
Static Analysis by Path
Focusing

Julien Henry

M2R Internship Report

2011

e-mail:
Julien.Henry@imag.fr

Tutors:
David Monniaux - Matthieu Moy

Unité Mixte de Recherche 5104 CNRS - Grenoble-INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

file:Julien.Henry@imag.fr

Static Analysis by Path Focusing

Julien Henry

Grenoble-INP

2011

Abstract

Program verification aims at statically discovering properties on programs, such
as the values that can take the different variables during execution. Abstract
Interpretation is a technique that computes an over-approximation of the set of
these values, since it is impossible to compute the real set in general. This report
takes place in the many attempts to improve the precision of static Analysis by
Abstract Interpretation. It proposes a technique that takes benefit of SMT-solving
to obtain more precise results at reasonable cost.

Résumé

La vérification de programme consiste à découvrir statiquement des propriétés sur
des programmes, comme l’ensemble des valeurs que peuvent prendre les variables
durant l’exécution. L’Interprétation Abstraite est une technique permettant de
calculer une approximation de cet ensemble, le véritable ensemble étant impossible
à calculer en général. Ce rapport s’inscrit dans la lignée des travaux visant à
améliorer la précision de l’analyse par interprétation abstraite, et propose une
technique tirant parti du SMT-solving pour obtenir de meilleurs résultats à un
coût raisonnable.

Keywords: Static Program Analysis, Verification, Abstract Interpretation, Invariant Gener-
ation, Path Focusing, SMT-Solving

Mots Clés: Analyse Statique de Programmes, Vérification, Interprétation Abstraite, Généra-
tion d’invariants, Découverte de Chemins, SMT-Solving

Tutors: David Monniaux - Matthieu Moy

Acknowledgements

I would like to thank my two tutors, David Monniaux and Matthieu Moy, for their
direction of my master thesis, and for their help everytime I needed it. I thank
them for all their explanations that clearified lots of my questions, and for their
advices for the redaction of this report.
I also thank Laure Gonnord for inviting me to present my work at the GDR GPL
2011.
Finally, I thank all the Synchrone team and the Verimag laboratory for their
cheerful welcome.

Julien Henry Static Analysis by Path Focusing

Contents

1 Introduction 4

2 Abstract Interpretation: state of the art 6
2.1 Introductive example . 6
2.2 Abstract Interpretation . 7

2.2.1 Abstraction of the domain . 7
2.2.2 Termination . 8

2.3 Linear Relation Analysis . 9
2.3.1 Convex polyhedra . 9
2.3.2 Program Analysis . 10
2.3.3 Precision of the analysis . 11

2.4 Example . 13

3 Path Focusing technique 15
3.1 Lookahead Widening . 15
3.2 Path Focusing . 16

3.2.1 Multigraph . 16
3.2.2 Choice of the focus paths . 19
3.2.3 Algorithm . 22
3.2.4 Precision of the analysis . 22
3.2.5 Example . 22
3.2.6 Disjunctive invariants . 25
3.2.7 Removing identity transitions . 27

3.3 Efficiency comparison: example . 27

4 Implementation 29
4.1 Infrastructure . 29

4.1.1 LLVM internal representation . 29
4.1.2 Transformation passes . 30
4.1.3 Drawbacks . 31

4.2 Abstract domain representation . 31
4.2.1 Attachment to LLVM Internal Representation 31
4.2.2 Dimensions of the abstract values . 32
4.2.3 Diseq comparisons . 33

4.3 Unrolling loops . 33
4.4 SMT-solving . 35

2/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

4.5 Limitations . 35
4.6 Example . 35
4.7 Experiments . 36

4.7.1 Benchmarks . 36
4.7.2 Analysis of real code . 37

5 Future Work 41
5.1 Arithmetic Overflows . 41
5.2 Alias analysis . 42
5.3 Combining Lookahead Widening and Path Focusing 42

6 Conclusion 43

Bibliography 47

Appendices 48
A Generated ρ formula . 49
B Example of loss of precision in Path Focusing 50

M2R Internship Report 3/50

Julien Henry Static Analysis by Path Focusing

Chapter 1

Introduction

Static analysis aims at automatically computing properties on programs, such as the possible
values of their variables during execution. This allows to show for instance that a program will
not overflow, will not divide by zero, and to compute loop invariants. . . The main applications
of static analysis are compile-time optimisations, and the proof of safety properties in critical
systems, such as avionics.

Abstract Interpretation is a general framework used for static analysis. Linear Rela-
tion Analysis (LRA) is a direct application of this framework, that computes an upper-
approximation of the set of the possible states of a numerical program. The state of a program
is defined by the position of the program counter in the code, and the current values of the
different numerical variables. The set of possible states is expressed as a least fixpoint of a set
of equations defining the semantics of the program.

A fundamental fact in static analysis is that it cannot be perfectly precise: either the
analysis is unsound (the set of possible states we compute does not contain all the possible
states during execution), or is incomplete (the computed set contains states that can never be
reached during execution). Abstract Interpretation is sound but incomplete, since it always
computes an upper-approximation of the set of possible states. The challenge is then to be as
precise as possible, so that we can prove properties about the program.

Linear Relation Analysis over-approximates the set of possible states as a convex poly-
hedron where the dimensions are the numerical variables of the program. Instead of convex
polyhedra, one could choose intervals, octagons, etc, that are subclasses of the class of convex
polyhedra. The fixpoint equation is computed iteratively; that is, successive approximations
of the set of reachable states are computed until they converge to a fixpoint.

Satisfiability Modulo Theory (SMT) solving is a technique for deciding the satisfiability
of a logic formula containing Boolean predicates and elements of a theory, such as linear
arithmetic relations between integers. In this report, we present a novel refinement of the
Abstract Interpretation technique, that uses SMT-solving to guide the fixpoint iterations, so
that it temporarily focuses on a selected path in the control flow graph (the graph expressing
the semantics of the program), in order to obtain more precise results at reasonable cost.

Contribution and Organisation

In this report we make the following contributions:

• We present a new technique, refered as Path Focusing, that takes benefits of the recent

4/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

advances in the field of SMT-solving to improve precision of static analysis by abstract
interpretation. We also present an adaptation of this technique to compute disjunctive
invariants.

• We present an implementation of this technique into a small analyser, as well as the
implementation of another technique proposed in [GR06], such that we can compare
precision and cost of these two methods. This implementation has been tested on a
wide range of programs, including small test-cases as well as real-life programs.

The report is organised as follows: Part 2 introduces the state of the art in Abstract
Interpretation and more specifically in Linear Relation Analysis. Part 3 describes the two
techniques Lookahead Widening and Path Focusing. Part 4 presents the implementation of
these two techniques into an analyser, and the experimental results we obtained. Finally, Part
5 introduces some directions to explore.

M2R Internship Report 5/50

Julien Henry Static Analysis by Path Focusing

Chapter 2

Abstract Interpretation: state of the
art

2.1 Introductive example

We consider the following program:

x = 0;
while (x < 100) {

x++;
}

p0

p1

p2

p3

x← 0

x ≥ 100

x < 100 x← x + 1

Static analysis is aimed at discovering some properties about programs. In this example,
we would like to compute the set of possible values for the variable x during execution. The
graph at the right side represents the program. The nodes of the graph are called program
points. We can compute for instance the set Y1 of values for x at point p1. This set depends
on the sets Y0 and Y2, since there are two edges arriving at p1: the first one comes from p0,
and the second one from p2.

There is a relation between Y1 and Y2 :

Y1 =
{
x | x = 0 ∨ ∃x′ ∈ Y2, x = x′ + 1

}
Y2 = {x | x ∈ Y1 ∧ x < 100}

We see that Y1 and Y2 can be computed step by step: we start with Y1 = Y2 = ∅. Then, we
add iteratively new elements in the sets.

• We see that 0 ∈ Y1: Y1 = {0}.

• Y1 contains 0. So, Y2 also contains 0 by definition: Y2 = {0}.

• Y2 contains 0, so 0 + 1 = 1 is in Y1: Y1 = {0, 1}.

• Again, we find Y2 = {0, 1}.

6/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

• Y2 now contains 1, so 1 + 1 = 2 ∈ Y1: Y1 = {0, 1, 2}.

• We continue the iteration until we find no more new elements in the sets. . .

This computation is a fixpoint computation: the different sets are updated until we find
no more elements. These sets are strictly increasing (we always add new elements in the
sets), and if we find no new elements to add, that means we have reached a limit. Abstract
Interpretation gives a general framework to do such kind of fixpoint computation.

2.2 Abstract Interpretation

Abstract Interpretation [CC77, CC92a] is a general method for finding approximate solutions
of fixpoint equations. This method is used for program analysis, since analysing a program
often comes down to solving fixpoint equations, because of the loops and recursive procedures.

However, most of the time, the solution of this fixpoint equation must be computed in a
complex domain: in program analysis, this could be the state space of the program, i.e the
set of all possible states of the program. This computation quickly becomes too costly or does
not terminate.

2.2.1 Abstraction of the domain

Abstract Interpretation proposes to represent more efficiently the elements of this complex
domain C of concrete values, by choosing a simpler domain A called abstract domain.

A concretization function γ maps the elements of A to elements of C:

γ : A −→ C

x 7−→ γ(x)

The concrete semantics is a function Φ : C → C. In the introductive example, this function
Φ is the following:

Φ


Y1

Y2

Y3

Y4

 =


x | x ∈ R
x | x = 0 ∨ ∃ x′ ∈ Y2, x = x′ + 1
x | x ∈ Y1 ∧ x < 100
x | x ∈ Y1 ∧ x ≥ 100


One can choose an abstract semantics Φ# : A→ A satisfying this condition:

∀x ∈ A,Φ ◦ γ(x) ⊆C γ ◦ Φ#(x)

Φ# is then an abstraction of Φ, that gives an upper approximation of γ(x) when composed
with γ.

Proposition 2.2.1 Suppose C is a complete lattice, and Φ is increasing from C to C. Each
x ∈ A, satisfying the condition Φ#(x) ⊆ x, is an abstraction of the least fixpoint of Φ.

Indeed, if Φ#(x) ⊆ x, then Φ ◦ γ(x) ⊆ γ ◦ Φ#(x) ⊆ γ(x). Abstract interpretation aims
at computing such an x. It computes the stationary limit of an ascending sequence (xi)i≥0

defined by the induction:

M2R Internship Report 7/50

Julien Henry Static Analysis by Path Focusing

[
x0 = ⊥
xn+1 = xn t Φ#(xn)

where ⊥ is the least element of A, and t is an operator verifying x1 ∪ x2 ⊆ x1 t x2 and
x1 t x2 ∈ A.

2.2.2 Termination

Termination of the fixpoint computation has to be guaranteed. This termination depends
on the properties of the abstract domain: this one should be finite, of finite height, or more
generally satisfy the ascending chain condition, meaning that there does not exist any sequence
(xi)i≥0 of elements of the abstract domain A such that ∀i ≥ 0, xi <A xi+1. Indeed, otherwise,
the least fixpoint computation could run indefinitely, since the ascending sequence of elements
of A is infinite, and the fixpoint in never reached.

