: Interrupt Port declaration

InterruptPort.waitInterrupt()

To send interrupt:

InteruptPort.sendInterrupt()

28/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.2. Core language

The source code is available at jtlm/base/InterruptPort.

4.2.4 Behaviors and Methods
In TLM the functionality part of the component is known by processes. There are two types of processes
in JTLM: Behaviors and Methods:

Behavior:

Behaviors are second kind of process, which when instantiated keeps executing or waiting for some events
to occur. Conditions that enable these Behaviors can be sendInterrupt, wakeUpFromEvent or the time has
elapsed. The equivalent of the behaviors in SystemC are called sc_thread

To define a component behavior, it should inherit from the class Behavior so it could be considered as
a behavior. The figure 4.5 shows the declaration syntax of a method and a behavior in JTLM

Component

Slave Port

Master Port

Behavior

Method

Interrupt Port

Figure 4.5: Method and Behavior declaration

Behaviors can be suspended and reactivated. The behavior can contain wait() functions, which could
be a wait for event, time or interrupt, that suspend its execution. An event, which could be event time

Nabila Abdessaied Master Thesis 29/67

Chapter 4. Contributions

elapse or interrupt capture, will reactivate the behavior process from the statement the behavior was last
suspended. The behavior will continue to execute until the next wait().
The source code is available at jtlm/base/Behavior.

Methods:

Methods behaves like a function, when called it gets started and executes and returns execution back
to calling mechanism. A method is called whenever an interrupt is received, when a slave receives a
transaction or when a behavior calls it. JTLM methods are analogous to SystemC sc_method.

4.2.5 Constructor
The component constructor creates and initializes an instance of a component. The constructor creates
the internal data structures that are used for the component and initializes these data structures to known
values. The constructor is used to instantiate behaviors defined in that component and to link the slave
port if it exists to the component.

4.2.6 Debugging and tracing support
JTLM provides two mechanisms to aid the programmer in diagnosing and correcting the platform errors.
One is the Debug class and the other is the Trace class. These two classes contain functions used to show
internal data of components, and to check outputs results. They have the same purpose but in a different
context.

The major difference between debug and trace message is that debug message is used to display
outputs results and tracing messages are used for tracking the internal functioning of the platform.

JTLM Debugging support

The JTLM debugger is used to test outputs of a platform. It is used to find out bugs. JTLM offer text
based debug. To use debug, a programmer choose the proper place and insert his debugging message as
bellow:

Debug.debugMessage("debugging message");

The source code is available at jtlm/base/Debug.

JTLM tracing support

The JTLM Trace class allows the programmer to identify and understand the problem in a platform. It
provides informative messages from the running JTLM platform, such as viewing variable values and
recording informations about program execution that can help diagnose problems or finding bugs.

To use tracing, the programmer should determine where he wants the tracing output to appear in the
code and add the appropriate trace message as bellow:

Debug.traceMessage("tracing message");

The source code is available at jtlm/base/Debug.

30/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.2. Core language

4.2.7 Timed tasks in JTLM
In SystemC, the waits included into components processes are used for two issues:

1. Time elapsing: The one adds a wait statement in a component in order to make it wait a period of
time.

2. Tasks duration: Because SystemC do not model task duration, the programmer adds a wait state-
ment to represent the time that may take a task execution.

When a component is executing a task in the real chip, it will take a time to do it. Although SystemC
does not support this feature, we had included timed tasks to JTLM in order to better implement the
programmers intend and to be more faithful to the physical hardware.

As a consequence of using this feature, it allows to better parallelize between processes i.e. many
tasks are eligible at the same time unlike SystemC, because of its cooperative scheduler, can give the hand
to only one component to run an instruction.

The figure 4.6 shows the parallelism of components execution. The instruction f() of the cpu1 and the
instruction of the cpu 2 are running in the same time. The same thing for the instruction k() of the cpu 1
and the instruction h() of the cpu 3.

Wall clock time

Simulation time

Figure 4.6: Example of a platform using timed tasks

We have incorporated a new class in JTLM that manage the time of a task execution. It will allow to
a behavior component to define its job with specification of its duration. A behavior, which has finished

Nabila Abdessaied Master Thesis 31/67

Chapter 4. Contributions

its timed task, is obliged to wait for behaviors doing their timed tasks with a smaller time. The figure 4.7
gives an example of using timed tasks.
We call a timed task a consume process. The source code of the time manager is available at jtlm/base/

in 10 ns
Instruction 1

behavior_Bi(){
 new consume(){

 consume(){
 Instruction 1
 }

 }.during(10ns)
}

Component Time manager

Consume

during(10){

 TimeManager.consume(10, Bi);
 consume();
 if(! Bi.isReactivated()){
 Bi.wait();

 }
}

if (time of Bi > time of the
behavior in the head of the
waiting queue B1){

 Bi must wait the other to
 finish
 return 0
}
else{
 if(time of Bi == time of the
 behavior in the head of the
 waiting queue B1){

 wake up B1
 increase simulation time
 }
 else{

 increase simulation time
 }
 return 1
}

add the behavior Bi to the waiting queue with
status running

Figure 4.7: The functionning of the timed tasks

Consume.

4.2.8 Time Manager
In a first stage, JTLM component could just wait for event or interrupt without neither waiting in time nor
giving the time of the system execution. In That stage JTLM could only perform system progress without
including the simulation time, see section 1.3.

To include the simulation time, we had implemented a time manager that manages the time between
components, gives the simulation time of a platform and provides to a component behavior to wait for
time elapsing or to execute a timed task.

