
Optimistic Parallelisation of
SystemC

Samuel Jones

M2R Placement Report

2011

e-mail:
jones@imag.fr

Tutors:
Matthieu Moy - Claire Maiza

Unité Mixte de Recherche 5104 CNRS - Grenoble-INP - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

file:jones@imag.fr

Optimistic Parallelisation of SystemC

Samuel Jones

Université Joseph Fourier: MoSiG DEMIPS

2011

Abstract

Systems-on-chip (SoCs) are becoming more complex and more widespread. Vir-
tual prototyping tools are critical to the rapid development of embedded software.
SystemC is the industry standard for simulation of SoCs today; however, its perfor-
mance is becoming an issue. We describe an experiment in parallelising SystemC
for SMP machines by running multiple schedulers each responsible for a subset
of the available SystemC processes. Each scheduler has its own local time and
does not synchronise automatically with the others. We provide an interface for
specifying coarse-grain and fine-grain timing constraints to enable the program-
mer to write correct models in an intuitive way. Our work identifies the problems
that occur when using fine-grain timing constraints and evaluates some solutions.
We show that it is possible to obtain good speed-up even for relatively complex
models.

Résumé

Les systèmes sur puce deviennent de plus en plus élaborés et répandus. Le
développement de logiciels embarqués nécessite des outils de prototypage virtuel.
SystemC est la norme industrielle dans le domaine de la simulation de systèmes
sur puce modernes, mais sa performance devient insuffisante. Nous présentons
une tentative de parallélisation de SystemC utilisant plusieurs ordonnanceurs
indépendants, chacun responsable d’un sous-ensemble des processus SystemC dis-
ponibles. Chaque ordonnanceur dispose d’une horloge locale et ne se synchronise
pas de manière automatique avec les autres ordonnanceurs. Nous fournissons une
interface permettant la spécification de contraintes à gros grain et à grain fin, afin
de permettre au programmeur d’écrire facilement des modèles corrects. Notre
travail identifie les problèmes qui surviennent lors de l’utilisation de contraintes
temporelles à grain fin et évalue quelques solutions. Nous démontrons qu’il est
possible d’obtenir une accélération satisfaisante même pour des modèles assez
complexes.

Keywords: SystemC, parallelisation, optimistic, quantum

Mots Clés: SystemC, parallélisation, optimiste, quantum

Tutors: Matthieu Moy - Claire Maiza

Parallelisation of SystemC Samuel Jones

Acknowledgements

I’d like to take this opportunity to thank Matthieu Moy and Claire Maiza, my project su-
pervisors, who dedicated their time and energy to guiding me through this project. They
were always available to explain and advise, and very patiently went through things as many
times as was necessary for me to understand. I’d also like to thank Hélène, my wife, for her
patience and support throughout my Masters degree.

M2R Placement Report i/50

Contents

1 Introduction 1

2 SystemC/TLM 3
2.1 Modeling Systems-on-Chip . 3

2.1.1 RTL . 4
2.1.2 TLM . 4

2.2 SystemC/TLM . 4
2.3 Processes in SystemC . 5

2.3.1 SC THREAD . 5
2.3.2 SC METHOD . 6
2.3.3 Co-operative Semantics . 6

2.4 Time in SystemC . 6
2.4.1 Transaction-Level Modeling . 7
2.4.2 TLM Temporal Decoupling . 9

2.5 Communication in SystemC . 10
2.5.1 Delta-cycles . 10
2.5.2 Events . 11
2.5.3 TLM Transport . 11
2.5.4 Synchronisation . 12

2.6 The SystemC Scheduler . 14

3 Related Work 16
3.1 Conservative Approaches . 16
3.2 Optimistic Approaches . 18
3.3 jTLM . 18
3.4 Discussion . 18

3.4.1 The Disparate Deadlines Problem . 19

4 An Optimistic Approach 21
4.1 Overview . 21
4.2 Thread Partitioning . 22
4.3 Shared-memory parallelism . 23
4.4 Interface Requirements . 24
4.5 Global Control . 25

4.5.1 Notion . 26
4.5.2 Practice . 26

ii

Parallelisation of SystemC Samuel Jones

4.6 Local Control . 27
4.6.1 Atomicity . 27
4.6.2 Transaction Timing Specifiers . 28
4.6.3 An implementation problem . 30
4.6.4 Persistent Events . 31

4.7 Usage guidelines . 31
4.7.1 Partitioning . 31
4.7.2 Race conditions . 32

4.8 Discussion . 32
4.8.1 Producer & Consumer - time based 32
4.8.2 Producer & Consumer - event-based 35

5 Evaluation 40
5.1 Test Architecture . 41
5.2 Results . 42

5.2.1 Best Case . 43
5.2.2 Normal case . 44

5.3 Summary . 47

6 Conclusion 48
6.1 Future Work . 48

M2R Placement Report iii/50

List of Figures

2.1 The different levels of abstraction . 3
2.2 A SystemC thread . 5
2.3 A SystemC method . 6
2.4 The passing of SystemC time . 7
2.5 The loosely-timed coding style . 8
2.6 The approximately-timed coding style . 9
2.7 A δ-cycle inside a time instant . 10
2.8 An event used to wake up a worker thread . 11
2.9 A TLM model . 12
2.10 Time-based synchronisation . 13
2.11 Event-based synchronisation . 13
2.12 The SystemC scheduling algorithm . 14
2.13 The SystemC scheduler . 15

3.1 The disparate deadlines problem . 19

4.1 Two Processors . 21
4.2 Usage of the SC AFFINITY macro . 23
4.3 Inter-process communication in SystemC via events 23
4.4 The read-write-modify paradigm . 24
4.5 The effect of the global quantum on legal system states 25
4.6 Loose timing . 26
4.7 Declaring an atomic section with parameters 28
4.8 Declaring an atomic section with function calls 28
4.9 The effect of SYNC WAIT and SYNC CATCH UP on legal system states 29
4.10 The effect of FULL SYNC on legal system states 30
4.11 Using non-persistent events to build persistent events 31
4.12 Producer-consumer paradigm in classical SystemC 33
4.13 Setting the global quantum . 33
4.14 Producer-consumer with timing specifiers . 34
4.15 Consumer-producer paradigm with local timing specifiers 34
4.16 Annotating ranges of memory with scheduler affinities 35
4.17 Producer-consumer paradigm using events in classical SystemC/TLM 36
4.18 Producer-consumer paradigm using events in our simulator 37
4.19 Usage of instant synchronisation . 38

5.1 Work distribution . 41

iv

Parallelisation of SystemC Samuel Jones

5.2 Test Bench Architecture . 41
5.3 Synchronisation in our test model . 42
5.4 Relative Performance with no Synchronisation Requirements 43
5.5 Relative Performance with Medium Synchronisation Requirements 45
5.6 Relative Performance with Strong Synchronisation Requirements 45

M2R Placement Report v/50

Parallelisation of SystemC Samuel Jones

Chapter 1

Introduction

Systems-on-chip (SoCs) are omnipresent in the modern world. These are hardware compo-
nents that contain one or several processors, memories, external interfaces, and everything
necessary for a complete system on one integrated circuit. Found in mobile phones, cars,
aeroplanes, DVD players, and all kinds of electrical appliances, these devices are becoming
more and more powerful and complex.