Many of the domains that are used for program analysis, including those of intervals and
convex polyhedra, do not satisfy this ascending chain condition. To ensure convergence in this
case, another approximation is performed: a new operator is defined, called widening operator,
that extrapolates the limit of a sequence of abstract values [CC77, CC92b]. This widening
operator is usually noted O : A×A→ A, and satisfies the following properties:

• ∀x1, x2 ∈ A, x1 ≤A x1 Ox2 and x2 ≤A x1 Ox2. This guarantees the correctness of the
result. Most of the time, this operator is only defined for x1 ≤ x2. In this case, we use
x1 O(x1 t x2) instead.

• For any increasing sequence x0 ≤A x1 ≤A . . . , the sequence defined by[
x′0 = x0

x′i+1 = x′i O xi+1, ∀i ≥ 0

is not strictly increasing. Then, applying the widening operator when the sequence may
increase indefinitely makes the computation converge to a fixpoint in finite time.

[Mon09] gives a more general definition of the widening operator.
The least fixpoint of a function Φ# is noted x. Instead of computing this least fixpoint,

one compute an upper approximation of it, by computing the following ascending sequence:[
x′0 = ⊥
x′i+1 = x′i O (x′i t Φ#(x′i)), ∀i ≥ 0

which converges towards x̃, where x̃ ≥A x.
x̃ is a correct upper approximation of the least fixpoint of Φ#, and the classical technique

is to regain some precision lost by the widening operator by computing a descending sequence:[
x′′0 = x̃
x′′i+1 = Φ#(x′′i), ∀i ≥ 0

Each element of this descending sequence is still an upper approximation of the least
fixpoint x. So, this sequence often allows to find approximate least fixpoints that are more
precise than the one obtained after the ascending sequence.

8/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

2.3 Linear Relation Analysis

Linear Relation Analysis [CH78] (also denoted LRA) is a direct application of Abstract In-
terpretation. It is aimed at computing an upper approximation of the reachable states of
a program containing numerical variables. The set of possible assignments for the numeri-
cal variables is abstracted by a convex polyhedron. This technique discovers invariant linear
relations between the numerical variables at each control point of a program.

This technique is:

• sound : Each possible assignment for the variables in the real program is included in the
abstract value.

• incomplete: The abstract value also contains assignments for the variables that are not
possible in the real program.

2.3.1 Convex polyhedra

Let x1, x2, . . . , xn be the numerical variables of a program (assume they are all in Q). A state
of the program is then a point −→x ∈ Qn.

In Qn, the set of polyhedra ordered by inclusion is a lattice. The least element is ⊥ (the
empty polyhedron), and the greatest element is > (the whole Qn).

The classical union of two convex polyhedra may not be a convex polyhedron. Therefore,
we use the convex hull operation, noted t, for joining polyhedra. If X1, X2 are two convex
polyhedra, X1 tX2 is the smallest convex polyhedron containing both X1 and X2.

Since the domain of convex polyhedra is of infinite height, a widening operator is defined
to ensure convergence of the technique. Intuitively, the polyhedron P OQ is obtained after
removing from the system of linear equations defining P all the inequalities that are not
satisfied by Q (the actual definition is somewhat more involved, see e.g. [BHZ05]). For
instance, if P = {(x, y) | 0 ≤ x ≤ y ≤ 1} and Q = {(x, y) | 0 ≤ x ≤ y ≤ 2}, then the result of
the widening operator will be P OQ = {(x, y) | 0 ≤ x ≤ y}.

There have been various work proposing a definition or a refinement of the widening
operator in LRA [CH78, Hal79, HPR97, BCC+03], in order to fight against loss of precision:

• Delayed widening : instead of applying widening at the first iteration of the analysis, one
apply it after a number n of iterations. During the n− 1 first iterations, only a convex
hull is computed. In some cases, delaying the widening operation is more precise. The
algorithm still terminates, since widening is applied within a finite time after n iterations.
In most of the cases, n can be chosen equal to 2.

• Widening with threshold (or “up to”): In some cases, instead of brutally applying the
widening operator, a fixed set of linear inequalities T can be chosen, and the widening
operator OT is defined as follows: P OT Q is the intersection of P OQ with all the
inequalities in T satisfied by both P and Q.

For instance, consider the program:

while (x <= 50) {
x++;
y++;

}

M2R Internship Report 9/50

Julien Henry Static Analysis by Path Focusing

If P = {(x, y) | 0 ≤ x ≤ y ≤ 1}, after one iteration of the loop, we have
Q = {(x, y) | 0 ≤ x ≤ y ≤ 2}. Instead of a classic widening (which gives the result
P OQ = {(x, y) | 0 ≤ x ≤ y}), a widening with the threshold x ≤ 50 gives P OT Q =
{(x, y) | 0 ≤ x ≤ y ≤ 50}. In such cases, widening with threshold helps to find better
invariants.

2.3.2 Program Analysis

Throughout the report, a program will be represented by a control flow graph:

• P is a finite set of control points.

• Ip is the (possibly empty) set of initial values for each control point p ∈ P . For an initial
control point p, i.e a starting point of the program, Ip is not empty. It is empty in the
other case.

• E ⊆ P × P is a set of directed edges. Each edge e ∈ E has a semantics τe : P(Qn) →
P(Qn), P(Qn) being the set of possible values of −→x . τe maps a set of states before the
transition to the set of states after the transition.

x = 0;
y = 0;
while (true) {

if (x <= 50)
y++;

else
y--;

if (y < 0) break;
x++;

}

p0

p1

p2 p3

p4

p5

p6p7

x, y ← 0

x ≤ 50 x ≥ 51

y ← y + 1 y ← y − 1

y ≥ 0
y ≤ −1

x← x + 1

Figure 2.1: Example of program, and its associated control flow graph. This program comes
from [GR06].

To each state p ∈ P of the control flow graph, we associate an abstract value Xp ∈ D, D
being in our case the domain of convex polyhedra over Qn. Since the exact operation τ may
not be expressible in the abstract domain, we abstract it into τ# such that ∀X ∈ D, τ(X) ⊆
τ#(X).

The computation is aimed at finding a solution for this system of abstract semantic in-
equalities: [

∀p ∈ P, Ip ⊆ Xp

∀(p′, p) ∈ E, τ#
(p′,p)(Xp′) ⊆ Xp

10/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

pXp

p′Xp′

The function Φ# previously described is the following:

Φ#


...
Xp
...

 =


...

Ip t
⊔

(p′,p)∈E

τ#(Xp′)

...


The fixpoint computation algorithm consists in replacing iteratively each Xp by its value

on the right hand side, until convergence.
In the case of an abstract domain with infinite ascending sequence, we use the previously

defined widening operator:


...
Xp
...

←−


...

XpO

Ip t ⊔
(p′,p)∈E

τ#(Xp′)


...


After a finite number of steps, the computation has reached the fixpoint and the value

Xp at the end gives various linear relations between the different numerical variables of the
program at the control point p.

2.3.3 Precision of the analysis

In order to guarantee the termination of the computation, there is no need to apply the
widening operator at each control point p ∈ P . It is sufficient to apply it on a subset of
P , called Pw, such that removing the nodes of Pw disconnects every cycles. For instance, in
structured programs, Pw can be chosen as the set of the loop headers.

Iteration strategies

There exist several iteration strategies for computing the fixpoint: whatever order we choose
for updating the different Xp, p ∈ P , the result at the end of the analysis is correct. Yet,
the precision of the result and the time before convergence can be very different. There have
been some work to find efficient iteration strategies [Bou92], such as first stabilising innermost
loops, or stabilising strongly connected components of the graph.

M2R Internship Report 11/50

Julien Henry Static Analysis by Path Focusing

Sources of imprecision

Linear Relation Analysis is sound but incomplete: there is loss of precision during the com-
putation, due to various reasons:

1. Since an abstract domain is used to represent the set of possible states, such as the
domain of convex polyhedra, there is an upper approximation of the set of possible
states to the smallest convex polyhedron including this set. This loss of precision is
unavoidable. Still, there are techniques proposing to compute disjunctive invariants
[GZ10] to limit this upper approximation: at each program point, a union of convex
polyhedra is computed instead of a single one.

2. The widening operator, used to ensure convergence of the technique, also induces a loss
of precision. The classical technique is then to compute narrowing iterations, which
often recover some precision.

For instance, considering the program:

for (int i=0; i < 100; i++) {
}

The analysis starts with i = 0. After one iteration, i ∈ [0, 1], then i ∈ [0, 2] after the
second iteration. . . . After a widening operation, the result becomes i ∈ [0,+∞], which
is an invariant, but very imprecise. We can do a new iteration, with i ∈ [0,+∞] at the
beginning of the loop, and we find that the values for i at the next step are in [0, 100].
This is still an invariant, but much better. We can repeat such iterations as long as the
set narrows, and we always obtain a correct over-approximation. In practise, a single
narrowing iteration is enough to recover the precision.

3. There is also a loss of precision each time a point in the control flow graph has several
incoming edges. This is the case for instance for if statements, loops, etc. In this case,
the abstract value of this point is a convex hull of several convex polyhedra, inducing
an upper approximation. Indeed, if X1, X2 are convex polyhedra,

X1 ∪X2 ⊆ X1 tX2

To limit the number of such points, a method could be to expand the control flow graph.
For instance, instead of considering a graph with a sequence of n if-then-else between
points p1 and pn, the n merge node of these if-then-else could be removed, each of
them having two incoming edges, and 2n edges from p1 to pn are added, corresponding
to the different paths through the if-then-else statements. At the end, pn is the only
point with several incoming edges. This graph transformation results in an exponential
blowup, because of the exponential growth of the number of edges in the graph.

Acceleration

Typically, to analyse a program with loops, the approach is to use the widening operator,
for example at the head of the loops, to ensure convergence. Since this induces imprecision,
another technique called acceleration is aimed at computing the exact effect of the loop when
possible [Gon07, GH06]. For instance, for the following program, an invariant could be directly
computed for the loop:

12/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

x = 0;
y = 0;
while (x < N) {

y = y+2;
x = x+5;

}

∃k ≥ 0, x = k
∧ y = 2k
∧ ∀k′, (0 ≤ k′ ≤ k)⇒ (5k′ ≤ N)

Acceleration is possible when the loop is simple enough, and comes to computing the
transitive closure τ+

e of τe, the transition function associated to the loop.

2.4 Example

We apply the linear relation analysis technique over the program in figure 2.1. The set of
control state where we apply widening is {p1}: it is sufficient, since removing p1 cuts all cycles
in the graph.

To each point of the control flow graph {p0, p1, . . . , p7}, we attach a convex polyhedron,
whose dimensions are the numerical variables x, y. For instance, at point p1, the effective
set of possible assignments for (x, y) is the union of the two segments (0, 0) − (51, 51) and
(51, 51) − (102, 0), depicted in figure 2.2.a. Since this union of segments is not a convex
polyhedron, the best result we can wait for after abstraction is the polyhedron depicted in
figure 2.2.b, which is the smallest convex polyhedron containing the two segments.

51

51 102
x

y

p1

a. During execution, (x, y) can only
be in one of these two segments.

51

51 102
x

y

p1

b. The best result we can have is the polyhedron in
hashed lines.

Figure 2.2: Best results we can get from the analysis

We apply abstract interpretation to this program. Let Xi be the polyhedron attached to
point pi. Initially, Xi =⊥ for each i ∈ {1, 7}, and X0 = >. The tabular in figure 2.3 shows
the evolution of the polyhedra during the iterations.

After 3 iterations, we have reached an invariant. We can then apply a narrowing iteration,
that recovers some precision. Finally, at point p1, we see that the obtained result is not as
precise as we could wish (Figure 2.2.b). This is due to the widening operator applied at point
p1, and the convex hull applied at point p4.