In SystemC, the scheduler is the responsible for the progress of the simulation time; it is also respon-
sible for giving the control to the components processes. But in JTLM, The Java scheduler is responsible

32/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.2. Core language

for the preemption between behaviors. It allows the computer system to more reliably guarantee each
behavior a regular "slice" of operating time in the processor. And the JTLM time manager is responsi-
ble for the increase of the simulation time, also it decides which behavior is eligible. The time manager
increase the time only when the number of the behaviors executing the waiting process and the consume
process is equal to the global number of the platform behaviors.

The time manager waits till all behaviors are waiting or consuming a task. In the other hand, each of
the components behaviors that enter in a wait statement (interrupt, event or time) or in executing a timed
task will be stored in the time manager queue. When all the behaviors are all stored in that queue, the time
manager determines the behavior with the smallest time. If this behavior is consuming a process, the time
manager will wait for the end of the execution of this behavior task, and then it will increase the time with
the duration of this task. But if this behavior is waiting for time elapsing, the time manager will increase
the simulation time with this behavior waiting time and then it will awake it to achieve the rest of its work.

Figure 4.8: Example of a platform

Nabila Abdessaied Master Thesis 33/67

Chapter 4. Contributions

The figure 4.8 gives an example of a platform composed by two processors, a memory and a bus and
gives its functioning written with JTLM.
Bellow, as the figure 4.9 shows, we give the time manager functioning in the example mentioned above:
Firstly, the two processors have each one its own behavior. The global number of the platform behaviors
is two. The processors behaviors begin executing their tasks. The time manager determines the smallest
task; in this case it’s the task g of the processor-2 behavior. So the time manager will wait for the end of
this task, then it will increase the simulation time to 10 ns.

If the first processor would finish its task before the second processor, the time manager will block it
till the second processor will finish its task because the duration of its task is smaller than the first.

When the time is increased to 10 ns, the processor-2 continues its work by executing the second task
which consists of waiting 10 ns. The time manager will block the behavior of the processor-2 till the
simulation time reaches 20 ns.

The time manager, determine the smallest time to wait or to be consumed in executing a task. In our
example, the smallest time is 5 ns. So when the first task of the processor-1 is done, the time manager will
increase the simulation time to 15 ns.

Figure 4.9: The Time manager algorithm

At this step the number of the behaviors which are consuming or waiting is smaller than the global
number of behaviors so the time manager does nothing.

The processor-1 begins its second task which will take 10 ns. As usual, the time manager determines

34/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.3. Exception Handling

the smallest time, in this case, it finds 5 ns as a time left in the waiting process of the processor-2 behaviors,
so it will increase the simulation time to 20 and will unlock the processor-2 behavior to continue its tasks.

The processor-2 executes its final task in 10 ns and the time left to finish the second task of the
processor-1 is 5ns. So the time manager will wait for the end of the second task of the processor-1. At
that time, the time manager will increase the simulation time to 25 ns and will kill the behavior of the
processor-1. In this case the number of the global behaviors becomes one.

At the end of the task 3 of the processor-2, the time manager increase the simulation time to 30 ns and
kills the processor-2 behavior.

4.2.9 Simulation
The main task of the simulation class is starting all the behaviors of the platform components and instan-
tiating the time manager. After invoking the start function of this class in the main function, the time
manager initializes the simulation time and the behaviors begin their work.
The source code is available at jtlm/base/Simulation.

4.3 Exception Handling
An exception is an event that occurs during the execution of a program that disrupts the normal flow of
instructions. It is an object that contains information about the exception, including its type and the state
of the program when the error occurred

Many kinds of errors can cause exceptions such as trying to access an out of bounds array element.
When such an error occurs within a method, the method creates an exception object and hands it off to the
runtime system.

After a method throws an exception, the runtime system searches until it finds a method that contains
an appropriate exception handler. An exception handler is considered appropriate if the type of the excep-
tion thrown is the same as the type of exception handled by the handler. The exception handler chosen is
said to catch the exception. If the runtime system do not find an appropriate exception handler, the runtime
system (and consequently the program) terminates.

JTLM took advantage of the ability of the Java exception handling so that it can itself define and
handle its own exceptions. It lets also programmers define their own JTLM exception.

By using exceptions to manage errors, JTLM have the advantages over traditional error management
techniques such as grouping and differentiating error types.
JTLM defines three types of exceptions:

1. AddressOutOfRangeException: This exception is thrown when a component try to access a com-
ponent with an invalid address.

2. NegativeRangeSizeException: This Exception is thrown when the programmer defines a negative
or null address range.

3. JtlmException: It is defined for the other JTLM errors.

The source code is available at jtlm/exception

Nabila Abdessaied Master Thesis 35/67

Chapter 4. Contributions

4.4 Utilities and generic components
This section presents the generic components which can be parameterized by the developer, all these
components are described in more detail in appendix A.

1. Router: A router, for more details see this section A.1, or bus is used to route the transactions
between components using the target address.

2. Memory: A Memory, for more details see this section A.2, used for data storage.

3. LCDC: The LCD component, for more details see this section A.3, is used to display videos or
data from memory.

4. ITC (Interrupt Controller): Some components want to send interrupts but they do not have inter-
rupt outputs, so the ITC, for more details see this section A.4, was created to let these components
send interruption by configuring it.

5. DMA Controller: The DMA component, for more details see this section A.5, is used to perform
data transfers between two memory regions, between a memory and a peripheral, or between two
peripherals. It allows data transfers of fixed or variable length without intervention from the CPU.

6. Timer: The Timer, for more details see this section A.6, is a slave component which is included in
the JTLM development kit as a library component. Timer is used to send interrupt each period of
time to another component.