When manufacturing SoCs, it used to be the case that, in order for developers to write
software to run on a chip, there had to be a physical version of the chip available. This meant
that the development of software for a SoC could not begin until a hardware prototype came
off the production line. In order to accelerate the development of SoCs, manufacturers began
to use software simulations of the chip’s behaviour to enable software writers to develop code
while the hardware design was still being specified. Such simulations are known as virtual
prototypes.

The industry-standard simulation engine in use today is SystemC. SystemC is a set of
C++ classes and macros which provide a simulation kernel and a language for describing
hardware elements. SystemC has an entirely sequential simulation kernel: simulation threads
are executed one after another using co-routine semantics.

As the complexity of SoCs increases, so does the complexity of the simulation. Unfor-
tunately, typical modern processors are no longer increasing in speed, but are increasing in
parallelism instead. Problems with heat dispersion caused by increasing processor clock speed
have led to the approach where several processor cores are placed on a single chip. SystemC,
being sequential, is unable to harness this increase in computing power, and is therefore
limited in the types of simulations it can execute in a reasonable period of time. This is
particularly frustrating given that the simulated environment is typically highly parallel. As
SoCs become more and more complicated, it is becoming less and less feasible to simulate
them using SystemC.

To avoid this situation, it is necessary to develop a parallel simulation kernel for SystemC,
enabling it to use the extra computing power provided by multi-core machines. A näıve ap-
proach to parallelisation involves sharing out the concurrently eligible processes over machine
cores and executing them in parallel. While this method shows good results for certain types
of models, it is ineffective for other types.

When parallelising SystemC, there are three major difficulties to overcome:

1. SystemC uses co-operative multi-tasking semantics. This means that each running
process (representing some hardware component) can assume that it is the only running

M2R Placement Report 1/50

Parallelisation of SystemC Samuel Jones

process, and accesses to shared resources do not need to be protected. In a parallel
kernel, this assumption will not hold.

2. For a certain class of SystemC models (see Section 2.4.1), the scheduler typically has
only one item that it can execute at a time. In order to parallelise this class of models,
it is necessary to run processes that normally would not yet be eligible. Avoiding the
temporal inconsistencies this causes is difficult.

3. SystemC provides a language for modeling very detailed, cycle-accurate system descrip-
tions, and for more abstract, functional models. It is difficult to write a general purpose
kernel that will perform well for all types of simulation.

We present an optimistic parallelisation approach, meaning that we allow simulation
events to occur out of order. We provide two types of tools designed to enable the user to
express constraints on event ordering, and therefore maintain simulation correctness. Firstly,
we use a global quantum, an integer value which fixes an upper limit on the temporal sepa-
ration between any two schedulers in our simulation. Secondly, we introduce a set of timing
specifiers local to each TLM transaction, which allow the programmer to assert that certain
temporal properties should hold between the two schedulers before or after the transaction is
executed.

We apply our approach to typical communication idioms and evaluate the strengths and
weaknesses of our interface. We also provide some performance evaluations, giving an idea of
the potential gain of our work.

We give an overview of how SoCs are modeled in chapter 2, followed by a description of
the SystemC simulation engine. In chapter 3 we discuss work that has been done up until now
on SystemC parallelisation, before discussing our approach in some detail in chapter 4. In
chapter 5 we present performance results for our kernel and we draw some overall conclusions
in chapter 6.

M2R Placement Report 2/50

Parallelisation of SystemC Samuel Jones

Chapter 2

SystemC/TLM

In this chapter we will give a brief overview of approaches to modeling Systems-on-Chip before
going into relevant details about SystemC.

2.1 Modeling Systems-on-Chip

?

?

?

T

L

M

RTL

Verilog, VHDL

Specification

Matlab, C

SystemC

Cosimulation

Gate level

PV

PVT

Algorithm

Production

Cycle accurate

+ abstract

+ concrete

Figure 2.1: The different levels of abstraction, reproduced with permission from [4]

When modeling any system it is necessary to decide how much detail should be included
about the way the underlying system works. The principal levels of abstraction used when
designing SoCs are shown in Figure 2.1. When modeling at the algorithm level, no hardware
implementation detail is maintained and only the properties of the algorithm used are studied.
The next most concrete level is Transaction-Level Modeling, an abstract level, modeling com-
munications between components as simple transactions, which we discuss in Section 2.1.2.

M2R Placement Report 3/50

Parallelisation of SystemC Samuel Jones

Following TLM are cycle-accurate models. These are models where the behaviour of compo-
nents is modeled at the level of clock cycles. Register Transfer Level (RTL) models are the
classical way of modeling systems; we discuss them in the following section. Finally there is
the logic gate level of abstraction, which contains all the information necessary to synthesise
the hardware.

2.1.1 RTL

The classical approach to designing and modeling SoCs is to describe the system using a
Register Transfer Level (RTL) description. This relatively low level of abstraction describes
the system in terms of signals flowing between hardware registers and logical operations
performed on the signals. Hardware Description Languages (HDL) such as VHDL allow a
designer to describe a system at the RTL. Furthermore, such descriptions can be automati-
cally converted to gate-level descriptions using logic synthesis tools. Since RTL descriptions
describe how every element behaves at every cycle, they provide a highly accurate model of
the system.

As SoCs become ever more complex, using the RTL approach for simulation becomes less
and less practical. The sheer number of elements that have to be simulated at every clock
cycle means that simulations take a long time to execute, even on modern hardware. For
example, for one description of an MPEG video codec, simulating the encode and decode
operations of a single frame takes roughly one hour [4].

2.1.2 TLM

Transaction-Level Modeling (TLM) is a more abstract modeling approach. Systems are
modeled in terms of transactions between concurrent components connected by channels.
Components are written in some high-level programming language, and details of the hard-
ware implementation of behaviour are forgotten. Communications are modeled as operations
occuring over channels that connect components. The advantage of this approach is that
by implementing only what is necessary to provide a view of the hardware sufficient for
the software, considerable gains in execution time can be made. Depending on how much
timing information is included in the model, models are termed as either loosely-timed or
approximately-timed. Broadly speaking, approximately-timed models include communication
protocol timing details, whereas loosely-timed models treat communications as a simple func-
tion call and use coarse grain timing annotations.