M2R Internship Report 13/50

Julien Henry Static Analysis by Path Focusing

Figure 2.3: Polyhedron attached to the different points during iterations.
Iteration X0 tX6 X1 (widening) X4 X6

1
x

y

x

y

1
x

y

1

1

x

y

2

1

1

x

y

x

y

51

50

5150

1
x

y

50

52

1

1

x

y

3

50

52

x

y

x

y

1
x

y

x

y

narrowing
x

y

x

y

1

−1

51
x

y

1

1

x

y

14/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Chapter 3

Path Focusing technique

In this part, we present two techniques that aim to isolate the different paths of the program
to compute more precise invariants.

3.1 Lookahead Widening

In some cases, a loop can have a non-regular behaviour, especially when it has several paths.
Some of these paths can stay impossible for a while, and become possible after a certain
number of iterations. However, the widening operator extrapolates without taking care of
these new possible paths. This can induce a loss of precision, that Lookahead widening tries
to limit.

Lookahead widening [GR06] is a technique that isolates the different loop phases during
the analysis, and stabilises each of these loop phases before proceeding to the next. One only
consider paths that are feasible at the first iteration, and forget the others for a while. The
iterations end when the analysis of these paths has converged. After that, some narrowing
iterations can be computed. Then, paths that become feasible are reinserted into the control
flow graph, and we redo iterations.

In the program already depicted in figure 2.1, there is a loop with two perfectly distinct
phases:

• During the 51 first iterations, both x and y are incremented.

• During the 51 last iterations, x is incremented and y is decremented.

When computing the fixpoint iterations, we only consider a subset of the graph for a while,
until the convergence. In our example:

• Step 1: we only consider the path of the loop that is possible at the first iteration. The
second path is ignored, and will be treated later. We compute the iterations, and we
obtain an first invariant for this part of the graph: at point p1, x = y ∧ x ≥ 0. Then,
we can do some narrowing steps in order to recover some precision, before adding new
paths in the graph. At point p1 after narrowing, x = y ∧ 0 ≤ x ≤ 51.

• Step 2: Now, we add the new paths into our graph if they have become possible. In
our case, the second path of the loop is now possible, because x can be equal to 51, so
we add the path to the graph and compute new iterations until convergence. . . . After

M2R Internship Report 15/50

Julien Henry Static Analysis by Path Focusing

convergence, at point p1, x+ y − 102 ≤ 0∧ x ≤ y. We then apply a narrowing step and
at p1, x+ y − 102 ≤ 0 ∧ x ≤ y ∧ y ≥ 0.

• Step 3: finally, the path from p4 to p7 becomes possible, so we add it into the graph and
compute the invariant for p7.

Finally, at p1, the result we obtain is the best we can have using convex polyhedra (see
Figure 2.2.b). This method allows to find the constraint x + y − 102 ≤ 0, which is not the
case in the classical abstract interpretation technique.

p0

p1

p2 p3

p4

p5

p6p7

x, y ← 0

x ≤ 50 x ≥ 51

y ← y + 1 y ← y − 1

y ≥ 0
y ≤ −1

x← x + 1

Step 1

p0

p1

p2 p3

p4

p5

p6p7

x, y ← 0

x ≤ 50 x ≥ 51

y ← y + 1 y ← y − 1

y ≥ 0
y ≤ −1

x← x + 1

Step 2

Figure 3.1: Dotted arrows are ignored by the analysis.

In the classical abstract interpretation technique, narrowing iterations are computed at
the end of the analysis, when all the fixpoint computation has converged. The interest of this
method is to apply narrowing iterations right after each path computation. This allows to
recover precision before analysing new paths, and then to be more precise.

3.2 Path Focusing

In this section, we present a refinement of Abstract Interpretation, refered as Path Focusing
technique [MG11].

3.2.1 Multigraph

Expanding the control flow graph

The main idea of the technique is to compute the fixpoint iterations on an expanded multigraph
instead of the classical control flow graph. A multigraph is a graph that can have several edges
from a point p to a point q.

Intuitively, expanding the graph comes back to consider independently the different paths
in the control flow graph, and thus to be more precise, because paths that are not feasible will

16/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

be ignored. Additionally, the number of control points with several incoming transitions will
be reduced, so the loss of precision due to the convex hull of polyhedra may be minimised.

p

q

=⇒

p

q

Figure 3.2: One can expand the graph in the left and obtain the associated graph in the right.

Let (P,E) be the control flow graph of the program. First, one chooses a set of widening
points PW ⊆ P , so that the graph obtained after removing these points has no cycle. The
widening operator will be applied at these points. The choice of PW can be guided by [Bou92].
Then, another set PR ⊆ P of nodes is chosen, satisfying the following properties:

• Ip = ∅ for each p ∈ P \ PR, meaning that the initial points of the program are included
in PR.

• PW ⊆ PR: all the widening points are in PR.

The multigraph is then the graph such that:

• each element of PR is a point of the graph.

• for each path p1 → p2 → · · · → pk in the control flow graph, such that p1 ∈ PR, pk ∈ PR,
there is a transition in the multigraph from p1 to pk with the semantics

τp1→···→pk = τpk−1→pk ◦ · · · ◦ τp1→p2

where τpi→pi+1 is the transformation associated to the semantics of pi → pi+1.

As explained in 2.3.3, separating the different possible paths between p and q reduce the
number of points with a join operation, and results in a better precision. This can result in an
exponential blowup in the size of the graph. To avoid it, the technique is to never construct
the multigraph, and only compute parts of it when needed.

Intuitively, choosing a small set PR will result in a better precision, but a higher cost.
Indeed, the number of paths between two points of PR will grow if PR contains few elements.
A good choice for PR requires to find a good compromise between precision and cost of the
technique.

M2R Internship Report 17/50

Julien Henry Static Analysis by Path Focusing

p0

p1

p2 p3

p4

p5

p6p7

x, y ← 0

x ≤ 50 x ≥ 51

y ← y + 1 y ← y − 1

y ≥ 0
y ≤ −1

x← x + 1

=⇒

p0

p1

p7

x, y ← 0

x ≥ 51
y ≤ 0
y ← y − 1

x ≤ 50
y ≥ −1
y ← y + 1
x← x + 1

x ≥ 51
y ≥ 1
y ← y − 1
x← x + 1

x ≤ 50
y ≤ −2
y ← y − 1

Figure 3.3: Example of classical control flow graph, and its associated expanded multigraph,
where PR = {p0, p1, p7}. The path dashed from p1 to p1 in the control flow graph corresponds
to a simple dashed transition in the multigraph, having the same semantics.

Static Single Assignment form

Path focusing technique uses control flow graphs in static single assignment (SSA) form. The
main concept behind the SSA form is that, syntactically, every variable is only being assigned
once.

x = 0;
y = 0;
x = x + 2;
y = x + 1;

=⇒

x.0 = 0;
y.0 = 0;
x.1 = x.0 + 2;
y.1 = x.1 + 1;

Figure 3.4: On the left side, a simple program. On the right side, the same program in SSA
form.

This single definition property cannot be achieved with only the renaming of variables
assigned most than once. In some cases, two distinct definition reach the same use, depending
on the actual execution. To solve this issue, SSA form uses Φ-functions.

A Φ-function is usually inserted at points of the control flow graph that have several incom-
ing transitions, and has the same number of arguments as the point has incoming transitions.
Assuming these transitions are ordered, the Φ-function returns the value of its i-th argument
if the point is reached from the i-th transition.

18/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

if (c) x = 0;
else x = 1;

y = x+1;

=⇒

if (c) x.0 = 0;
else x.1 = 0;

x.2 = Phi (x.0, x.1)
y.0 = x.2 + 1;

This static single assignment form is used for the computation of the focus path.

3.2.2 Choice of the focus paths

Reachability problem

Path focusing technique tries to discover which paths to focus on for the computation of
the fixpoint iterations. Since the multigraph is not constructed explicitly, the different paths
starting and finishing on node in PR are not known. The technique proposes to express the
focus path as the solution of a satisfiability modulo theory (SMT) problem:

“Is there a path starting on control point p, with numerical variables in Xp, that ends on
point q, with variables that are not in Xq?”

This problem could be rephrased as: “Is there a path that starts on p, that can make the
fixpoint computation progress ?” Indeed, the idea is to only focus on paths that make the
abstract values grow.

This is a reachability problem, that can be expressed as an SMT-formula, which is a
logic formula with Boolean variables, and elements of a certain theory T . Depending on the
program, different theories may be used:

• For programs with rational variables, whose operations (instructions, transition condi-
tions. . .) are all linear arithmetic, T can be the theory of linear real arithmetic (LRA).

• For programs with integer variables (with a numerical state space in Zn) T can be the
theory of linear integer arithmetic (LIA).

Although deciding the satisfiability of such formula is NP-complete, there has been much
research on decision procedures [KS08] and there exist nowadays efficient programs, known as
SMT-solvers, that can decide the satisfiability of LRA or LIA formulae. Well-known efficient
SMT-solvers are Z3 [dMB08] and Yices [DdM06].

If the problem has a solution, the SMT-solver will be in position to show which path in
the control flow graph is selected, by giving a model: an assignments of the Boolean variables
so that the formula is true. Among these Boolean variables, some of them are associated to a
transition in the control flow graph:

• if the model has set to true the Boolean variable be associated to the transition e, then
the focus path goes through this transition.

• in the other case, the focus path does not go through this transition.

Some others are associated to the points of the control flow graph. These are called
reachability predicates, and are set to true in the model if and only if the focus path goes
through these points.

M2R Internship Report 19/50

Julien Henry Static Analysis by Path Focusing

Construction of the formula

The first point of the Path Focusing technique is to compute the SMT formula ρ expressing
the semantics of the program. For doing so, all the operations in the program have to be
expressible within the theory we choose. Otherwise, the SMT-solver would not be able to
decide if the formula is sat or not.

Since we want to find a path starting in a control point in PR and ending in a point in
PR, we need to disconnect in the formula the points pi in PR into a source point psi , with only
outgoing transitions, and a destination point pdi , with only incoming transitions.

We construct the ρ formula as follows:

1. Each numerical SSA variable of the control flow graph has its definition in the ρ formula.

2. For each operation in the program, we encode its semantics, expressed in terms of the
Boolean and numerical SSA variables. For instance, if the CFG contains the assignment
x.2 = x.1+1, then we simply add x.2 = x.1+1 to the formula. This equality expression is
noted assign(x.2). assign(x) is defined for each numerical SSA-variable of the program.

3. For each transition (pi, pj) ∈ E, we set ti,j = Bi ∧ c(i, j), where Bi = bsi if pi ∈ PR, or bi
if not. c(i, j) expresses the condition that needs to be true to go through the transition.
For instance, c(i, j) could be of the form x < y, . . . If the transition is non-deterministic,
then c(i, j) = ci,j , where ci,j is a Boolean variable left non-deterministic.

4. For each point pi /∈ PR, we set the reachability predicate bi =
∨

(pj ,pi)∈E

tj,i.

5. For each point pdi ∈ PR, we set the reachability predicate bdi =
∨

(pj ,pi)∈E

tj,i.