4.5 Instantiation
In the main() function the structural elements of the system are created and connected, the figure 4.10
gives an example of instantiating a platform through JTLM

The first part of the main function consists of the instantiation of the component and the channel:

Memory memory = new Memory(100);

Then it connects the components by attaching channel ports to the appropriate ports:

cpu.initiatorPort.bind(bus.getTargetPort(0));

After that it defines to each slave or master-slave component its own address range:

bus.map(0, 100, memory.targetPort); // binding the memory slave port
to the bus master port and defining 100 as address map for the memory

And it assigns the inputs of interrupt ports to the outputs of the suitable interrupt ports:

interruptPort.assignIRQ(InterruptPort irq)

In the final portion of the function, debugging and tracing messages are enabled or disabled:

Debug.trace=true;
Debug.debug = true ;

The simulation is initiated through the function start() in the end of function main. The time manager will
take care of time and manage the components work:

Simulation.start();

36/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.6. Evaluation

Bus

ITCCPU

Memory

Figure 4.10: Instantiation of a JTLM platform

4.6 Evaluation
We give, in this section, the examples used to evaluate and validate JTLM bases and its utilities. We
implemented a platform that contains a generic number of each example’s platform to view the behavior
of many platforms working together. Also we made a make file, see the appendix B, so we could run each
example many times and compare it with a reference which contain true results.
We will, for each example, specify:

1. how it works?

Nabila Abdessaied Master Thesis 37/67

Chapter 4. Contributions

2. what it aims to?

3. help it to conclude some results?

4.6.1 Components test
In order to validate the functionality of the Component Class, we made several examples which helped us
to find bugs and correct errors of implementing the Component class.

4.6.2 Generic components test
1. interrupt Controller ITC test:

The interrupt controller was tested in the synchronization test at this section 4.6.3.

2. DMA test:
A full description is available in the source code of the example at: jtlm/test/dma.

3. LCDC test:
Two examples are done in order to validate this component:

• Integration of the time and event: This example consists of a processor, an LCD, a memory
and a bus. The LCD begins its work when the processor writes in its start register.
A full description is available in the source code of the example at:
jtlm/test/time-event.

• Integration of the time and event in a generic way: This example is a generic number of
platforms of the first example.
A full description is available in the source code of the example at:
jtlm/test/time-event-generic.

4. Timer test:
We tested the functionality of the timer in a platform that contain two processors, memory and a
bus.
A full description is available in the source code of the example at: jtlm/test/timer.

4.6.3 Synchronization test
To wait for a device interrupt, a component may poll or wait an interrupt from it. We implemented
examples that uses interrupt and polling between components in different ways:

1. Polling test:
Polling a device consists usually of reading its status register periodically until the device’s status
changes to indicate that it has completed the request. We have implemented an example that shows
the polling mechanism, it consists of a platform that has: two processors, Memory and the bus
which will route the transaction between them. Each of the two processors uses the polling of the
memory to get the right to access it for reading or writing data.
A full description is available in the source code of the example at:
jtlm/test/polling-polling.

38/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.6. Evaluation

2. Interrupts test:
The example written has: two processors, an interrupt manager, memory and the bus. Each of the
two processors, to synchronize the memory access, waits for interrupts from each other instead of
using polling.

Since a processor could not have an interrupt input, we have included the interrupt manager to give
the two processors the ability to send interrupts through it.
A full description is available in the source code of the example at:
jtlm/test/interrupt-interrupt.

3. Polling-interrupt combination test:
The platform designed for this example is composed of two processors, an interrupt manager, a
memory and a bus. To get the right to access the memory, one processor poll it while the other wait
for an interruption.
A full description is available in the source code of the example at:
jtlm/test/polling-interrupt.

When a processor is polling a device, it does a busy waiting i.e. it does no tasks except polling
periodically another peripheral. This synchronization type is costly both in the real processor consuming
and the time of simulation of the virtual platform. In the other hand, in the interrupt waiting mechanism,
a processor which waits for an interrupt does nothing but waiting. So, in the real platform, it does not
consume energy like using polling. But for this type of synchronization we have to add the interrupt
manager in our platform, it does mean to enlarge the chip surface. Two choices: a reduced chip with high
consuming energy for the processor or a bigger chip with a better performance.

4.6.4 Timed tasks test
To verify the proper functioning of timed tasks, we have implemented these examples:

1. Timed tasks.

2. Timed tasks with the waiting of time.

3. Timed tasks timed with the waiting of time and events.

4. Timed tasks timed with the waiting of time, events and interrupts. This example is described in the
figure. 4.11

All theses examples helped us to validate the Consume Class and being careful in management of the
duration of tasks to guarantee a good synchronization between components.
A full description of all these examples is available in the source code of the package test at: jtlm/test/.

4.6.5 Time manager test
To validate the functionality of the JTLM time manager, we developed various examples:

1. Integration of the time and interrupt.

2. Integration of the time and interrupt in a generic way.

Nabila Abdessaied Master Thesis 39/67

Chapter 4. Contributions

Wall clock time

Simulation time

Figure 4.11: Example of a JTLM platform

3. Integration of the time, event and interrupt.

4. Integration of the time and interrupt in a generic way.

5. Integration of the time and polling.

6. Integration of the time and polling rectified.

7. Integration of the time and polling in a generic way.

We quote here the most important examples which have helped us to find bugs, discover other problems
that we have not realized before, and provide solutions as remedies to these issues.