Furthermore, the TLM model can serve as a reference implementation with regard to the
RTL description. This is useful because the TLM model may well be developed first, then
subsequently refined and made more accurate, leading towards an RTL model.

SystemC supports TLM by means of the SystemC/TLM standard, released by the Open
SystemC Initiative (OSCI) in 2005. It defines a series of templates, built on top of SystemC
primitives, whose goal is to enable interoperability between transaction-level modelers.

2.2 SystemC/TLM

SystemC is a set of libraries and templates written in the C++ programming language. It
provides a means of describing systems both at RTL and transaction-level, and a simulation
kernel. The first draft version of SystemC was published in 1999 and it underwent IEEE

M2R Placement Report 4/50

Parallelisation of SystemC Samuel Jones

standardisation in 2005 [2]. SystemC is defined by the Open SystemC Initiative (OSCI), a
standardising group created in 2000.

A SystemC simulation is made up of two parts: a structural part and a behavioural
part. The structural part describes the chip components and their interconnections; the
behavioural part describes the actions executed by components. A component in SystemC
is a class inheriting from the sc module class. The class contains the component’s internal
state, its ports (for communication with other modules), and processes. Processes implement
the behavioural part of the simulation.

The SystemC kernel builds and executes the model described by the user. It places each
process in a separate thread, and it contains a scheduler that decides when each thread should
run.

Abstractions designed to support TLM were introduced into SystemC by the TLM stan-
dard, currently at version 2.0 [9]. These abstractions are intended to allow users to perform
TLM modeling in a standardised way and thereby maintain interoperability between models
produced by different users. SystemC/TLM enables the modeling of generic transactions over
a memory-mapped bus. The TLM standard defines sockets, which connect distinct modules
to the bus, as well as laying down rules about the contents of messages sent over connections
established by sockets.

2.3 Processes in SystemC

SystemC provides two key ways of modeling processes: threads and methods.

SC MODULE(example){ // d e c l a r e SystemC module c a l l e d ‘ example ’

SC CTOR(example){ // d e c l a r e i t s c o n s t r u c t o r
SC THREAD(go) ; // d e c l a r e the f u n c t i o n ‘ go ’ to be a thread

}

void go (){
while (! not done){

do something () ;
wait (20 , SC MS) ; // y i e l d to SysC kerne l , re turn 20ms l a t e r

}
}

Figure 2.2: A SystemC thread

2.3.1 SC THREAD

Threads are C++ functions. They are invoked only once, and run from beginning to end,
pausing at specific points in order to yield control of the processor to the simulation kernel.
Threads can call the function wait to suspend their own execution for a period of simulation
time (wait(time)), or until a specific event occurs (wait(event)). A common paradigm is
to place code in an infinite loop which calls wait(time) once per iteration. This represents
a hardware component performing some action at regular intervals, as shown in Figure 2.2.

M2R Placement Report 5/50

Parallelisation of SystemC Samuel Jones

SC MODULE(example){ // d e c l a r e SystemC module named ‘ example ’
s c i n<bool> i nput channe l ; // d e c l a r e a s imple boo lean input channel

SC CTOR(example){ // d e c l a r e i t s c o n s t r u c t o r
SC METHOD(i n t e r r u p t) ; // d e c l a r e f u n c t i o n ‘ i n t e r r u p t ’ as method
s e n s i t i v e << i nput channe l ; // d e c l a r e the method to be s e n s i t i v e

} // to changes on the input channel

void i n t e r r u p t (){
std : : cout << ‘ ‘ i n t e r rup t ed ! ’ ’ << std : : endl ;

}
}

Figure 2.3: A SystemC method

2.3.2 SC METHOD

Methods are similar to function invocations: they define services that a component can per-
form when solicited by another component. Methods run when events to which they are
sensitive occur. These events can be the edge of a clock, a change of value of some arbi-
trary signal, or user-defined events. When an event occurs, the SystemC scheduler runs any
methods that are sensitive to this event.

Methods cannot call wait() and do not yield the processor. An example method is shown
in Figure 2.3.

2.3.3 Co-operative Semantics

The SystemC scheduler elects threads in some reproducible order. The thread that is elected
runs until either it calls wait or it terminates. During its execution, a thread cannot be pre-
empted (interrupted by another SystemC thread). This means that each thread can safely
assume that it is the only thread being executed, and therefore accesses to shared resources
do not need to be protected.

Moreover, if a thread enters an infinite loop that does not call wait(), the thread will
never give up the processor and the entire simulation will be frozen.

2.4 Time in SystemC

SystemC allows the modeling of systems both at the cycle-accurate level and at the transaction
level. Cycle-accurate, or strictly-timed, simulations model the behaviour of each component at
each clock tick. This is generally done using clocked threads and the SystemC communication
primitives such as sc signal. This involves a high level of detail but provides a very accurate
simulation model, which can be used for performance analysis.

Transaction-level models, however, abstract out precise timing details and represent a
system as independent components communicating via transactions on a central bus. They
use time in a more complicated way. This means that SystemC has to contain the notion of
simulation time. Simulation time represents the progress of time within the simulation, which
has no relation to wall-clock (real-world) time. That is to say, the simulation of 1 second could

M2R Placement Report 6/50

Parallelisation of SystemC Samuel Jones

void MPEG: : encode (){
wait (20 , SC MS) ;
//do the encoding
. . .
return ;

}

void C o n t r o l l e r : : c o n t r o l (){
while (1){

encode () ;
}

}

(a) An action that consumes time

0

20

40

60

80

100

120

Wall-clock Time
S
im

u
la

ti
on

T
im

e
(m

s)

Simulated Time

(b) Time moves forward in leaps and bounds

Figure 2.4: The passing of SystemC time

take 30 wall-clock seconds if the model is complex, or only 50 wall-clock milliseconds if the
model is simple. Therefore, a notion of the passing of time within the simulated environment
is maintained. For this purpose, a simple scalar value can be used that counts simulated
nanoseconds (or smaller) since the beginning of the simulation.

One consequence of the semantics of SystemC is that it is impossible to state that an
action occurs during a certain period of time. It is impossible to say that an action takes x
nanoseconds, because the advancing of time is an atomic action (it is a simple integer add
operation). In order to give the appearance of an action taking time, one first advances
time by use of the wait() SystemC call (see figure 2.4a), and then performs the action. This
feature is key: operations do not occur during a certain period of simulation time, they happen
instantaneously with regard to the simulation time.

One might näıvely expect that SystemC time progress linearly with regard to wall-clock
time; however, SystemC time tends to advance in “leaps and bounds”. This is illustrated
in figure 2.4b, with the example of a controller that continually triggers an encoding every
time the previous one finishes. The example code is not representative of the way SystemC
components communicate, it is merely a simplified example to demonstrate the way time
passes in SystemC. One sees that, for SystemC, there is no time between successive instants.
If the simulation starts at time 0, and the next event occurs at time 20ms, then there is no
time instant at 10ms - the intermediary time simply does not exist.