6. Numerical Φ-variables assignations have to be expressed in the ρ formula. We simply
use ite (if-then-else) statements, a standard feature of the SMT-Lib format [BST10],
for giving the right value to the variable, depending on the incoming transition we come
from. Generally, for a Φ-variable x = Φ(x1, x2, . . . , xn) in control point pi with the
ordered incoming transitions tj1,i, tj2,i, . . . , tjn,i, we set:

x = ite (tj1,i) (x1) (ite (tj2,i) (x2) (ite . . .))

where ite (c) (x) (y) is equal to x if c = true, else y.

If the point where the Φ-variable x is defined is in PR, x needs to be renamed into x′:

• x will be the value of x at the beginning of the path.

• x′ will be the value of x at the end of the path.

Indeed, there can be uses of x along the path, and these uses refer to the old value of x.

Finally, the ρ formula is the following:

20/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

ρ =
∧

pi /∈PR

bi =
∨

(ph,pi)∈E

th,i

 ∧
 ∧

(pi,pj)∈E

ti,j = bi ∧ c(i, j)

 ∧
∧

pi∈PR

bdi =
∨

(ph,pi)∈E

th,i

 ∧
 ∧

(pi,pj)∈E

ti,j = bsi ∧ c(i, j)

 ∧
∧
x∈Σ

assign(x)

where Σ is the set of the numerical SSA-variables of the program.

p0

p1
x.1 = Φ(x.0, x.1)
y.1 = Φ(y.0, y.4)

p2 p3

p4
y.4 = Φ(y.2, y.3)

p5

p6p7

x.0 = 0
y.0 = 0

x.1 ≤ 50 x.1 ≥ 51

y.2 = y.1 + 1 y.3 = y.1− 1

y.4 ≥ 0y.4 ≤ −1

x.2← x.1 + 1

(a) SSA form of the control flow graph seen
in figure 3.2.1.

=⇒

ps0 ps1 ps7

p2 p3

p4
y.4 = Φ(y.2, y.3)

p5

p6

pd1
x.1′ = Φ(x.0, x.1)
y.1′ = Φ(y.0, y.4)

pd7pd0

x.0 = 0
y.0 = 0

x.1 ≤ 50 x.1 ≥ 51

y.2 = y.1 + 1 y.3 = y.1− 1

y.4 ≥ 0

y.4 ≤ −1

x.2← x.1 + 1

(b) control flow graph (a), such as it is rep-
resented by the SMT formula ρ. Points in
PR have been split into a “source” point and
a “destination” point, and Φ-variables associ-
ated to points in PR have been primed.

Figure 3.5: Example (cont’d)

Expression of the reachability problem

The SMT-formula ρ express the semantics of the program. We still need to create the formula
expressing the reachability problem defined in 3.2.2.

The abstract domain D we use is those of convex polyhedra, so an abstract value X ∈ D
is simply a system of linear inequalities between the different SSA-variables of the program.
Then, it is easy to encode the property x ∈ X into an SMT-formula: one simply writes the
conjunction of these inequalities, with the name of the variables in the vector x.

To compute the reachability starting from point pi, the formula given to the SMT-solver
is:

M2R Internship Report 21/50

Julien Henry Static Analysis by Path Focusing

ρ ∧ bsi ∧
∧

j 6=i, j∈PR

(¬bsj) ∧ xi ∈ Xpi ∧
∨

j/(pi,pj)∈E

(bd2 ∧ ¬(x′j ∈ Xpj))

where xi is the vector of the SSA-variables at the beginning of the path, and x′j is the
vector of the SSA-variable at the end: in this second vector, Φ-variables defined in pj are
primed.

• we search a path starting in pi: bsi has to be true, and all other source points are false.

• the vector xi of the numerical variables at point pi is in our abstract value Xpi

• we search a path arriving in a successor pj of pi, such that the vector of the numerical
variables x′j is not yet included in the current abstract value Xpj of pj . bdj is true, and
the conjunction of the inequalities given by Xpj is false.

3.2.3 Algorithm

The Path Focusing algorithm is described in Algorithm 1. We maintain a set A of points
in PR that need to be treated. We select iteratively one of these control points, and search
for new focus paths starting from this point, until there is no more path to be treated. At
the end of the analysis, some narrowing iterations can be performed in order to recover some
precision.

3.2.4 Precision of the analysis

One can refine the Path-focusing algorithm by treating specially the self loops of the multi-
graph. Indeed, instead of simply applying the widening operator, some narrowing steps could
be performed to regain precision before focusing on another path. This relates to the ideas in
Lookahead widening [GR06].

So, the algorithm has a special case if the path we focus on goes from pi to itself: instead
of computing τ#

e (Xpi), one compute SelfLoop(τ#
e , Xpi), defined in algorithm 2.

The SelfLoop procedure actually computes a widening operation, and computes a narrow-
ing step in order to recover precision. In some cases, instead of performing widening/narrowing
iterations, acceleration techniques could be used to find even more precise invariants [GH06].

In order for this refinement to be precise, the widening operator needs to be delayed when
we consider a self-loop for the first time. Then, our algorithm uses a set U of paths that have
already been treated. If the self-loop we focus on is not in U , we apply a simple union instead
of widening. Widening will be applied next time to guarantee the convergence.

When the self loop can be accelerated [Gon07], instead of doing a widening/narrowing
sequence, acceleration directly finds its transitive closure.

3.2.5 Example

We apply the Path Focusing technique to our running example from Figures 2.1, 3.3 and
3.5. The control points in PR are p0, p1 and p7. The ρ formula associated to this program
is depicted in Figure A (see appendices). One computes iteratively the associated abstract
values X0, X1 and X7.

• Step 0: Initially, X0 = >, X1 =⊥, X7 =⊥, and A = {p0}.

22/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Algorithm 1 Path Focusing
1: procedure pathfocusing(P ,E,PR)
2: for all p ∈ PR do
3: Compute Succ(p), the set of the successors of p in the multigraph
4: end for
5: ρ← computeRho(P,E)
6: A← ∅
7: for all p ∈ PR/Ip 6= ∅ do
8: A← A ∪ p
9: end for

10: while A 6= ∅ do
11: Select pi ∈ A
12: A← A \ {pi}
13: while true do

14: res← SmtSolve

ρ ∧ bsi ∧ ∧
j 6=i
j∈PR

(¬bsj) ∧ xi ∈ Xpi ∧
∨
j

pj∈Succ(pi)

(
bd2 ∧ ¬(x′j ∈ Xpj)

)
15: if res = unsat then
16: break
17: end if
18: Compute the focus path e from pi to pj
19: Y ← τ#

e (Xpi)
20: if pj ∈ PW then
21: Xpj ← Xpj O(Xpj t Y)
22: else
23: Xpj ← Xpj t Y
24: end if
25: A← A ∪ {pj}
26: end while
27: end while
28: Possibly perform some narrowing steps
29: Compute {Xpi , i /∈ PR}
30: return {Xpi , i ∈ P}
31: end procedure

Algorithm 2 SelfLoop

1: procedure SelfLoop(τ#
e ,Xpi)

2: Y ← τ#
e (Xpi)

3: X ′ ← Xpi O(Xpi t Y)

4: Y ← τ#
e (X ′)

5: return Y
6: end procedure

M2R Internship Report 23/50

Julien Henry Static Analysis by Path Focusing

Algorithm 3 Path Focusing with special treatment for self loops
1: procedure pathfocusing(P ,E,PR)
2: for all p ∈ PR do
3: Compute Succ(p), the set of the successors of p in the multigraph
4: end for
5: ρ← computeRho(P,E)
6: A← ∅
7: for all p ∈ PR/Ip 6= ∅ do
8: A← A ∪ p
9: end for

10: while A 6= ∅ do
11: Select pi ∈ A
12: A← A \ {pi}
13: U ← ∅
14: while true do

15: res← SmtSolve

ρ ∧ bsi ∧ ∧
j 6=i
j∈PR

(¬bsj) ∧ xi ∈ Xpi ∧
∨
j

pj∈Succ(pi)

(
bd2 ∧ ¬(x′j ∈ Xpj)

)
16: if res = unsat then
17: break
18: end if
19: Compute the focus path e from pi to pj
20: if pi = pj then
21: Y ← SelfLoop(τ#

e , Xpi)
22: else
23: Y ← τ#

e (Xpi)
24: end if
25: if (pj ∈ PW) ∧ (pi 6= pj ∨ e ∈ U) then
26: Xpj ← Xpj O(Xpj t Y)
27: else
28: Xpj ← Xpj t Y
29: U ← U ∪ {e}
30: end if
31: A← A ∪ {pj}
32: end while
33: end while
34: Possibly perform some narrowing steps
35: Compute {Xpi , i /∈ PR}
36: return {Xpi , i ∈ P}
37: end procedure

24/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

• Step 1: We start in p0. Is there a path starting in p0, that arrives in a state in PR
and makes its abstract value grow? The SMT-solver answers yes, and gives the path
p0 → p1. We update X1: it is the polyhedron x = y = 0. We update A = {p1}. We do
another SMT query: is there another path starting in p0 that makes an abstract value
grow? The answer is no.

• Step 2: We now work on p1. Is there a path starting in p1 that arrives in a successor
of p1, and makes its abstract value grow? Answer is yes, and the model given by the
SMT-solver is the path p1 → p2 → p4 → p5 → p6 → p1. Actually, this is the first phase
of the loop. The image of x = y = 0 by this transition is x = y = 1. The new X1

is then x = y ∧ 0 ≤ x ≤ 1. The path is a self loop, but is seen for the first time, so
we do not apply widening yet. So, we redo an SMT-query, that gives us exactly the
same path. Then, we can do a widening/narrowing sequence. After widening, we have
x = y ∧ x ≥ 0, and narrowing gives X1 = (x = y) ∧ (0 ≤ x ≤ 51).

• Step 3: We still are in p1: we ask for another focus path, and the SMT-solver finds the
path p1 → p3 → p4 → p5 → p6 → p1. This is the second phase of the loop, which is
possible since (x, y) = (51, 51) ∈ X1. Again, this is a self-loop, but we do not widen yet.
The image of X1 by the transition is the single point (52, 50). X1 is then the convex hull
of this point with the old X1. A new SMT query gives the same path, and we can now
apply widening/narrowing. We obtain X1 = (x ≤ y)∧ (102− x− y ≥ 0) after widening,
and narrowing gives X1 = (x ≤ y) ∧ (102 − x − y ≥ 0) ∧ y ≥ 0. We can see that X1 is
the smallest polyhedron containing the possible values for (x, y) (see Figure 2.2.b).

• Step 4: Again, we ask the SMT-solver for a new focus path, and it returns p1 → p3 →
p4 → p7. The image of the polyhedra X1 after this path transformation is the single
point y = −1 ∧ x = 102. We can update X7 = (102,−1). Path focusing technique gives
us the precise result of this program. After that, the SMT-solver cannot find any new
path, so the analysis terminates.

3.2.6 Disjunctive invariants

In this subsection, we propose an extension of the path focusing technique to compute dis-
junctive invariants, in order to improve precision of the analysis.

[GZ10] proposes a technique to compute transitive closure of a loop, i.e compute the
invariants for a loop having its semantics expressed by a transition system. The definition of
a transition system is the following:

Definition 3.2.1 A transition system for a control point p is a DNF formula (i.e a disjunction
of conjunctions), where each disjunct is the semantics of a path from p to itself. It is of the
form ∨

1≤i≤n
τp,i

where n is the number of paths, and τp,i is the semantics of the i-th path from p to itself.