• Integration of the time, event and interrupt: In this example we have two processors, an LCD, an
interrupt controller, a memory and a router. This platform, uses for synchronization, the wait for
events, time elapsing and interrupts.
This example has helped to check if the simulation time is correct or not and if transactions are
respecting the scheduling specified.
A full description is available in the source code of the example at:
jtlm/test/time-interrupt-event.

• Integration of the time and polling: This example contains two processors, a memory and a bus. To
synchronize accessing memory, one processor waits for time elapsing the other polls the memory

40/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

4.7. Implementation choices

as bellow:

while(initiatorPort.read(POOLING_MEMORY_ADDRESS)==SET_TO_ZERO){

// do nothing, just poll the memory

}

This example is done to verify if the polling problem in SystemC is due to its cooperative sched-
uler or not. In fact this platform could not work properly in SystemC since processes are working
in a cooperative way so for a process which enters to this kind of loop could not give the hand
to another process to execute something else so the platform remains in this situation. Because
of this reason, researchers used to say that this problem dues to the cooperative scheduler of Sys-
temC. In JTLM, since the time manager could not liberate a behavior till the number of blocked
behavior will be equal to the global number of all components behaviors and in the other side, a
behavior which is in a loop is not blocked, this platform could not work neither in JTLM when the
polling behavior begins before the behavior which will modify the value of the polling. But if the
polling is done after the modification of the polling value by another behavior, it will work well
without problems of livelock. A full description is available in the source code of the example at
jtlm/test/time-polling.

• As a solution to the problem described above, in the example integration of the time and polling
rectified, we suggest to insert in the polling loop a wait for small time:

while(initiatorPort.read(POOLING_MEMORY_ADDRESS)==SET_TO_ZERO){

waitTime(1);
// waits for one ns before polling another time

}

So in this case, the behavior which is executing the polling could enter to the waiting queue and let
the time manager do his work properly.
A full description is available in the source code of the example at
jtlm/test/time-polling-rectified.

4.7 Implementation choices
To design our execution model, we rely on many Java classes which satisfy our needs and have the less
complexity:

1. We used the Java.lang.Thread to implement concurrent components behaviors.

2. We used the keyword Synchronized to guarantee the synchronization in accessing shared re-
sources.

3. We used the Java inheritance to allow the reuse of some JTLM classes.

Nabila Abdessaied Master Thesis 41/67

Chapter 4. Contributions

4. In order to not let the programmer modify functions or parameters definition when inheriting from
the JTLM classes, we used the keyword final.

4.8 JTLM limits
Despite it’s capabilities to present TL models, JTLM has lacks in several points. Unlike SystemC, JTLM
library, right now, does not give the possibility to represent the hardware data types such as the Bit Type,
Logic Type, Unsigned Integer Type and Signal Type because this was not our goal that we are concerned
with.

Also it does not support the coarse granularity of transaction as well as SystemC. For example in
JTLM a programmer could not make a component writing an image in just one transaction, but in several
transactions, so the programmer should be careful and make such kind of transactions in an atomic process
to avoid errors. It is not easy to guarantee good synchronization between component when a programmer
use the JTLM as a language to write TLM models comparing to the SystemC library, this due to the
preemptive scheduler of the Java virtual machine and to the physical parallelism.

The polling problem found in SystemC also exist in JTLM; when programmers include an embed-
ded software, which contain polling, into a JTLM platform this software could not work properly till
developers add waiting of time into the polling process.

Finnaly, JTLM does not provide a verification support like constrained and weighted randomization
and other verification tasks.

42/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Chapter 5

Case study

Contents
5.1 Introduction . 43

5.2 Case representation . 43

5.3 JTLM Implementation . 45

5.4 Simulation outputs . 45

5.1 Introduction
In this chapter we will give a detailed example done in JTLM: its representation, a brief implementation
code and the simulation outputs. This case study is shown and described deeply in order to demonstrate
with a proof that transactional models could be implemented with another execution model rather than
SystemC.

5.2 Case representation
As the figure 5.1 shows, our platform contains these components:

1. A processor CPU 1 owns a master port and an interrupt input port. It performs these tasks:

• f(): Writing an image into the Memory in 20 ns.

• g(): Sending interrupt and starts LCD work in 10 ns.

• Waiting for an interrupt from the DMA.

• h(): Reading the image written by CPU 2 10 ns. As a result the image should be the same as
the one that it has written it in f().

• l(): Modifying the initial image in 15 ns.

2. An LCD with master and slave port, it realizes these tasks:

43

Chapter 5. Case study

• Waiting event to start reading image.

• p(): Reading an image from the memory in 10 ns.

3. An interrupt Controller which will manage interrupts sent by the two processors. It has only one
interrupt output port.

4. A Timer used to send interrupts after a period to the CPU 2. This component has a slave and an
interrupt output port.

 CPU 1

DMA Memory

Target Port
Master Port

Interrupt Input
Interrupt Output

LCD

CPU 2ITC Timer

Bus

Figure 5.1: JTLM platform

5. A second processor CPU 2 has a master port and an interrupt input port. It executes these tasks:

• Waiting interrupt.

• Waiting 20 ns.

• k(): configuring the DMA to copy an image,
sending an interrupt to CPU 1,
configuring the Timer so it will wake it up after 70 ns.
This task takes 30 ns.

• Waiting an interrupt from the Timer.

• m(): Stopping the timer and read the modified image in 15 ns.

44/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

5.3. JTLM Implementation

Figure 5.2: Diagram of the chronology of tasks execution

6. A DMA used to read and copy the images without using the processors.

7. A Memory for the data storage, it is accessible through its slave port.

And finally a Router which will route transactions between the components.
A full description is available in the source code at jtlm/test/caseStudy.
The figure 5.2 describes the chronology of tasks execution.