2.4.1 Transaction-Level Modeling

In a transaction-level model, a component such as an MPEG encoder performing an encode
operation might be represented as shown in Figure 2.4a. The MPEG encoder is treated as a
black box: provided with data, it performs the encoding in precisely 20 milliseconds. Rather
than littering the encoding operation with calls to wait(1, SC MS) every time a millisecond’s
worth of computation is performed, one waits all 20 milliseconds first and then performs the
operation.

A value such as 20 milliseconds is used here because it is not known precisely how long

M2R Placement Report 7/50

Parallelisation of SystemC Samuel Jones

void do t rans (){
payload t rans ; // the o b j e c t t h a t e x p r e s s e s the t r a n s a c t i o n
t rans . set command (TLM WRITE COMMAND) ;
t rans . s e t addr (MPEG ENCODE) ;
t rans . s e t d a t a (1) ;

s c t ime (40 , SC MS) time ;

ou t so cke t . b t ran spo r t (trans , time) ;
}

Figure 2.5: The loosely-timed coding style

the operation will take. It is also possible to add a degree of uncertainty by using a bounded
random value, such as between 5 and 35 milliseconds. These values can be refined as the
precise hardware performance details become available.

The SystemC/TLM LRM describes the three principal coding styles used when modeling
systems at the transaction level: untimed, loosely-timed, and approximately-timed. Coding
styles are not levels of abstraction but rather different approaches within the transaction level
of abstraction. They concern the way that the TLM interface is used and are not precisely
defined by the standard. Furthermore, although in theory only one coding style is used in a
given model, in practice a mix of styles can be observed within the same model.

Untimed

Untimed simulations have no notion of time or a clock. Communication is performed entirely
using event notifications to communicate between processes. Untimed simulations may also be
referred to as Programmer’s View (PV) simulations, since a software programmer is typically
unconcerned with the timing details of the hardware.

Loosely-timed

The TLM standard provides two types of transaction (communication) - blocking and non-
blocking. Blocking transactions execute the entire transaction and return when it is complete.
Non-blocking transactions break the transaction into stages and several function calls are
necessary to complete a single transaction. This allows for more detailed modeling.

Loosely-timed simulation transactions are modeled using blocking interfaces, and coarse-
grain timings are used with transactions. For example, in a loosely-timed simulation, a
memory write may be modeled as a simple function call which performs the write and returns,
and takes x microseconds in total. An example showing the loosely-timed coding style can
be found in Figure 2.5.

Approximately-timed

In an approximately-timed simulation transactions are modeled using non-blocking interfaces
and are separated into several phases, each of which has timings. In an approximately timed
simulation, a memory write could be modeled as several phases: an opening handshake (x
µs), followed by the data transfer over the bus (y µs), followed by a closing handshake (z µs).

M2R Placement Report 8/50

Parallelisation of SystemC Samuel Jones

void s t a r t t r a n s (){
payload t rans ; // the o b j e c t t h a t e x p r e s s e s the t r a n s a c t i o n
t rans . set command (TLM WRITE COMMAND) ;
t rans . s e t addr (MPEG ENCODE) ;
t rans . s e t d a t a (1) ;

s c t ime (10 , SC MS) time ;

// beg in a handshake . The MPEG Encoder w i l l r e p l y by
// making a c a l l back to us , which w i l l be handled by
// c o n t i n u e t r a n s ()
out socke t . nb t ranspor t fw (trans , time) ;

}
void c o n t i n u e t r a n s (payload t rans){

command = trans . get command () ; // i n s p e c t the incoming pay load
. . .
s c t ime (20 , SC MS) time ;

// cont inue the t r a n s a c t i o n .
out socke t . nb t ranspor t fw (trans , time) ;

}

Figure 2.6: The approximately-timed coding style

The name Programmer’s View with Time (PVT) includes both loosely and approximately-
timed coding styles. Figure 2.6 shows an example of the approximately-timed coding style.

2.4.2 TLM Temporal Decoupling

TLM Temporal Decoupling, or quantum keeping, was introduced into SystemC by the TLM
2.0 standard. It is advocated as a way of reducing the number context switches incurred.
It is a technique which allows each thread to run in its own “time warp”, that is, to run
ahead of SystemC global time up to a certain amount. Instead of synchronising every time
they wish to communicate, threads can choose to advance their local time ahead of global
simulation time. The maximum gap allowed between the global time and a thread’s local
time is known as the global quantum. Because the approximately-timed coding style requires
timing accuracy, it is less suitable for use with temporal decoupling than the loosely-timed
style [9]. The loosely-timed coding style, by definition, does not use time for synchronisation
between components but events, and therefore can make use of temporal decoupling.

Temporal decoupling reduces the number of context switches made between threads and
therefore decreases the execution time. Clearly, this approach can have its toll on correctness.
The responsibility is left to the system designer to know whether it is dangerous to advance
ahead of simulation time. This approach gives the user a degree of control. By setting a large
quantum, or distance that a thread is allowed to advance ahead of global time, the user gains
speed at the cost of accuracy. The TLM designers provide certain guidelines about how to
choose the quantum to minimise inaccuracies. However, in this approach, any thread that
does not use the technique is likely to become a bottleneck.

We draw on the temporal decoupling approach for our work.

M2R Placement Report 9/50

Parallelisation of SystemC Samuel Jones

2.5 Communication in SystemC

Communications in SystemC are provided by user-defined events, as well as a combination of
ports, exports, and channels. These mechanisms exist to provide encapsulation of components
and to enable generic components. A port defines the services that are required by a compo-
nent from the outside. An export defines the services that a component provides. Ports and
exports are connected, or bound, to channels, which connect the two. Ports and exports can
be bound indirectly, that is, via other ports and exports.

In the TLM standard, a higher level approach is used. The system is modeled as com-
ponents communicating over a common memory-mapped bus. The TLM standard provides
interfaces representing initiator and target sockets. Initiator sockets are analagous to ports,
and target sockets to exports, while the common bus plays the rôle of the channel. Compo-
nents call the transport functions of the initiator socket, which must be bound to a target
socket on the bus. The target socket on the bus should look up the memory address of the
operation, and route the request onward to the bus’s initiator socket bound to the appropriate
target.

When SystemC processes write values on channels, any process sensitive to a change of
the channel value will be marked as runnable. However, the sensitive processes are awoken
an infinitesimal amount of time afterwards, known as a delta-cycle.