The technique is aimed at computing a disjunctive invariant for this control point:∨
1≤j≤m

Xp,j

M2R Internship Report 25/50

Julien Henry Static Analysis by Path Focusing

where Xp,j is a conjunction of linear inequalities, i.e a convex polyhedra.
The principle of the method is to choose an integer δ ∈ {1, ..,m}, and a mapping function

σ : {1, ..,m} × {1, .., n} 7→ {1, ..,m}. For each polyhedra of the disjunctive invariant, and for
each path in the graph, the image of the polyhedra Xp,j by the transition τp,i is joined with
Xp,σ(j,i).

Algorithm 4 Transitive closure
1: procedure TransitiveClosure(

∨n
i=1Xp,i)

2: for all j ∈ {1, ..,m} \ {δ} do
3: Xp,j ←⊥
4: end for
5: Xp,δ ← Id
6: repeat
7: for i ∈ {1, .., n} and j ∈ {1, ..,m} do
8: Xp,σ(j,i) ← Xp,σ(j,i) t τp,i(Xp,j)
9: end for

10: until no change in
∨m
j=1Xp,j

11: end procedure

There are heuristics to choose m, δ and σ [GZ10, Section 5].
This algorithm requires to enumerate all the paths and to compute their semantics, which

may result in an exponential blowup. In addition, the for loop at line 7 iterates on all the
n×m values of (i, j): some of the join operations may be useless, in the sense that the value
of Xp,σ(j,i) may not change. Here, the same technique as Path Focusing is achievable to avoid
these drawbacks: SMT-solving is used to find the paths τp,i.

Algorithm 5 Transitive closure with implicit transition system
1: procedure TransitiveClosureImplicit(p)
2: for all j ∈ {1, ..,m} \ {δ} do
3: Xj ←⊥
4: end for
5: Xδ ← Id
6: while true do
7: res← SmtSolve

[
ρ ∧ bsk ∧

∨m
j=1(Bj ∧ x ∈ Xj) ∧ bdk ∧ ¬

(∨m
j=1 x

′ ∈ Xj

)]
8: if res = unsat then
9: break

10: end if
11: Compute τp,i from res
12: Take j ∈ {k|Bk = true}
13: Xp,σ(j,i) ← Xp,σ(j,i) t τp,i(Xp,j)
14: end while
15: end procedure

The new algorithm we propose is described in Algorithm 5. A difference is that here,
we do not know the number of paths. Then, the mapping function σ has to be defined on
{1, ..,m} × N. We could also easily compute this number of paths when computing the ρ
formula.

26/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Computing disjunctive invariants is a field we have to work on. The work described here
is only preliminary, and shows it is possible to improve existing techniques with our ideas, so
that we avoid explicit enumeration of exponential-sized sets of paths.

3.2.7 Removing identity transitions

When computing iterations, some of the loop paths may not change the state of the variables,
i.e the transition function associated to this path is the identity function. This happens in the
case of expansive transition relations Φ, defined by the property X ⊆ Φ(X).

Considering the set of initial states I, and the transition function τ mapping a state to its
successor, we can define:

Φ(X) =
{
x′ | ∃x ∈ X,x′ = τ(x)

}
∪ I

Φ is the function we classically use to find an inductive invariant X, satisfying the property
Φ(X) ⊆ X. To improve the analysis, we propose to compute this invariant using another
function Ψ, by removing the transitions that are actually the identity. Indeed, these transitions
make no change to the set X. The Ψ function could be expressed as follows:

Ψ(X) =
{
x′ | ∃x ∈ X,x′ = τ(x) ∧ x′ 6= x

}
∪ I

It is easy to prove that Ψ(X) ⊆ X ⇔ Φ(X) ⊆ (X), so we can use Ψ instead of Φ to
compute our invariant.

In the case of path focusing algorithm, we simply conjunct our formula (see 3.2.2) with
(i 6= j) ∨ (x′j 6= xi), such that the SMT-solving only proposes paths that are not the identity.
Actually, it never focuses on such paths during the ascending sequence, but during narrowing
iterations that occur at the end of the algorithm.

Ignoring these identity transitions makes the narrowing sequence recover more precision.
Indeed, narrowing sequence updates the invariant X with Φ(X), which is still an invariant,
while precision is recovered, meaning that Φ(X) ⊂ X. In the case of an expansive function,
where X ⊆ Φ(X), we never have Φ(X) ⊂ X, so narrowing iterations are useless.

3.3 Efficiency comparison: example

In this subsection, we propose an example showing that Path Focusing technique performs
better than Lookahead Widening in the case of loops with intermediate control-flow merges.

We consider the program depicted in Figure 3.6, page 28. Here, we would like to show
that the returned value r is zero.

Lookahead Widening The analysis begins with p1 : x = i = r = 0. Then, the path
p1 → p2 → p3 → p5 → p7 → p1 is the only one possible. The technique is then to stabilise
the iterations over this subgraph, removing p4 and p6 for a while. After stabilisation and
narrowing phases, we obtain 0 ≤ i ≤ 50 ∧ r = 0 ∧ −1 ≤ x ≤ 0 at control point p1, and
0 ≤ i ≤ 49 ∧ r = 0 ∧ x = −1 at point p5.

Then, point p4 becomes reachable. We continue the iterations and have to do a convex
hull of polyhedra at point p5, because of the two possible incoming transitions. We obtain the
polyhedron 0 ≤ i ≤ 50 ∧ r = 0 ∧ −1 ≤ x ≤ 1. Point p6 now becomes reachable, since x = 0 is

M2R Internship Report 27/50

Julien Henry Static Analysis by Path Focusing

x = 0;
i = 0;
r = 0;
while (i < 100) {

if (i < 50)
x = -1;

else
x = 1;

if (x == 0) r++;
i++;

}
return r;

p0

p1

p2

p3 p4

p5

p6 p7

p8

p9

x, i, r ← 0

i < 100

i ≥ 100

i < 50 i ≥ 50

x← −1 x← 1

x = 0 x 6= 0

r ← r + 1

i← i + 1

Figure 3.6: Example of program. p5 is a control-flow merge point, which is in the middle of
the containing loop.

inside our polyhedron. Finally, the analysis terminates after some steps and finds 0 ≤ r ≤ i.
Lookahead Widening is not able to prove that r = 0 at the end of the function.

Path Focusing The analysis of the loop starts with p1 : x = i = r = 0. Then, the SMT-
solver discovers the path p1 → p2 → p3 → p5 → p7 → p1. We do a widening/narrowing
sequence and we find 0 ≤ i ≤ 50 ∧ r = 0 ∧ −1 ≤ x ≤ 0 at p1. The SMT-solver gives
another path: p1 → p2 → p4 → p5 → p7 → p1. After analysing this path, we obtain
0 ≤ i ≤ 100 ∧ r = 0 ∧ x = 0. Analysis terminates since the SMT-solver gives unsat answers.
Here, We never focused on paths going through point p6, so our analysis gives us the invariant
x = 0 at the end of the program. Indeed, there is no feasible paths going through p6, but
Lookahead Widening do not know it because of the convex hull at point p5.

28/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Chapter 4

Implementation

Lookahead Widening and Path Focusing techniques have been implemented into a small anal-
yser, so that we can compare the precision of their results. In this part, we explain some
details about these implementations.

4.1 Infrastructure

The analyser is based on the Low Level Virtual Machine (LLVM) [LA04], which is a compila-
tion infrastructure used for instance by the clang compiler.

4.1.1 LLVM internal representation

Internal
Representation

(IR)

C

C++

...

Binary
x86_64

Binary
i686

...

Input Output

Frontend Backend

The advantage of using such an infrastructure is that the analyser can check programs
written in various languages: C, C++, . . . , without needing to write a specific frontend for
each of them. Here, the analyser directly works on the internal representation (IR), which is
a graph representation of the program. The control flow graph can easily be extracted from
this representation.

Our analyser takes as parameter the LLVM internal representation of a program, and
returns linear relations between the numerical variables at each control point of this program.

M2R Internship Report 29/50

Julien Henry Static Analysis by Path Focusing

It first applies some optimisation passes over the IR, and then computes the linear relations
by abstract interpretation.

int main() {
int x = 0;
int y = 0;

while (1) {
if (x <= 50) y++;
else y--;

if (y < 0) break;
x++;

}
}

CFG for ’main’ function

%1:

%x.0 = phi i32 [0, %0], [%11, %10]
%y.1 = phi i32 [0, %0], [%y.0, %10]
%2 = icmp sle i32 %x.0, 50
br i1 %2, label %3, label %5

T F

%0:

br label %1

%12:

ret i32 0

%10:

%11 = add nsw i32 %x.0, 1
br label %1

%5:

%6 = add nsw i32 %y.1, -1
br label %7

%3:

%4 = add nsw i32 %y.1, 1
br label %7

%7:

%y.0 = phi i32 [%4, %3], [%6, %5]
%8 = icmp slt i32 %y.0, 0
br i1 %8, label %9, label %10

T F

%9:

br label %12

Figure 4.1: Our running example and its internal representation in SSA form

As we see if Figure 4.1, LLVM IR is slightly different from our definition of control flow
graph: it uses the notion of BasicBlock. A BasicBlock is a sequence of instructions that are
necessarily executed one after the others, meaning that if the first intruction of a BasicBlock
is executed, then the rest of the instructions are necessarily executed exactly once, in order.

In our case, a control point will be a BasicBlock of the program.

4.1.2 Transformation passes

LLVM internal representation can be applied transformation passes that modifies parts of
it. These passes are mostly used for optimisation purpose. In our analyser, we apply some
already existing passes before running our abstract interpretation pass. Among the passes we
run, we could cite:

• the PromoteMemoryToRegister Pass (-mem2reg), that transforms the internal represen-
tation by promoting the memory variables to Static Single Assignment (SSA) registers.

30/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

This pass transform the control flow graph such that all the variables are in SSA form,
and removes most of the Load/Store operations into memory. It is useful since our
analyser does not have a memory model, and then loses lots of precision in the case of
Load/Store instructions.

• the LoopSimplify (-loopsimplify) and LoopInfo (-loopinfo) Passes, that transform all
loops into a canonical format, and compute some information related to loops (for in-
stance, the set of BasicBlocks that are parts of the loop, etc.).

• the LowerSwitch Pass (-lowerswitch), that transform a switch instruction into its cor-
responding if-then-else instructions. After running this pass, there is no more Switch
instruction in the control flow graph, so the implementation of the static analysis is
easier.

4.1.3 Drawbacks

During the implementation, we encountered problems due to the use of the LLVM internal
representation. Indeed, this format is not provided for static analysis, but for code generation.
Then, some informations we need for a precise static analysis are lacking.

This is the case for the distinction between signed and unsigned integers, which is nonex-
istent in the representation, since the compiler does not need this information to generate
code. Yet, for static analysis, this distinction is required to improve precision: for instance, if
n is unsigned, the constraint n ≥ 0 could be added in our abstract value at the beginning of
the analysis. This lack of precision may be limited by using disjunctive invariants: one could
attach two polyhedra to the control point: the first one with the constraint n ≥ 0, and the
second one with n < 0.

Another example of information that was missing is the set of live variables. Indeed, in
LLVM, live variables computation is processed during the register allocation. Then, the data
structure we work on does not have live variables informations yet. To solve this problem, we
coded our own pass, that is aimed at computing these live variables after the transformation
in SSA form.