5.3 JTLM Implementation
After creating all the components, we instantiate each of them and link each of their ports to the appro-
priate port in the main class which will start the simulation. The figure 5.3 gives a full description of the
main class content.

5.4 Simulation outputs
As the functioning of the platform components described in the section 5.2, we expect to have the follow-
ing results:

1. CPU 1 writes an image into the memory.

2. LCD reads the image from the memory.

3. CPU 2 reads the image from the memory and copies it.

4. CPU 1 reads the copied image.

5. CPU 1 modifies the initial image.

6. CPU 2 reads the modified image.

Bellow, the simulation output of the platform:

Nabila Abdessaied Master Thesis 45/67

Chapter 5. Case study

Figure 5.3: The content of the main class of the Platform

Thread-0 CPU 1 writes into memory
Thread-0 Transaction OK: wrote 1 at address 0
Thread-0 Transaction OK: wrote 2 at address 1
.
.
.

46/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

5.4. Simulation outputs

Thread-0 Transaction OK: wrote 9 at address 8
Thread-0 Transaction OK: wrote 10 at address 9

Thread-2 LCD reads the image from the memory
Thread-2 Transaction OK: read 1 at address 0
.
.
.
Thread-2 Transaction OK: read 9 at address 8
Thread-2 Transaction OK: read 10 at address 9

Thread-1 CPU 2 reads the image from the memory and copies it

Thread-0 CPU 1 reads the copied image
Thread-0 Transaction OK: read 1 at address 10
.
.
.
Thread-0 Transaction OK: read 9 at address 18
Thread-0 Transaction OK: read 10 at address 19

Thread-0 CPU 1 modify the initial image
Thread-0 Transaction OK: wrote 2 at address 0
Thread-0 Transaction OK: wrote 4 at address 1
.
.
.
Thread-0 Transaction OK: wrote 18 at address 8
Thread-0 Transaction OK: wrote 20 at address 9

Thread-4 The Timer: I had sent the interrupt

Thread-1 CPU 2 reads the modified image
Thread-1 Transaction OK: read 2 at address 0
Thread-1 Transaction OK: read 4 at address 1
.
.
.
Thread-1 Transaction OK: read 18 at address 8
Thread-1 Transaction OK: read 20 at address 9

Nabila Abdessaied Master Thesis 47/67

Chapter 5. Case study

48/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Chapter 6

Conclusion

Contents
6.1 Results and Discussion . 49

6.2 Prospects . 50

6.1 Results and Discussion

In this work, we present an alternative to the SystemC library used for the rapid prototyping of the
systems on a chip in order to validate and verify the embedded software before the real hardware would
be ready.

Throughout the period of this thesis, we tried and we succeed to prove the possibility to write TL
models with a different execution model instead of SystemC. This library was built using the Java pro-
gramming language because of its capability to deal with multi tasking in preemptive way which allowed
us to see another mode of execution of transactional models different from SystemC.

JTLM helped us to make the difference between the SystemC properties and the TLM properties.
Because they are used to write TL models with SystemC, and since SystemC has a cooperative scheduler,
programmers attributed the cooperation characteristic to TLM. Now, after the design of JTLM, we can say
that transactional models could be written with a cooperative scheduler or with a preemptive scheduler
depending to the model of execution used to represent it.

After the construction of the JTLM library, we implemented several tests in different ways to validate
and test the good functioning of this model. We used a Makefile to repeat the test many times. Then we
were interested to solve some SystemC problems such as the polling problem and adding the duration to
tasks. We have not arrived to find a solution using JTLM to resolve the polling problem without adding
the wait of time into the polling loop; it seems to us it is a more fundamental question. For the second
issue, unlike SystemC, JTLM has included the timed tasks.

49

Chapter 6. Conclusion

6.2 Prospects
As prospects to this work, JTLM open the possibility to be extended to satisfy better the programmers’

needs such as to include large number of data types to support modeling of Hardware and adding an APIs
for transaction-based verification.

JTLM does not support transaction with a big granularity; a future work could be done so JTLM can
provide this feature.

It dues to the JTLM time manager algorithm that the problem of the polling exist, as the figure 6.1
shows, the polling has an infinite branch while the status of the program progress remains in its place, To
solve this problem, we suggest to remove this infinite branch from the execution tree till the value of the
polling loop changes.

 x==0

x!=0
x!=0

Polling

Polling

 x==0

Figure 6.1: The execution tree of a polling process

50/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Appendix A

Utilities description

A.1 Bus

General description

CPU LCD

Memory

BUS

The Bus is included in the JTLM development kit as a library
component. The bus is used to decoding addresses routing trans-
action between components. Our Bus component can be param-
eterized and is though to be quite generic.
The source code is available at jtlm/util/bus.

Functional description
The Bus component is used as a communication channel be-
tween
components.

The Bus has a generic number of master and slave ports, nor-
mally if there are only one bus in a platform, the number of master ports of the bus should be the same as
the global number of the slave ports of the platform components, and the number of its slave ports should
equal to the global number of the master ports of all the components existing in the platform.

A typical transaction transfer proceeds as follows:

1. Component sends transaction through the bus to the target component.

2. The Bus decodes its address and determines the target components, then it routes the transaction to
this component.

3. the target component receives the transaction.

51

Appendix A. Utilities description

A.2 Memory

General description
A Memory is included in the JTLM development kit as a library component. Memory peripherals are used
for data storage. The source code is available at jtlm/util/Memory.

CPU

BUS

Memory

Functional description
Memory is a component that models the behavior of an actual memory.
The Memory component allows data access, storage or update. It has one slave port connected to the bus.