Simulation time

Figure 2.7: A δ-cycle inside a time instant

2.5.1 Delta-cycles

When several processes are eligible at the same time instant, the execution order is defined
by the implementation. However, it may be the case that some processes depend on the
outputs of others, and that therefore some kind of order is implied. In Figure 2.7, the vertical
lines represent instants in simulation time. The brace represents a zoom on a given time
instant, showing the eligible processes as shaded boxes. These processes are executed in some
order. So as to ensure that the order of execution does not determine the output, SystemC
uses the concept of a delta-cycle (δ-cycle). Conceptually, the available threads within a given
time instant are run repeatedly until the outputs stabilise, in a manner analogous to the
computation of a fixed point. A δ-cycle is one round of execution inside a time instant.
In actual fact, processes are not executed repeatedly, but the mechanism is used whereby
processes are sensitive to their input channels, and when the value of their input channels
changes, they are made runnable. Using this approach, one can maintain determinism and
coherency when modeling parallel events sequentially.

M2R Placement Report 10/50

Parallelisation of SystemC Samuel Jones

SC MODULE(encode){ // d e c l a r e a SystemC module
s c i n<bool> m in ; // d e c l a r e an input s i g n a l
s c even t worker event ;

SC CTOR(encode){ // d e c l a r e the module ’ s c o n s t r u c t o r
SC METHOD(int) ; // the f u n c t i o n ‘ ‘ i n t ’ ’ i s a method
s e n s i t i v e << m in . pos edge () ; //and i t i s s e n s i t i v e to m in
SC THREAD(worker) ; // the f u n c t i o n ‘ ‘ worker ’ ’ i s a thread

}

void int (){
worker event . n o t i f y () ;

}

void worker (){
while (true){

wait (worker event) ;
work () ;

}
}

}

Figure 2.8: An event used to wake up a worker thread

2.5.2 Events

SystemC contains user-defined events. Threads can halt their execution until events are
signalled by another process, by wait ing on events. Threads or methods which awake sleeping
threads are said to notify an event. Events in SystemC are non-persistent, which is to say
that if an event is notified and no thread is waiting on it, then the notification is lost. Events
are often used inside a module to awaken a worker thread, as shown in Figure 2.8.

2.5.3 TLM Transport

In SystemC/TLM, all components are connected to a memory-mapped bus. A memory-
mapped bus maps virtual memory address ranges to the connected components, and then
routes transactions by the virtual memory address used by the components when communi-
cating. Components are connected via sockets, which are directional (we refer to initiator or
target sockets). Figure 2.9 shows of how sockets connect components to a bus, including a
memory with an input/output connection to the bus, an input port and an output port.

The transport interface defines two types of communicating, blocking and non-blocking, as
we have seen earlier. These functions accept as an argument an object of the generic payload
introduced by the TLM standard. The generic payload is a class that is intended to represent
the transaction being carried out on the bus and its use is recommended for interoperability.
The argument t can be used for temporal decoupling.

The implementation of the bus is left to individual vendors. The TLM standard simply
specifies what is necessary to achieve interoperability between vendors.

M2R Placement Report 11/50

Parallelisation of SystemC Samuel Jones

Memory

Output port

Input port

Figure 2.9: A TLM model

The TLM transport interfaces are the glue that holds distinct components together. When
component A calls b transport on a socket, the call is routed over the bus to a function on
the appropriate component B. This function is executed by the thread that was running
inside component A. This means that an entire transaction can be performed without a
context switch. This also means that the TLM transport mediates between two pieces of
arbitrary, user-written code. Threads from component A executing code in component B is
not a problem in classical SystemC/TLM as the co-operative semantics mean that the threads
are executed in turn and there can be no race conditions.

Where they are not relevant to the example, we leave out the TLM syntax in our
code listings, as it is rather verbose. So, instead of declaring a function as returning type
tlm::tlm response status and setting properties on the generic payload, we simply declare
the function as returning type status.

2.5.4 Synchronisation

There are two types of inter-process synchronisation in SystemC/TLM: implicit or time-based
synchronisation, and explicit or event-based synchronisation. By time-based synchronisation
it is meant that it is known how long a remote component will take to perform a given
operation, and so one simply requests that the component perform the operation, waits an
appropriate amount of time, and then collects the result. Figure 2.10 shows an example of
time-based synchronisation: the worker updates the value x every 10 ms, starting from time
0, and the reader samples the value every 10 ms starting at time 5.

Time-based synchronisation can be used in some very detailed models where precise timing
information and the component network topology and characteristics are known. It is not
generally used in more abstract models where all timing values are approximate and describe
the general progression of the simulation rather than the precise state of components. In
these models, event-based synchronisation is typically used.

By event-based synchronisation it is meant that components communicate using SystemC
events and the wait and notify calls. Event-based synchronisation is illustrated in Fig-
ure 2.11. It is worth noting that the event in the worker module is made persistent by the
addition of a Boolean variable, but not the event in the reader module. As will be explained
in the following section, the order of execution of threads in a delta-cycle is implementation-
dependent. Since both the reader and the worker will start with time 0, one will be elected by
the scheduler to run first. If the reader runs first then the notify will be lost, as the worker

M2R Placement Report 12/50

Parallelisation of SystemC Samuel Jones

SC MODULE(reader){
// bound to worker
i n i t s o c k e t bus socke t ;

SC CTOR(reader){
SC THREAD(read data) ;

}

void read data (){
wait (5 , SC MS) ;
while (1){

int y = bus socke t . read () ;
wait (10 , SC MS) ;

}
}

}

SC MODULE(worker){
t a r g e t s o c k e t bus socke t ;
int x = 0 ;

SC CTOR(worker){
SC THREAD(work) ;

}

void work (){
while (1){

x++;
wait (10 , SC MS) ;

}
}

int read (){ return x ; }
}

Figure 2.10: Time-based synchronisation

SC MODULE(reader){
// bound to worker : : i n s o c k e t
i n i t s o c k e t ou t so cke t ;
t a r g e t s o c k e t i n s o c k e t ;

SC CTOR(reader){
SC THREAD(read worker) ;

}

int read worker (){
out socke t . wr i t e (START, true) ;
wait (my event) ;
return bus socke t . read () ;

}

void wr i t e (addr , va l){
i f (addr == DONE && val)

my event . n o t i f y () ;
}

}

SC MODULE(worker){
// bound to reader : : i n s o c k e t
i n i t s o c k e t ou t so cke t ;
t a r g e t s o c k e t i n s o c k e t ;

SC CTOR(worker) : x (0) {
SC THREAD(work) ;

}

void work (){
while (1){

while (! s ta r t work)
wait (my event) ;

s ta r t work = fa l se ;
x++;
out socke t . wr i t e (DONE, true) ;

}
}

int read (){ return x ; }

void wr i t e (addr , va l){
i f (addr == START && val){

s ta r t work = true ;
my event . n o t i f y () ;

}
}

}

Figure 2.11: Event-based synchronisation

M2R Placement Report 13/50

Parallelisation of SystemC Samuel Jones

is not yet waiting on the event. This is why a persistent event is necessary. However, the
reader’s event can remain transient, as we can be sure that the reader will always be waiting
on the event when the writer notifies it.