4.2 Abstract domain representation

The analyser is implemented using the APRON library [JM09], which is a common interface to
libraries implementing all the features for several abstract domains, such as convex polyhedra
(NewPolka), octagons (OCT), intervals (BOX). In our case, we used the convex polyhedra
library, but we could switch to octagons or intervals easily.

4.2.1 Attachment to LLVM Internal Representation

We attach only one abstract value to each BasicBlock of the IR. Indeed, there would be a huge
memory consumption if we would attach a polyhedron after each instruction. A BasicBlock
begins with all its Φ-variables, and ends with the other instructions. We choose to attach
our abstract value just after the Φ-variables assignments. In this way, the Φ-variables of the
associated BasicBlock will be part of the dimensions of the polyhedron.

Morally, this means the Φ-variables are on incoming transitions, whereas the other instruc-
tions are on outgoing transitions.

M2R Internship Report 31/50

Julien Henry Static Analysis by Path Focusing

Φ-variables

Instructions

Abstract
value

BasicBlock

4.2.2 Dimensions of the abstract values

In our implementation, we tried to reduce as much as possible the dimensions of the abstract
values at each program point. Indeed, there is no need to consider the whole set of the program
numerical variables at each point p, since lots of these variables are not live in p. The definition
of a live variable is the following:

Definition 4.2.1 (Liveness) A variable is live at the control point p iff:

• its value is available at p, meaning that there is a path from the point defining the variable
to p.

• its value might be used in the future, meaning that there exist a path starting in p, that
arrives in a point using the variable.

LLVM internal representation allows to find the control point where a variable is defined
and used, thanks to def-use chains: we can easily get the set of points where a variable is used,
and we directly have a pointer to its definition. With all these informations, we implemented
an LLVM pass that computes the set of live variables in SSA, using the liveness check algorithm
described in [Boi10, section 3.3].

At a program point p, the dimensions of the associated abstract value could only be the
numerical variables that are live at p. This is not exactly the case in our implementation,
because of another optimisation: we only consider variables that are not a linear combination
of other variables.

For instance, assume that x, y, z are numerical variables of a program, x is defined as
x = y + z, and x, y, z are live at point p. Instead of having x as a dimension for Xp, we only
have y and z. All the properties for x can be directly extracted from Xp and the information
x = y + z. This is an optimisation in the sense that there is redundant information in the
abstract value if both x, y and z are dimensions of Xp.

Then, liveness definition can be adapted in our case:

Definition 4.2.2 (Liveness by linearity) A variable v is live by linearity at the control
point p iff:

• its value is available at p, meaning that there is a path from the point defining the variable
to p,

• one of these conditions holds:

32/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

– v is live in p.
– There is a variable v′, defined as a linear combination of other variables v1, v2, . . . , vn,

so that ∃i ∈ {1, . . . , n} , v = vi, and v′ is live by linearity in p.

Finally, a variable is a dimension of Xp iff it is live by linearity and it is not defined as a
linear combination of program variables.

There is a special case for Φ-variables: in some cases, a Φ-variable can be considered
as a linear combination of program variables, when only a single incoming value is possible.
This is the case when all but one polyhedra associated to a predecessor are at bottom. For
instance, let’s say point p has p1, p2, . . . , pn as ordered predecessors. At point p, we have
x = Φ(x1, x2, . . . , xn). If ∀i ∈ {2, . . . , n} , Xi =⊥, and X1 6=⊥, then we can use the linear
relation x = x1 instead of the Φ function. In practical cases, this is a way to reduce the size
of the abstract values.

4.2.3 Diseq comparisons

The set of elements x satisfying x 6= N is not convex: it is the union of two intervals:
] −∞, N [∪]N,+∞[. Since we use convex polyhedra to represent the set of possible states
of our program, we lose information when the analysis comes across a diseq operation. One
classical approach would be to compute a disjunctive invariant, by attaching two different
polyhedron to the BasicBlock. However, we preferred the following technique: we transform
all the operations of the form x 6= y into x < y ∨ x > y, meaning that we separate the cases
less than and greater than into two distinct paths.

if (x != y) {
...

}
⇒

if (x > y) {
} else if (x < y) {
} else {

...
}

To do so, we could implement an LLVM pass that transform the internal representation
according to this principle. However, this pass has not been implemented in our analyser, and
this transformation has to be done manually.

4.3 Unrolling loops

In some cases, the number of iterations inside a loop during execution may be equal to zero.
This happens if the condition of the while statement is false at the first time the head of loop
is reached.

In our analyser, this kind of loops gives imprecise results. In this section, we propose to
unroll loops once in order to avoid it. This behaviour can happen in very simple programs,
such as the one depicted in Figure 4.2. Indeed, in the case of n ≤ 0, the condition i < n is
always false.

In this example, our program behaves as follows:

• At point p1, we first have the polyhedron i = 0, where n in unconstrained.

• The image of this polyhedron after the loop transition is i ≤ n ∧ i = 1. After a convex
hull, we obtain for p1 0 ≤ i ≤ 1.

M2R Internship Report 33/50

Julien Henry Static Analysis by Path Focusing

i=0;
while (i < n)

i++;

p0

p1

p3

p4pf

i← 0

i ≥ n
i < n

i← i + 1

Figure 4.2: If n ≤ 0, there is no loop iterations.

• Again, we compute the image of this polyhedron by the transition, 1 ≤ i ≤ 2 ∧ i ≤ n,
and after widening we obtain at p1 the polyhedron 0 ≤ i.

• Finally, at point pf , we have the polyhedron 0 ≤ i ∧ i ≥ n.

Now, after unrolling the loop once, the program is the one in Figure 4.3. The analysis
gives:

• At point p1, we have i = 0, then we directly have at point pf the polyhedron i = 0∧n ≤ 0.

• At point p4, we first have i = 1 ∧ n ≥ 1.

• the image of the polyhedron after the loop transition is 2 ≤ n ∧ i = 2, which gives after
a convex hull 1 ≤ i ≤ 2 ∧ i ≤ n.

• After one iteration and an application of widening, we find at p4 the polyhedron 1 ≤
i ≤ n.

• Then, at the exit point p′f of the loop, we have the polyhedron i = n ∧ i ≥ 1.

i=0;
if (i < n) {

i++;
while (i < n)

i++;
}

p0

p1

p3

p4pf

p′f

p5

p6

i← 0

i ≥ n
i < n

i← i + 1

i ≥ n i < n

i← i + 1

Figure 4.3: Program of Figure 4.2 after unrolling the loop once.

The convex hull of the polyhedron from pf with the one from p′f also gives 0 ≤ i ∧ i ≥ n.
Then, unrolling the loop does not give a better solution, since pf and p′f may be the same
control point.

34/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

However, our technique does a convex hull only if this exit point is in PR. If not, we
consider independently the paths starting from p4 and the ones starting from p1, hence the
better precision. Indeed, this comes to computing a disjunctive invariant for the loop, by
distinguishing the case where the number of iterations is zero.

In our analyser, we unroll every loops once, by using LLVM optimisation passes such as
loop-unroll, loop-rotate or loop-simplify.

4.4 SMT-solving

Path focusing technique requires to decide the satisfiability of some SMT formula, and to
extract a model when the formula is satisfiable, i.e an assignment of the variables so that
the formula is true. For doing this, our implementation has an interface with Microsoft Z3
[dMB08], and Yices [DdM06]. One can easily switch from one to another with an argument
we give as parameter to the analyser. In this way, we can compare the efficiency of both
SMT-solvers.

4.5 Limitations

Our analyser could be extended in many ways. Indeed, it is intra-procedural, meaning that
it does not consider that a variable may change after a function call. In addition, the return
value of a function call is considered unconstrained. This limitation can be addressed by
simply inlining the function call, provided the function is not recursive. There have been
research to find efficient interprocedural analysis techniques [Bou90, Bou92, Jea09].

Additionally, our analyser has no memory model:

• Store instructions, that store a value in the memory, has no effect in the analysis.

• Load instructions, that get a value v in the memory and assign it to a variable x, does
not provide properties about the value v. Then, our analyser considers x can take all
values of its type.

In the case of local variables, the transformation of the internal representation into SSA form
removes the Load/Store instructions. The use of global variables instead of local ones will
induce huge loss of precision, since there will still be Load/Store instructions in the IA.

Additionally, some optimisation in the code could be proposed in order to reduce time
and/or memory complexity. For instance, paths that have already been computed are until
now stored in a tree. An optimisation could be to store them in a Binary Decision Diagram, in
order to reduce significantly the memory consumption when there is a huge number of paths.

4.6 Example

In our running example (Figures 2.1, 3.3 and 3.5), the analyser outputs the following result
for the basic block 1:

RESULT FOR BASICBLOCK: -------------------
; <label >:1 ; preds = %10, %0

%x.0 = phi i32 [0, %0], [%11, %10]

M2R Internship Report 35/50

Julien Henry Static Analysis by Path Focusing

%y.0 = phi i32 [0, %0], [%y.1, %10]
%2 = icmp sle i32 %x.0, 50
br i1 %2, label %3, label %5

environment: dim = (2,0), count = 77
0: x.0
1: y.0

polyhedron of dim (2,0)
array of constraints of size 3
0: -x.0 - y.0 + 102 >= 0
1: y.0 >= 0
2: x.0 - y.0 >= 0

First, it shows the BasicBlock we work on, and its associated abstract value:

• The environment of the abstract value is its dimensions. Here, x.0 and y.0 are the
dimensions of the polyhedron.

• The array of constraints defining the polyhedron. The three constraints here define the
polyhedra seen in Figure 2.2.b.

4.7 Experiments

In this section, we evaluate our Lookahead Widening and Path Focusing implementations. We
compare their execution time in some practical cases, and the precision of their results. Table
4.2 gives the results of the analyser in various examples, some of them taken from the recent
literature [CGG+05, GR06].

In all experiments, the set PR is chosen equal to PW ∪ Pret ∪ Pinit, where PW is the set of
widening points. Pinit is the set of starting points of the program, and Pret is the set of points
that have no successors.

4.7.1 Benchmarks

Path Focusing appears to perform similarly or better than Lookahead Widening. Indeed, it is
more precise in the case of programs containing control-flow merges inside loops, thanks to
the distinction between all the paths of the loop. In simpler programs, it performs as well as
Lookahead Widening

ex6.c is a program containing non-linear arithmetic: there is an integer multiplication
inside the loop. The Apron library handles multiplication using a linearization technique.
However, multiplication is not allowed in LIA (Linear Integer Arithmetic) or LRA (Linear
Real Arithmetic). Then, Yices SMT-solver errs with a message “not implemented” (which is
the reason of the ∞ symbol in the table), when Z3 still works correctly.

We tried our technique on example with a huge number of paths: ex8, ex8b and ex8c (see
Table 4.1). These benchmarks are constructed such that the loop contains only a few possible
paths, but a lot of unfeasible paths. The idea is to show that our technique does not blow up,
even with a huge expanded multigraph. Results show that in such benchmarks, our technique
finds a much better invariant and is even faster than Lookahead Widening.

36/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

For small programs, our execution time may not be significant. Indeed, the cost for reading
the program, initialising the SMT-solver, . . . , may have a non-negligible cost compared to the
abstract interpretation analysis itself. The only interest of these times is to show our algorithm
is pretty fast.