52/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

A.3. LCDC

A.3 LCDC

General description

CPU LCD

Memory

BUS

The LCD controller is included in the JTLM development kit as
a library component. The LCDC is a master-slave component
which connects to the Bus. Our LCD component can be param-
eterized and is though to be quite generic. The source code is
available at jtlm/util/lcdc.

Inputs/Outputs
The LCDC provides the following inputs/outputs:

1. A Slave port for configuration.

2. A Master port used to read data from memory.

Functional description
The LCD component is used to display videos or data from memory. A typical LCD transfer proceeds as
follows:

1. Software configures the LCD to display data by writing into the START_REG register.

2. Software writes in the start address register. Then LCD begins his work.

3. The LCDC performs read accesses to an external memory device holding the video buffer through
its master interface. Video data are supposed to be stored contiguously in memory.

Register map

Offset Name Type Width value Description
0 LCD. ADDR_REG rw 32 0x00000000 Start address register
1 LCD. START_REG rw 32 0x00000000 Start register

Registers Reference
Start address register (ADDR_REG)

The start address register holds the base address of the video memory buffer as accessed on the AMBA
master interface. The value should not be modified while the controller is operating.

Nabila Abdessaied Master Thesis 53/67

Appendix A. Utilities description

Start register (START_REG)

The start register is used to trigger the beginning of controller operation. Writing 0x00000001 into the
register starts the LCDC.

54/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

A.4. ITC: Interrupt Controller

A.4 ITC: Interrupt Controller

General description

CPU

BUS

Memory

ITC

LCD

An ITC is included in the JTLM development kit as a library
component. Some components want to send interrupts but they
do not have interrupt outputs, so the ITC was created to let these
components send interruption by configuring it. Our ITC Com-
ponent can be parameterized and is though to be quite generic.
The source code is available at jtlm/util/ITC.

Functional description
The ITC component is used to send interrupts to the peripherals.
When peripheral needs to send interrupt and it does not pos-
sess an interrupt output, it uses the ITC to send an interrupt to
a specific component. The ITC has one slave port for fixing the
address of interrupt port.

A typical ITC task proceeds as follows:

1. Peripheral configures the ITC to send interrupt to another peripheral by writing to the addressPort
register to specify which interrupt port should send interrupt.

2. The ITC then begins sending interrupt to all the peripherals connected to his interrupt port.

3. All the peripherals connected with the interrupt port receive the interrupt.

Register map

Offset Name r/w Description
0 ITC. addressPort rw address of the interrupt port

Nabila Abdessaied Master Thesis 55/67

Appendix A. Utilities description

A.5 DMA Controller

General description
A DMA controller is included in the JTLM development kit as
a library component. Direct memory access (DMA) peripher-
als allow for efficient bulk data transfer between peripherals and
memory by removing the CPU from the data path. The source
code is available at jtlm/util/dma.

Functional description
The DMA component is used to perform data transfers between
two memory regions, between a memory and a peripheral, or be-
tween two peripherals. It allows data transfers of fixed or vari-
able length without intervention from the CPU. The DMA has one master port and one slave port for
controlling the DMA.

A typical DMA transfer proceeds as follows:

1. Software configures the DMA to transfer data by writing to the control registers.

2. Software enables the DMA. It then begins transferring data without additional intervention from
the CPU.

3. The DMA master port reads data from the read address, which may be a memory or a peripheral,
then writes the data to the destination address (a memory or peripheral). A shallow first-in first-out
(FIFO) may buffer data between the read and the write.

4. The DMA transfer ends when a specified number of bytes are transferred. The DMA may issue an
interrupt request at the end of the transfer.

5. During or after the transfer, software may determine if a transfer is in progress, or if the transfer
ended by examining the DMA’s status register.

Register map

Offset Name r/w Description
0 dma.status rw Status of the transfer
1 dma.source rw Source start address
2 dma.dest rw Destination start address
3 dma.length rw Transfer size

The status register indicates particular conditions inside the DMA. The status register can be read
at any time by software. Reading zero means the DMA is idle, i. e. transfer finished or no transfer in
progress. Any other value means the DMA is busy. Writing zero stops the current transfer if any. Writing
any other value starts a transfer (error if transfer in progress).

56/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

A.5. DMA Controller

Interrupts
The DMA has a single IRQ output that is sent when the transfer is finished. A typical DMA interrupt
handler reads the length register to check if the transfer was completed successfully.

Nabila Abdessaied Master Thesis 57/67

Appendix A. Utilities description

A.6 Timer

General description

Timer

BUS

Memory

LCD

CPU

The Timer is a slave component which connects to the
Bus. It is included in the JTLM development kit as
a library component. The timer is used to send in-
terrupt each period of time specified in its register PE-
RIOD.
The source code is available at jtlm/util/Timer.

Inputs/Outputs
The Timer provides the following inputs/outputs:

• Slave port for configuration.

• Interrupt port.

Functional description
The Timer component is used to send interrupt to a peripheral each period of time.

A typical Timer transfer proceeds as follows:

1. Peripheral configures the Timer to send interrupt by writing a value T into the PERIOD register.

2. If the value T was not null, the Timer starts his work, which consist of raising an interrupt every
T milliseconds if the PERIOD register value was not modified (the first would be sent after T ms
without verifying the value of the register ACK while the others would be sent if the interrupt was
acknowledged).

3. Timer reset the ACK register value to 1 after raising each interrupt.

4. After receiving interrupt, peripheral write a value into the ACK register to acknowledge receipt of
the interrupt.

5. If the Peripheral changes the PERIOD register value to T1, the timer will stop his current interrupts
raising program and start a new one every T1 milliseconds.