Approximately-timed models may use some time-based synchronisation. Loosely-timed
models, by their very nature, use little time-based synchronisation. We say little rather than
none because some assumptions are retained. For example, it is reasonable to expect that an
event A occurring a long time before event B will have completed before B occurs. What is
a long time? This depends on the timing detail of the model.

2.6 The SystemC Scheduler

begin :
while (not empty (RUNNABLE))

e v a l u a t e r u n n a b l e p r o c e s s () ;

while (not empty (UPDATE))
e v a l u a t e u p d a t e r e q u e s t s () ;

while (not empty (DELTA))
e v a l u a t e d e l t a n o t i f s () ;

i f (not empty (RUNNABLE)) goto begin ;

i f (TIMED){
a d v a n c e t o n e a r e s t d e a d l i n e (TIMED) ;
goto begin ;

}

Evaluation Phase

Update Phase

Figure 2.12: The SystemC scheduling algorithm

The SystemC scheduler elects processes to be executed, one at a time, from those which
are in its runnable processes set. Its mode of operation can be expressed most easily in terms
of four sets:

1. Runnable processes - processes that are ready to run at this time instant.

2. Update requests - channels that have been written to by processes and must have their
values updated.

3. Delta notifications - methods that are sensitive to channel values and will be awoken
after updates are performed. It is also possible for processes to issue delta notifications
directly.

4. Timed notifications - processes that are waiting for time to pass.

M2R Placement Report 14/50

Parallelisation of SystemC Samuel Jones

Run all runnable

Update state

is {Runnable} empty?

Yes

No

Next timed deadline

no more deadlines?

Exit

Figure 2.13: The SystemC scheduler

Figure 2.12 shows the SystemC scheduling algorithm in pseudo-code. Figure 2.13 shows
the algorithm diagrammatically. First, the scheduler evaluates (executes) the processes that
are in the runnable processes set. Each of these processes may generate update requests,
immediate notifications, delta notifications and timed notifications. Immediate notifications
allow a process to place another process in the runnable set immediately. Timed notifications
will fire at a given deadline in the future, activating one or several processes. When there
are no more runnable processes, the scheduler evaluates the update requests and the delta
notifications. If the runnable set is no longer empty, it returns to the beginning of the
algorithm. Otherwise, it advances time to the next deadline, as set by a timed notification
and evaluates the runnable processes. When there are no more deadlines, the simulation is
over.

The algorithm can also be thought of in terms of two phases: the evaluation phase and
the update phase. The evaluation phase consists in evaluating runnable processes. This
can be thought of as the useful work of the simulator. The update phase is the remaining
operations: updating channel values, notifying events and awakening processes. The order
in which runnable processes are evaluated within a δ-cycle is not defined by the standard,
leaving the choice to implementations [2]. Since the system designer cannot rely on a specific
process execution order when designing the system, he must make any dependencies explicit
in the model. This is essential to parallel SystemC kernels, since an easy starting point for
parallelisation is to execute all currently runnable processes in parallel. If a specific execution
order were implied in the standard, such an approach would instantly violate the standard
semantics.

We have given an outline of the key properties of SystemC and its Transaction-level
Modeling layer that are relevant to our work. We have also introduced the näıve approach to
SystemC parallelisation: at each time instant, take all runnable processes and execute them
in parallel. We will now introduce the related work in the field and see the difficulties inherent
to such an approach.

M2R Placement Report 15/50

Parallelisation of SystemC Samuel Jones

Chapter 3

Related Work

Parallelisation techniques aim to increase the execution speed of the SystemC/TLM simula-
tion by running some of the simulation processes in parallel. If two threads are run in parallel
then there are two risks in play. Firstly, the risk that running the two threads in parallel
violates the order in which threads should be run, as specified by the SystemC standard.
Secondly, the risk that running the two threads in parallel introduces race conditions, which
can cause erratic behaviour.

There are two categories of approaches to parallelising languages based on the Discrete
Event Simulation algorithm: conservative, and optimistic. Conservative approaches enforce
the same global time over all copies of the simulator at all times. For SystemC, this means
that the simulation is guaranteed not to violate the order in which threads should be run with
respect to the standard. However, this is a source of difficulty as it imposes a large amount
of communication and synchronisation.

Optimistic approaches have weaker synchronisation behaviour than conservative ones.
They have to either implement some kind of rollback mechanism when violations are detected,
provide some means of foreseeing and avoiding violations, or provide weaker guarantees about
the correctness of the simulation with respect to the standard. Optimistic approaches have
been used to parallelise some Discrete Event Simulators such as VHDL and Verilog [3], but
we are not aware of the approach being applied to SystemC.

Furthermore, the work that has been done on SystemC has been focused on cycle-accurate
models. This is to be expected, as these more detailed simulations were the first to require
speeding up. However, now even transaction-level models are being found to be too slow.

We first review the work that has been done on parallelising SystemC and comparable
languages and then discuss the problems that are left unadressed by existing work.

3.1 Conservative Approaches

Most work on conservative approaches has modified the SystemC kernel, and has been per-
formed with distributed execution in mind. However, some work has also been done on par-
allelising SystemC for SMP workstations [15] and on introducing a thin layer above SystemC
[8].

One of the first attempts to do parallelise SystemC was the work of Chopard et al. [3].
They place a copy of the SystemC scheduler on distributed machines and synchronise the
schedulers at each update phase. A master node collects information from each scheduler

M2R Placement Report 16/50

Parallelisation of SystemC Samuel Jones

to determine when to advance the global simulation time. They require the developer to
manually partition SystemC processes over the participating nodes. They achieve good results
with a realistic system, their limiting factor being load balancing. However, their approach
assumes a cycle-accurate simulation.

An extension to the same work [5], presents some optimisations that they applied to
their approach, removing some unnecessary synchronisation between schedulers. They state
that SystemC semantics “require a high level of synchronization which can dramatically affect
the performance”. They partially decentralise their original algorithm and allow nodes to
compute the next timed deadline locally. These optimisations enable better performance, but
do not represent a major change of direction.

Another similar approach, this time aimed at SMP workstations rather than clusters, was
presented by Schumacher et al. [15]. They also only parallelise the evaluation phase of the
scheduler, using a barrier to synchronise threads. They achieve good speed-up (even super-
linear, due to the extra cache memory available on extra cores), but they acknowledge that
more needs to be done to deal with the TLM abstraction.