Benchmark Gopan Beyer Boustr ex9 test1 ex6 ex8 ex8c ex8b
paths (total) 5 4 10 8 3 5 75626 5.7.109 4.1014

paths (computed) 5 4 4 4 3 4 4 4 4
iterations 6 5 5 4 3 4 4 4 4

Table 4.1: Number of path in the expanded multigraph, number of path the algorithm actually
computes, and total number of iterations

The last remark is about the efficiency of Yices and Z3. Yices seems to always be slightly
faster than Z3, but in some cases, Yices appeared to blow up, or to err with a message “not
implemented”, for instance when adding non-linear relations into the formula. Then, it was a
good choice to link our analyser with both SMT-solvers.

4.7.2 Analysis of real code

In this section, we show that Path Focusing technique performs better that Lookahead widening
on some code taken from real open-source programs.

Analysis of cBench programs

Collective Benchmark (cBench) [cBe] is a collection of open-source sequential programs as-
sembled by the community to enable realistic benchmarking and research on program.

We compare Lookahead Widening and Path Focusing techniques on these benchmarks, and
we respectively count the number of BasicBlocks where the invariant is more precise with the
first technique, or with the second one, or if it the invariant is the same (see Table 4.3).

These benchmarks often contain non-linear arithmetic, especially multiplications. This
is not a problem to the Apron library since it uses linearization to handle them, but this
sometimes implies an execution time blowup for the SMT-solver:

• Yices does not work at all when the formula contains non-linear arithmetic, so we could
not use it. Indeed, Linear Real Arithmetic or Linear Integer Arithmetic theories do not
treat multiplications.

• Z3 implements some linearization techniques in order to deal with non-linear arithmetic,
even if the used theory is LRA or LIA. In lots of cases, it is sufficient for deciding the
satisfiability of our formulae, but it seems sometimes to have a huge execution time
blowup. When running our benchmarks, we fixed a time limit (5 minutes) for the
analysis, and ignore in our results the functions that make the SMT-solver blow.

This drawback could be solved in the future, by linearizing parts of the SMT-formula that
make the computation too costly, or make it fail (in some cases, the SMT-solver is unable to
decide the satisfiability of the formula, and answers “unknown”).

Path Focusing technique finds more precise invariants in some cases, whereas Lookahead
Widening performs better in other cases. This is partly due to the widening operator: even

M2R Internship Report 37/50

Julien Henry Static Analysis by Path Focusing

Path Focusing Lookahead Widening
Benchmark time result cmp. time result

Z3 Yices

Gopan.c 0.076s 0.076s
-x.0 - y.0 + 102 >= 0
y.0 >= 0
x.0 - y.0 >= 0

= 0.032
-x.0 - y.0 + 102 >= 0
y.0 >= 0
x.0 - y.0 >= 0

Beyer.c 0.084s 0.076s
-x.0 + 100 >= 0
y.0 - 50 >= 0
-x.0 + y.0 >= 0

= 0.032
-x.0 + 100 >= 0
y.0 - 50 >= 0
-x.0 + y.0 >= 0

Boustr.c 0.100s 0.088s
-2x.0 + d.0 + 1999 >= 0
-2x.0 + 3d.0 + 2001 >= 0
-d.0 + 1 >= 0

 0.064
-1996x.0 + 4991d.0 + 1998995 >= 0
-2x.0 + d.0 + 1999 >= 0
-d.0 + 1 >= 0

ex9.cpp 0.084s 0.082s
r.0 = 0
-i.0 + 100 >= 0
i.0 >= 0

 0.052

-i.0 + 100 >= 0
r.0 >= 0
i.0 - r.0 >= 0
24i.0 - 25r.0 + 75 >= 0

test1.c 0.064s 0.064s
2j.0 + i.0 - 21 = 0
-j.0 + 10 >= 0
j.0 - 6 >= 0

= 0.016
2j.0 + i.0 - 21 = 0
-j.0 + 10 >= 0
j.0 - 6 >= 0

ex6.c 0.104s ∞

-y.0 + 51 >= 0
y.0 >= 0
x.0 - 51y.0 + 2550 >= 0
x.0 >= 0

 0.032 y.0 >= 0

ex8.c 0.516s 0.408s

-y.0 - x.0 + 1 >= 0
-y.0 + x.0 + 1 >= 0
y.0 - x.0 + 1 >= 0
y.0 + x.0 + 1 >= 0

 0.208 -x.0 + 1 >= 0
x.0 + 1 >= 0

ex8c.c 0.656s 0.548s

c.0 + a.0 = 0
b.0 + d.0 = 0
-b.0 - c.0 + 1 >= 0
-b.0 + c.0 + 1 >= 0
b.0 - c.0 + 1 >= 0
b.0 + c.0 + 1 >= 0

 0.916s

-b.0 + 1 >= 0
-b.0 + a.0 + 1 >= 0
-c.0 + 1 >= 0
-c.0 + d.0 + 1 >= 0
-a.0 + 1 >= 0
-d.0 + 1 >= 0
a.0 + 1 >= 0
c.0 - d.0 + 1 >= 0
c.0 + d.0 + 1 >= 0
b.0 - a.0 + 1 >= 0
b.0 + 1 >= 0

ex8b.c 1.016s 0.816s

c.0 + y.0 = 0
c.0 + a.0 = 0
b.0 + d.0 = 0
b.0 + x.0 = 0
-b.0 - c.0 + 1 >= 0
-b.0 + c.0 + 1 >= 0
b.0 - c.0 + 1 >= 0
b.0 + c.0 + 1 >= 0

 36.30s

-b.0 + 1 >= 0
-b.0 + a.0 + 1 >= 0
-c.0 + 1 >= 0
-c.0 + d.0 + 1 >= 0
-a.0 + 1 >= 0
-y.0 - x.0 + 1 >= 0
-y.0 + x.0 + 1 >= 0
-d.0 + 1 >= 0
x.0 + 1 >= 0
y.0 - x.0 + 1 >= 0
y.0 + 1 >= 0
a.0 + 1 >= 0
c.0 - d.0 + 1 >= 0
c.0 + d.0 + 1 >= 0
b.0 - a.0 + 1 >= 0
b.0 + 1 >= 0

Table 4.2: Results of Path Focusing and Lookahead Widening techniques applied to various
benchmarks. The invariant we give is the one at the head of the loop.

if the analysis is more subtle, the result at the end may be worse. This is a well-known result
in abstract interpretation: when using widening operations, the final result is not monotonic
with the quality of the abstraction.

38/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Benchmark Path Focusing Lookahead Widening Same invariant Total
automotive_bitcount 1 0 39 40
automotive_qsort1 9 0 13 22
automotive_susan_c 0 2 59 61
automotive_susan_e 0 2 59 61
automotive_susan_s 0 2 59 61

bzip2d 70 3 81 154
bzip2e 70 3 81 154

consumer_jpeg_c 22 8 711 741
consumer_jpeg_d 13 8 667 688
consumer_lame 13 15 366 394
consumer_mad 12 11 609 632

consumer_tiff2bw 19 3 593 615
consumer_tiff2rgba 21 6 661 688
consumer_tiffdither 21 3 662 686
consumer_tiffmedian 25 5 707 737
network_dijkstra 0 0 19 19
network_patricia 2 0 21 23
office_rsynth 6 0 158 164

office_stringsearch1 5 1 44 50
security_blowfish_d 4 0 23 27
security_blowfish_e 4 0 23 27
security_rijndael_d 1 0 31 32
security_rijndael_e 1 0 31 32

security_sha 1 0 26 27
telecom_CRC32 0 0 13 13
telecom_adpcm_c 0 0 10 10
telecom_adpcm_d 0 0 10 10

telecom_gsm 5 0 153 158

Table 4.3: Number of basicblocks where the computed invariant is more precise by Path
Focusing, Lookahead Widening, or the same with both techniques.

Analysis of Open Source projects

We compare Lookahead Widening and Path Focusing on various GNU projects (see Table
4.4), so that we can see their precision on really used code.

The results we obtain are very promising. Most of the cases, our technique performs as
well as Lookahead Widening, and discovers regularly more precise invariants.

However, Lookahead Widening seems to have better results in some cases. We already
have some ideas for explaining this lack of precision in our technique:

• We use the domain of convex polyhedra as the abstract domain. Since this domain
requires a widening operator, a more subtle analysis technique may sometimes discover
invariants that are less precise than a more simplified technique.

• Our technique performs well in the case of self loops in the multigraph, thanks to the

M2R Internship Report 39/50

Julien Henry Static Analysis by Path Focusing

Benchmark Path Focusing Lookahead Widening Same invariant Total
Bc 0 0 177 177

Gawk 4 3 284 291
Gnuchess 22 33 1506 1561
Gnugo 105 35 1303 1443
Grep 4 3 323 330
Gzip 9 3 189 201
Make 7 11 457 475
Tar 16 5 555 576
Wget 8 12 715 735

Table 4.4: Result of the analysis of various open-source projects.

widening/narrowing phases (or acceleration). Yet, in the case of paths that do not
constitute a self loop in the multigraph, one performs a widening operation, but no
narrowing iteration. Apparently, lots of the cases where Lookahead Widening performs
better than Path Focusing are due to this drawback. An example of such loss of precision
is depicted in appendix B. An idea that could solve this problem is to try to combine
the two methods, and get the best of both worlds (see 5.3).

Although these project are not safety-critical and do not necessarily need static analysis,
they give a good idea of the quality of our technique and the scalability of our implementation.

40/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Chapter 5

Future Work

Path Focusing technique allows to work on control flow graphs with a huge number of paths,
since they are computed only when needed. With this in mind, one could think of several
improvements using path focusing, by encoding into the control flow graph new informations
as paths, such as arithmetic overflows, alias analysis, . . . In this part, we explain how to encode
such kind of informations into implicit paths of the CFG.

5.1 Arithmetic Overflows

Some operations such as additions, subtractions. . .may overflow if their result is not in the
type’s definition interval. For instance, an int variable can only take values in [−231, 231 − 1].
Then, there are two kind of overflows. Suppose N = 231:

• The result r of the operation may be greater than N − 1. In this case, the result we
obtain is actually r − 2N .

• r may be lesser than −N . Then, the result is r + 2N .

The idea would be to distinguish the correct behaviour and the two kind of overflow in
the control flow graph, each behaviour corresponding to a specific path (see Figure 5.1).

x + y < −N /
r = x + y + 2N

x + y > N − 1 /
r = x + y − 2N

−N ≤ x + y ≤ N − 1 /
r = x + y

Figure 5.1: How to treat overflows of the addition x+ y

This results in a huge blowup in the number of paths, but hopefully a lot of them will
never be possible, so they will never be computed by our algorithm.

M2R Internship Report 41/50

Julien Henry Static Analysis by Path Focusing

5.2 Alias analysis

One could use the same idea as for overflows, in order to treat aliases. Assume a pointer p that
possibly points to variables x, y, z or t. For each operation involving ∗p, one distinguishes these
different cases by creating a specific path for each of them. If the pointers are manipulated in
a tricky way, one considers they may point to each variable of the program. Again, there is
an exponential blowup in the number of paths, but these are treated implicitly.

p = &x/
x + +

p = &y/
y + +

p = &z/
z + +

p = &t/
t + +

Figure 5.2: How to treat pointers: (∗p) + +

5.3 Combining Lookahead Widening and Path Focusing

Path Focusing technique works on the expanded multigraph. Its limitation is that it does
narrowing sequences during the iterations only for self-loops of this multigraph.

Lookahead Widening works on the classical control flow graph, and stabilises temporarily
the fixpoint analysis on a part of this graph, forgetting paths that are not feasible at the first
iteration.