6. If the Peripheral writes into the PERIOD register the value 0 the timer will stop his work.

Register map
• The PERIOD register indicates the period of raising interrupts.

- Writing any value in the PERIOD register will reset the ACK register to zero and will change the
raising interrupt period.
- Writing zero stops sending interrupts.
- Reading PERIOD register dues the period.

58/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

A.6. Timer

Offset Name r/w Description
0 Timer.PERIOD rw period of interrupt transmission
1 Timer.ACK rw Source start address

• The ACK register indicates if the peripheral has send an acknowledgment when it receives the
interrupt or not.
- Writing of any value in the registry ACK acknowledge the interrupt.
- Reading of the ACK register returns 1 if the interrupt has not yet been acknowledged.

Nabila Abdessaied Master Thesis 59/67

Appendix A. Utilities description

60/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Appendix B

MakeFile

EXTRA_PROGRAMS =
MainPollingPlooling
MainPollingInterruption
MainInterruptionInterruption
MaintestDMA
TestDMAgeneric
MaintestTimeEvent
TimeEventGeneric
MaintestTimeInterrupt
TimeInterruptionGeneric
MaintestTimeInterruptEvent
TimeInterruptionEventGeneric
MaintestTimePolling
MaintestTimePollingCorrection
TimePollingGeneric
MaintestTimeConsume
MaintestTimeEventConsume
MaintestTimeEventInterruptionConsume
MaintestTimeInterruptTimer
MaintestTimeInterruptTimer2
MaintestCaseStudy

iterations = 5

all: compile

compile:
@ant build

clean:
@ant cleanall
rm -f *.aux *.log *.out *.toc *~ *.blg

61

Appendix B. MakeFile

rm -r bin

createReferences:compile
@echo -e Creating references ...’\n’
@for prog in $(EXTRA_PROGRAMS) ; do \

ant $$prog > reference$$prog ;\
done ;
@echo Finished.

runall:compile
@echo -e Running ...’\n’
@for prog in $(EXTRA_PROGRAMS) ; do \

ant $$prog ;\
done ;
@echo -e ’\n’ All runs passed.

test:compile
@echo Running test suite...
@for prog in $(EXTRA_PROGRAMS) ; do \

ant $$prog > ref;
diff -rupN ./reference$$prog ref ; \

done ;
@echo All tests passed.

multipletest :compile
@echo -e Running test suite... ’\n’
@for prog in $(EXTRA_PROGRAMS) ; do \

echo -e PROGRAM NAME : $$prog ’\n’; \
for ((j=0;j<$(iterations);j+=1)); do \

echo Running test number $$j; \
ant $$prog > ref;
diff -rupN ./reference$$prog ref ; \

done ; \
echo -e ’\n’ " ************* "’\n’ ;\

done ;
@echo All tests passed

MainInterruptionInterruption:compile
@ant MainInterruptionInterruption

MainPollingPlooling:compile
@ant MainPollingPlooling

62/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

MainPollingInterruption:compile
@ant MainPollingInterruption

MaintestDMA :compile
@ant MaintestDMA

TestDMAgeneric :compile
@ant TestDMAgeneric

MaintestTimeEvent :compile
@ant MaintestTimeEvent

TimeEventGeneric :compile
@ant TimeEventGeneric

MaintestTimeInterrupt :compile
@ant MaintestTimeInterrupt

TimeInterruptionGeneric :compile
@ant TimeInterruptionGeneric

MaintestTimeInterruptEvent :compile
@ant MaintestTimeInterruptEvent

TimeInterruptionEventGeneric :compile
@ant TimeInterruptionEventGeneric

MaintestTimePolling :compile
@ant MaintestTimePolling

MaintestTimePollingCorrection :compile
@ant MaintestTimePollingCorrection

TimePollingGeneric :compile
@ant TimePollingGeneric

MaintestTimeConsume :compile
@ant MaintestTimeConsume

MaintestTimeEventConsume :compile
@ant MaintestTimeEventConsume

MaintestTimeConsumeEvent :compile
@ant MaintestTimeEventInterruptionConsume

Nabila Abdessaied Master Thesis 63/67

Appendix B. MakeFile

MaintestTimeInterruptTimer :compile
@ant MaintestTimeInterruptTimer

MaintestTimeInterruptTimer2 :compile
@ant MaintestTimeInterruptTimer2

MaintestCaseStudy :compile
@ant MaintestCaseStudy

64/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Bibliography

[AGH05] K. Arnold, J. Gosling, and D. Holmes. Java (TM) Programming Language, The. Addison-
Wesley Professional, 2005.

[AHT+] A. Adya, J. Howell, M. Theimer, W.J. Bolosky, and J.R. Douceur. Cooperative task man-
agement without manual stack management.

[Bou07] Yussef Bouzouzou. Acceleration des simulations de modeles de systemes sur puce au niveau
transactionnel. 2007.

[BPL01] A. Bakshi, V. K. Prasanna, and A. Ledeczi. Milan: A model based integrated simulation
framework for design of embedded systems. In LCTES ’01: Proceedings of the ACM SIG-
PLAN workshop on Languages, compilers and tools for embedded systems, pages 82–93,
New York, NY, USA, 2001. ACM.

[BWH+03] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno, Claudio Passerone, and
Alberto Sangiovanni-Vincentelli. Metropolis: An integrated electronic system design envi-
ronment. Computer, 36(4):45–52, 2003.

[CG03] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview. In CODES+ISSS
’03: Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 19–24, New York, NY, USA, 2003. ACM Press.