All of the approaches require some partitioning of the chip model into groups which will be
placed on separate cores. Ezudheen et al. [13] look closely at the question of how to choose
these groups. They implement a parallel evaluation phase and a sequential update phase,
but they then investigate a work-sharing implementation, a work stealing implementation,
and they implement an interface allowing the user to group related processes together, with
the intention of improving cache usage. They analyse their implementation by varying the
number of processes and the amount of computation that they perform. For large amounts
of computation and a high number of modules they achieve good speedup. They conclude
that the manual grouping of processes is the most efficient, though the user effort involved in
grouping the modules together in order to get the best performance may be considerable.

Mello et al. introduce a new programming style [12], which they call TLM-DT (for
“Distributed Time”), which they contrast with the approximately-timed and loosely-timed
TLM programming styles. They present a parallel simulation kernel that uses the quantum-
keeping technique of the SystemC TLM standard [9] to reduce context switches occurring
in parallel simulation, while remaining conservative. Every thread has its own local time,
which it advances when it executes work, and when it receives messages. These messages
are used to synchronise with other processes. They disallow certain SystemC synchronisation
functions in order to simplify their implementation and they change the semantics of SystemC
events, making them persistent. They show very promising results, but they only provide one
example. Since they use the TLM time quantum, their work provides the user with the
ability to trade speed against accuracy. They achieve good results, but their approach cannot
be applied to existing systems without rewriting them. They remove timed and immediate
notifications. Furthermore, they require communicating threads to be placed on the same
CPU, which limits the applicability of their system significantly.

Finally, Huang et al. suggest an approach to SystemC parallelisation that does not involve
modifying the kernel [8]. They introduce a SystemC Distribution Library, a layer that sits
above SystemC and manages remote and local simulators. They make use of the fact that
the OSCI SystemC reference implementation includes a function that executes only one delta
cycle of the simulation at a time. Their management layer handles consistency and shared
time among simulators and causes them to execute this function only when the system is in
a consistent state. They provide state machines for the control logic of the master and slave
nodes which enables the preservation of correctness.

M2R Placement Report 17/50

Parallelisation of SystemC Samuel Jones

3.2 Optimistic Approaches

Optimistic approaches have been investigated in the domain of distributed algorithms. There
are typically two types of approach to the problem of temporal ordering violations: avoidance
and recovery. Algorithms such as Schneider’s [14] use a system similar to Lamport’s clocks [11]
to avoid carrying out any messages until it is certain that no earlier message can arrive. On the
other hand, Jefferson’s virtual time [10] approach for ordering events correctly relies on using
roll-back techniques. He advocates using anti-messages to propagate roll-back information
when an ordering violation occurs, and delaying operations that are impossible to roll back
(such as I/O) until he can be certain that no earlier messages exist in the system.

Optimistic approaches have been applied to hardware description languages such as VHDL.
warped [16] was an optimistic simulation kernel for VHDL using a roll-back technique to
recover from temporal violations. However, a roll-back technique would be difficult to adapt
to SystemC/TLM given that inter-thread communications can take the form of arbritrary
function calls.

3.3 jTLM [7]

jTLM is not a SystemC kernel but a small, entirely separate parallel simulation kernel for
TLM modeling. Presented by Funchal and Moy in [7], it includes a pre-emptive scheduling
mode, where it hands off scheduling to the underlying operating system scheduler. It also
includes a way of stating that an action occurs over a certain length of simulation time, in
an attempt to parallelise loosely-timed models effectively (see section 3.4.1). Programmers
writing models for jTLM have to be aware of locations in their code where mutual exclusion
may be important and protect them appropriately. The authors wished to investigate what
was possible in a simulation kernel enforcing different semantics to those of SystemC. jTLM
is relevant to our work because it is also an attempt to deal with the problem of parallelising
loosely-timed models. However, as it is completely incompatible with SystemC, it is unlikely
to be used for industrial purposes.

3.4 Discussion

First of all, most of the research does not consider the potential race conditions introduced by
parallel execution of threads. The most obvious form of this problem is accesses to arbitrary
variables in shared memory, which are not part of the SystemC interface. This will be
a problem for any kind of parallelisation technique. If the threads rely on shared variables
outside of SystemC itself for any kind of communication, then parallel execution will introduce
race conditions that could cause incorrect behaviour on rare occasions. However, it has
been shown that avoiding these race conditions automatically requires fairly involved analysis
techniques [4].

Secondly, given the existing wealth of SystemC models, an approach to parallelisation
that would require a large modification effort is unlikely to be useful for the acceleration of
existing models. It might, however, be useful for the development of new models. The ideal
would be to have an entirely automatic approach to parallelisation that requires no changes
to existing or new models. Failing that, an approach that allows the designer to parallelise

M2R Placement Report 18/50

Parallelisation of SystemC Samuel Jones

CPU

Net card

Graphics

Simulation time

(a) Timeline showing when each process’s deadlines fall

cpu : : compute (){
while (1) {

crunch () ;
wait (20 , MS) ;

}
}

net card : : work (){
while (1){

decode () ;
wait (13 , MS) ;

}
}

graph i c s : : d i s p l a y (){
while (1){

update () ;
wait (23 , MS) ;

}
}

(b) 3 SystemC processes using the loosely-timed coding style

Figure 3.1: The disparate deadlines problem

only parts of the system at a time would be the next best thing, as it would enable the system
designer to obtain a certain speedup without having to rewrite the entire system.

We also see that the majority of the work has been directed towards cycle-accurate models.
This is natural, as cycle-accurate models contain more details about the platform and take
longer to execute, and therefore are the first type of model that should be parallelised. Impor-
tantly, it has been shown that cycle-accurate simulations can be simulated with good results
using conservative techniques [15] [3]. Ensuring an even load balance is typically the limiting
factor in terms of speedup. This is because cycle-accurate simulations lend themselves well
to a conservative approach; each thread is sensitive to a common clock and is therefore in
the runnable queue on every cycle. The schedulers have to synchronise on every clock tick,
but this is not necessarily expensive as the threads often represent homogeneous components
or the scheduler loads are well-balanced. Furthermore, the cost of the synchronisation pales
against the computation time if the threads do a meaningful amount of work. When dealing
with cycle-accurate simulations, the conservative approach ensures correctness and its costs
can be managed.

3.4.1 The Disparate Deadlines Problem

However, when dealing with loosely-timed simulations (see section 2.4.1), a difficult problem
arises. Since each component uses a “loose” timing value, it is rare that two deadlines collide.
That is to say, while in strictly-timed simulations each component is active on each clock tick,
in loosely-timed simulations the CPU will be active every 67 ms, the network card controller
every 22 ms, and so on, as shown in Figure 3.1. This means that at any given moment
in simulation time, there is almost always only one runnable process. This problem fatally
undermines the simplistic approach of simply dividing the available work among the cores:
each core will be idle the majority of the time. This problem has not been addressed by the

M2R Placement Report 19/50

Parallelisation of SystemC Samuel Jones

existing research on SystemC.
The conservative parallelisation framework is unsuitable for loosely-timed models. In

order to run processes in parallel, it is necessary to remove the notion of global time and
bring us into the world of optimistic simulators. This introduces certain difficulties.