One could try to combine these two techniques, and apply Lookahead Widening on the
expanded multigraph, where the different paths are maintained implicit thanks to Path Fo-
cusing technique. The advantage of this approach compared to the classical Path Focusing is
that narrowing iterations could be computed on loops that are not self-loops.

42/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Chapter 6

Conclusion

Validation of software has become an essential domain in industry, especially those dealing
with embedded systems, where a bug in the program can endanger the safety of people, or
induce huge costs to fix. These domains constitute a privileged application field for formal
verification techniques. Abstract Interpretation is a commonly used technique to do static
analysis of programs. It is aimed at computing iteratively an over-approximation of the set
of possible states of the program, and allows to prove properties such as “In this program,
x is always between 1 and 10”, “The program never divides by zero”, etc. The objective is
to obtain a result as precise as possible, by limiting the loss of precision during the analysis,
induced for instance by the widening operator, or control-flow merges.

In this report, we proposed a new approach to guide the iterations of the analyser, in order
to distinguish the different paths of the program and to treat them independently. The loss
of precision due to widening and control-flow merges is then reduced. This technique allows
us, for instance, to do narrowing steps right after widening, or to use acceleration techniques
when a path actually is a simple loop.

Since distinguishing all the paths leads to an exponential blowup in time and memory,
we do compute a path only when needed, otherwise the path is kept implicit. In this way,
memory consumption is preserved, and the computation time is reduced, but still potentially
exponential. In order to find which path we should compute, we use SMT-solving to find
paths that makes the abstract interpretation analysis progress.

We implemented this technique into a small analyser dealing with C and C++ programs,
and run it on several benchmarks. It appears that in lots of cases, the precision of the result
is improved compared to the classical abstract interpretation technique. We compared it with
Lookahead Widening, and our technique seems to perform better in the case of loops containing
control-flow merges.

Our analyser is able to deal with small- and middle-sized test-cases, as well as real-life
programs. It loses precision in the case of programs with pointers or several functions. It has
been tested with program having loops containing several hundreds lines of code, and gave
results after a time in the order of the second. It could be improved in many ways, in order
to support for instance interprocedural analysis. A memory model could be added to handle
programs with pointers and load/store instructions. One could also try to compute disjunctive
invariants using the technique described in this report. Since our technique combines well with
acceleration techniques, another direction is to implement this last technique to improve our
results obtained with classical widening/narrowing.

M2R Internship Report 43/50

Julien Henry Static Analysis by Path Focusing

Path Focusing technique performs better thanks to the distinction between paths. Then,
encoding some properties in the control flow graph, such as arithmetic overflows or aliases, is
one direction to explore. One could also try to combine Path Focusing with other techniques,
such as Lookahead Widening.

44/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

Bibliography

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI, pages
196–207. ACM, 2003. 2.3.1

[BHZ05] Roberto Bagnara, Patricia M. Hill, Elisa Ricci 0002, and Enea Zaffanella. Precise
widening operators for convex polyhedra. Sci. Comput. Program., 58(1-2):28–56,
2005. 2.3.1

[BJ06] Thomas Ball and Robert B. Jones, editors. Computer Aided Verification, 18th In-
ternational Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Pro-
ceedings, volume 4144 of Lecture Notes in Computer Science. Springer, 2006. 6

[Boi10] B. Boissinot. Towards an SSA based compiler back-end: some interesting properties
of SSA and its extensions. PhD thesis, École Normale Supérieure de Lyon, 2010.
4.2.2

[Bou90] François Bourdoncle. Interprocedural abstract interpretation of block structured
languages with nested procedures, aliasing and recursivity. In Pierre Deransart
and Jan Maluszynski, editors, PLILP, volume 456 of Lecture Notes in Computer
Science, pages 307–323. Springer, 1990. 4.5

[Bou92] François Bourdoncle. Sémantiques des Langages Impératifs d’Ordre Supérieur et
Interprétation Abstraite. PhD thesis, Ecole Polytechnique, 1992. Ph.D. disserta-
tion. 2.3.3, 3.2.1, 4.5

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo The-
ories Library (SMT-LIB). www.SMT-LIB.org, 2010. 6

[cBe] cBench. Collective benchmarks. http://cTuning.org/cbench. 4.7.2

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL, pages 238–252, 1977. 2.2, 2.2.2

[CC92a] P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992. (The editor of Journal
of Logic Programming has mistakenly published the unreadable galley proof. For a correct version
of this paper, see http://www.di.ens.fr/~cousot.). 2.2

M2R Internship Report 45/50

http://www.di.ens.fr/~cousot

Julien Henry Static Analysis by Path Focusing

[CC92b] P. Cousot and R. Cousot. Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation, invited paper. In M. Bruynooghe and
M. Wirsing, editors, Proceedings of the International Workshop Programming Lan-
guage Implementation and Logic Programming, PLILP ’92,, Leuven, Belgium, 13–
17 August 1992, Lecture Notes in Computer Science 631, pages 269–295. Springer-
Verlag, Berlin, Germany, 1992. 2.2.2

[CGG+05] Alexandru Costan, Stephane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie
Putot. A policy iteration algorithm for computing fixed points in static analysis
of programs. In Kousha Etessami and Sriram K. Rajamani, editors, CAV, volume
3576 of Lecture Notes in Computer Science, pages 462–475. Springer, 2005. 4.7

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints
among variables of a program. In POPL, pages 84–96, 1978. 2.3, 2.3.1

[DdM06] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic solver
for dpll(t). In Ball and Jones [BJ06], pages 81–94. 3.2.2, 4.4

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
In C. R. Ramakrishnan and Jakob Rehof, editors, TACAS, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008. 3.2.2, 4.4

[GH06] Laure Gonnord and Nicolas Halbwachs. Combining widening and acceleration in
linear relation analysis. In 13th International Static Analysis Symposium, SAS’06,
Seoul, Korea, aug 2006. 2.3.3, 3.2.4

[Gon07] Laure Gonnord. Acceleration abstraite pour l’amelioration de la precision en anal-
yse des relations lineaires. PhD thesis, Université Joseph Fourier, Grenoble,
France, 2007. 2.3.3, 3.2.4

[GR06] Denis Gopan and Thomas W. Reps. Lookahead widening. In Ball and Jones
[BJ06], pages 452–466. 1, 2.1, 3.1, 3.2.4, 4.7

[GZ10] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Ben-
jamin G. Zorn and Alexander Aiken, editors, PLDI, pages 292–304. ACM, 2010.
1, 3.2.6, 3.2.6

[Hal79] Nicolas Halbwachs. Détermination automatique de relations linéaires vérifiées par
les variables d’un programme. PhD thesis, Université Scientifique et Médicale de
Grenoble, March 1979. These de 3e cycle. 2.3.1

[HPR97] Nicolas Halbwachs, Yann-Eric Proy, and Patrick Roumanoff. Verification of real-
time systems using linear relation analysis. Formal Methods in System Design,
11(2):157–185, aug 1997. 2.3.1

[Jea09] B. Jeannet. Relational interprocedural verification of concurrent programs. In
Software Engineering and Formal Methods, SEFM’09. IEEE, November 2009. 4.5

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In Ahmed Bouajjani and Oded Maler, editors, CAV,
volume 5643 of Lecture Notes in Computer Science, pages 661–667. Springer, 2009.
4.2

46/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

[KS08] D. Kroening and O. Strichman. Decision Procedures. Springer, 2008. 3.2.2

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto, Califor-
nia, Mar 2004. 4.1

[MG11] David Monniaux and Laure Gonnord. Using bounded model checking to focus
fixpoint iterations. In SAS, 2011. 3.2

[Mon09] David Monniaux. A minimalistic look at widening operators. Higher order and
symbolic computation, 22(2):145–154, December 2009. 2.2.2

M2R Internship Report 47/50

Julien Henry Static Analysis by Path Focusing

Appendices

48/50 M2R Internship Report

Static Analysis by Path Focusing Julien Henry

A Generated ρ formula

(and (= bd_0 false)
(= t_0_1 bs_0)
(or (not bd_0) true)
(= b_5 t_1_5)
(= x_%6_ (+ x_y.0_ -1))
(= t_5_7 b_5)
(or (not b_5) true)
(= b_3 t_1_3)
(= x_%4_ (+ x_y.0_ 1))
(= t_3_7 b_3)
(or (not b_3) true)
(= b_7

(or t_5_7 t_3_7))
(= t_7_9 (and b_7 (< x_y.1_ 0)))
(= t_7_10

(and b_7 (not (< x_y.1_ 0))))
(or (not b_7)

(= x_y.1_ (ite t_3_7 x_%4_ x_%6_)))
(= b_10 t_7_10)
(= x_%11_ (+ x_x.0_ 1))
(= t_10_1 b_10)
(or (not b_10) true)
(= bd_1

(or t_10_1 t_0_1))
(= t_1_3 (and bs_1 (<= x_x.0_ 50)))
(= t_1_5

(and bs_1 (not (<= x_x.0_ 50))))
(or (not bd_1)

(and (= x’_x.0_ (ite t_0_1 0 x_%11_))
(= x’_y.0_ (ite t_0_1 0 x_y.1_))))

(= b_9 t_7_9)
(= t_9_12 b_9)
(or (not b_9) true)
(= bd_12 t_9_12)
(or (not bd_12) true))

Figure 1: Expression of ρ associated to the program in Figures 2.1, 3.3 and 3.5, in the SMT-lib
format.

M2R Internship Report 49/50

Julien Henry Static Analysis by Path Focusing

B Example of loss of precision in Path Focusing

The following graph is a simplified example taken from one of our benchmarks, where Path
Focusing technique obtains bad results.

p0

p1:
i← Φ(0, i′)

p2

p3

i ≤ 50

i′ ← i + 1

p1 and p2 are both loop headers. We have PR = {p1, p2}.

• We start with p1 : i = 0. The SMT-solver finds the path p1 → p2.

• At point p2 : i = 0. Then, we focus on the path p2 → p3 → p1. The obtained invariant
in p1 becomes i ∈ [0, 1]. Since this is a loop header, widening is applied: i ≥ 0.

• The new focus path is p1 → p2. The image of the polyhedron i ≥ 0 by this transition is
0 ≤ i ≤ 50. Again, p2 is a loop header, and widening gives i ≥ 0.

In this example, we do not have narrowing iterations since we never focus on self loops.

50/50 M2R Internship Report

	Introduction
	Abstract Interpretation: state of the art
	Introductive example
	Abstract Interpretation
	Abstraction of the domain
	Termination

	Linear Relation Analysis
	Convex polyhedra
	Program Analysis
	Precision of the analysis

	Example

	Path Focusing technique
	Lookahead Widening
	Path Focusing
	Multigraph
	Choice of the focus paths
	Algorithm
	Precision of the analysis
	Example
	Disjunctive invariants
	Removing identity transitions

	Efficiency comparison: example

	Implementation
	Infrastructure
	LLVM internal representation
	Transformation passes
	Drawbacks

	Abstract domain representation
	Attachment to LLVM Internal Representation
	Dimensions of the abstract values
	Diseq comparisons

	Unrolling loops
	SMT-solving
	Limitations
	Example
	Experiments
	Benchmarks
	Analysis of real code

	Future Work
	Arithmetic Overflows
	Alias analysis
	Combining Lookahead Widening and Path Focusing

	Conclusion
	Bibliography
	Appendices
	Generated formula
	Example of loss of precision in Path Focusing