[Cor08] Jérôme Cornet. Separation of Functional and Non-Functional Aspects in Transactional
Level Models of Systems-on-Chip. PhD thesis, INPG, Grenoble, France, April 2008.

[Fun07] Giovanni Funchal. Comparison of Embedded System Models: From Signals to Transactions.
Master’s thesis, Université Joseph Fourier, 2007.

[Ghe05] F. Ghenassia. Transaction level modeling with systemc: Tlm concepts and applications for
embedded systems. Springer Verlag, 2005.

[Gro02] T. Grotker. System design with SystemC. Kluwer Academic Publishers Norwell, MA, USA,
2002.

[Hel07] Claude Helmstetter. Validation de modèles de systèmes sur puce en présence
d’ordonnancements indéterministes et de temps imprécis. PhD thesis, INPG, Grenoble,
France, 2007.

[Ini06] O.S.C. Initiative. IEEE Standard SystemC Language Reference Manual. IEEE Computer
Society, pages 1666–2005, 2006. http://www.systemc.org/.

65

Bibliography

[Lab09] VERIMAG Research Lab. Verimag web site, 2009.

[LB00] B. Lewis and D.J. Berg. Multithreaded programming with Java technology. Prentice Hall
PTR, 2000.

[LDNA03] Akos Ledeczi, James Davis, Sandeep Neema, and Aditya Agrawal. Modeling methodol-
ogy for integrated simulation of embedded systems. ACM Trans. Model. Comput. Simul.,
13(1):82–103, 2003.

[Lea99] D. Lea. Concurrent Programming in Java.: Design Principles and Patterns. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1999.

[LY99] T. Lindholm and F. Yellin. Java virtual machine specification. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1999.

[Mic08] Sun Microsystems. The Java Tutorials, 1995-2008.

[Moy05] Matthieu Moy. Techniques and Tools for the Verification of Systems-on-a-Chip at the Trans-
action Level. PhD thesis, INPG, Grenoble, France, December 2005.

[MPA05] J. Manson, W. Pugh, and S.V. Adve. The Java memory model. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 378–
391. ACM New York, NY, USA, 2005.

[OW04] S. Oaks and H. Wong. Java threads. O’Reilly Media, Inc., 2004.

[SMMM06] Ludovic Samper, Florence Maraninchi, Laurent Mounier, and Louis Mandel. Glonemo:
global and accurate formal models for the analysis of ad-hoc sensor networks. In InterSense
’06: Proceedings of the first international conference on Integrated internet ad hoc and
sensor networks, page 3, New York, NY, USA, 2006. ACM.

[THG+92] Le T, Soonhoi Ha, Li Ght, Joseph Buck, Edward A. Lee, and David G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping heterogeneous systems, 1992.

66/67 ENISO/Verimag - July 17, 2009 Nabila Abdessaied

Abstract
The work carried out in this document deals with designing a prototype of a transactional simulator

avoiding preconceived ideas and stereotypes of SystemC. We identify the constraints imposed on the im-
plementation of a transactional model in a simulator. We define then a library from Java language for
writing TL models. The mechanism of Java threads is particularly suited for this study. Thus we demon-
strate the ability to model transactional models using a language other than SystemC. Then we observe
the behavior of platforms made with JTLM and we try to solve problems already exist in SystemC using
the new execution model JTLM.

Keywords: System-on-Chip, TLM, Java, JTLM, SystemC.

Résumé
Le travail effectué dans le présent document porte sur la conception d’un prototype de simulateur trans-

actionnel en évitant les idées préconcues et les clichés de SystemC. On identifie les contraintes imposées
sur l’exécution d’un modèle transactionnel par un simulateur. On définit dans une seconde phase une ex-
tension du langage Java pour la modélisation transactionnelle. Le mécanisme de threads du langage Java
est particulièrement adapté pour cette étude. Ainsi on démontre de la possibilité de modéliser des modèles
transactionnel en utilisant un langage autre que SystemC. Après on s’intéresse à voir le comportement des
platform réalisées avec JTLM et on essaye de résoudre des problèmes existant en SystemC en utilisant le
nouvel modèle d’exécution JTLM.

Mots Clés: Systèmes sur puce, TLM, Java, JTLM, SystemC.

	Introduction
	Background
	Working context
	Motivation
	Objectives
	Approach
	Expected results
	Faithfulness
	Related works
	SystemC
	Metropolis
	SpecC
	Milan
	Glonemo
	Ptolemy

	Overview of Thesis

	General context
	The need for higher abstractions
	TLM
	Common concepts
	Various TLM applications

	TLM with SystemC
	Java
	What is a thread?

	Problem description
	Introduction
	SystemC influences
	Our approach
	Parallelism
	Deadlock
	Livelock
	Threads Interference
	Memory Consistency Errors

	Synchronization
	The keyword synchronized
	Reentrant Synchronization
	The wait and notify

	Contributions
	Introduction to JTLM
	Core language
	Components
	Transaction Ports
	Interrupt port
	Behaviors and Methods
	Constructor
	Debugging and tracing support
	Timed tasks in JTLM
	Time Manager
	Simulation

	Exception Handling
	Utilities and generic components
	Instantiation
	Evaluation
	Components test
	Generic components test
	Synchronization test
	Timed tasks test
	Time manager test

	Implementation choices
	JTLM limits

	Case study
	Introduction
	Case representation
	JTLM Implementation
	Simulation outputs

	Conclusion
	Results and Discussion
	Prospects

	Appendixes
	Utilities description
	Bus
	Memory
	LCDC
	ITC: Interrupt Controller
	DMA Controller
	Timer

	MakeFile
	Bibliography