M2R Placement Report 20/50

Parallelisation of SystemC Samuel Jones

Chapter 4

An Optimistic Approach

Faced with the weaknesses of the conservative approach when applied to loosely-timed simula-
tions, we decided to investigate a weakly synchronised approach. We now provide an overview
of our approach and justify our design decisions.

1 P1 : P2 :
2 a r i thmet i c () ; a r i thmet i c () ;
3 wait (1 0) ; wait (1 5) ;
4 a c c e s s c a c h e () ; a r i thmet i c () ;
5 wait (5 0) ; wait (1 5) ;
6 a r i thmet i c () ; a r i thmet i c () ;
7 wait (1 0) ; . . .
8 i n t e r r u p t P2 ;

Figure 4.1: Two Processors

The sequential SystemC kernel executes threads one-by-one, in a certain order. In this
way, it applies a total ordering to a set which is typically only partially ordered. For example,
consider the following model sketched in Figure 4.1. A sequential execution would perform
lines 2 and 3 of P1, then lines 2 and 3 of P2, then lines 4 and 5 of P1, and so on. However,
lines 2 and 3 of P2 do not depend on lines 2 and 3 of P1 and could be executed earlier or
concurrently. In fact, the only ordering constraint given in this example is that P2 should
receive the interrupt at time 70, assuming an instantaneous interrupt model. That is to
say, the sequential execution order imposed by the standard SystemC kernel is only one of
many legal (with respect to the SystemC semantics) orders. Furthermore, depending on the
nature of the communications between the two processes, it may not even be necessary that
P2 receive the interrupt at time 70 to conserve the behaviour of the program. Perhaps the
program’s behaviour will not change even if P2 receives the interrupt at some other time. We
attempt to use these properties to enable parallelism without violating semantics.

4.1 Overview

We modified the SystemC kernel to enable several instances of the scheduler to run in par-
allel, each responsible for a certain subset of the program’s processes. We do not enforce
synchronisation after every delta cycle. This means that schedulers are not forced to wait for

M2R Placement Report 21/50

Parallelisation of SystemC Samuel Jones

one another at each delta cycle and can therefore run in their own local time warp. This is a
similar principle to TLM’s temporal decoupling (see Section 2.4.2), with the difference that
we apply the warp to all threads managed by a scheduler, not individual threads.

We also modified an existing, simple, transport layer built on top of TLM. This transport
layer is the TLM protocol used at the Ensimag engineering school [1] and is called ensitlm[6].
It provides some simple data types and encapsulates calls to the TLM interface. It includes
an implementation of a memory-mapped bus which we also modified for our work developing
the user interface to our kernel.

Clearly, if we allow groups of threads to advance in a non-uniform manner, we risk in-
troducing time-related inconsistencies when threads communicate, such as events from the
future affecting current events and events arriving from the past. We provide an interface
for the user which allows him to specify constraints on the time gap between communicating
components at specific program points, as well as providing an overall limitation. In this way,
we attempt to make the most of information known by the user that may not be easy to
infer automatically. Furthermore, we provide the property that threads assigned to the same
scheduler will share a global clock and therefore interactions between these threads will still
be coherent.

We said in our literature survey that there are two ways of dealing with the problem of
temporal violations: avoidance and recovery. Our work would be classed as avoidance. We
attempt to avoid timing violations, but we also recognise that some timing violations may
not change the behaviour of the program in a significant manner; we are only interested
in avoiding behaviour-changing violations. A recovery approach would not be possible on
industrial platforms, which are often a patchwork in which the SystemC model is connected
to other systems.

It is worth mentioning at this point that simulation correctness is not necessarily a Boolean
value. Depending on the system modeled, some timing errors may be acceptable. A time
difference between the video output and the MPEG decoder that results in a skipped frame
could be an acceptable price to pay for an increase in simulation speed. However, time
differences that cause the system to deviate wildly from its sequential behaviour may be
unacceptable.

4.2 Thread Partitioning

We modified the SystemC standard OSCI kernel, separating out the scheduling logic from
the rest of the kernel, in order to be able to run it in parallel. We then had to make sure that
the remaining kernel code was thread-safe.

We added a macro to the SystemC API, SC AFFINITY, which enables the programmer
to specify logical groupings of threads. Threads in the same logical group will be executed
within the same scheduler, with a coherent notion of time, and, if there are sufficient machine
cores, on a separate core to all other groups. We then run, in parallel, as many SystemC
schedulers as there are groups. The schedulers do not synchronise automatically, rather we
provide ways for the programmer to describe the constraints that the schedulers must respect
in order to maintain the desired degree of correctness.

The macro is applied to a SystemC module. Threads within a module all share the same
affinity. An example of the usage of this macro is shown in Figure 4.2.

Although partitioning may seem like a difficult task, it is usually not very complicated.

M2R Placement Report 22/50

Parallelisation of SystemC Samuel Jones

SC MODULE(cpu){
SC CTOR(cpu){

SC AFFINITY (1) ;
SC THREAD(compute) ;
. . .

}

void compute () ;
}

Figure 4.2: Usage of the SC AFFINITY macro

A good partitioning will balance workload and minimise communications. A good heuristic
is to divide the components up according to how they are divided on the chip, grouping
together components with light workloads if there are insufficient cores. The component with
the largest workload will become the limiting factor on speedup.

4.3 Shared-memory parallelism

We decided to use threads to parallelise the kernel, in particular the pthreads library. We
chose the pthreads library because of its portability and standardised interface. The shared
memory that threads provide us with enables us to preserve the existent SystemC coding
style. Consider the case of communication via events, typically written in SystemC as shown
in Figure 4.3. This programming style is familiar to SystemC developers and there is a great
deal of existing code written in this way. In order to minimise the number of changes SystemC
developers would have to make in order to use our kernel, it is important to preserve this
style.

s c even t e ;

P1 :
wait (e) ;

P2 :
work () ;
e . n o t i f y () ;

Figure 4.3: Inter-process communication in SystemC via events

It has been said that, now that modern machines are often equipped with several pro-
cessors and a hierarchy of main and cache memory, the idea of shared memory could be
considered an illusion. After all, if two threads run on different processors, shared data will
almost certainly be cached locally at each processor and will be kept up to date by the cache
coherence protocol. Therefore the data is not really shared, but distributed. Furthermore,
there may be problems of false sharing, when shared data is located on the same cacheline
as unshared data. For example, in [15], the authors had to pay careful attention to data
placement to avoid placing master and worker data on the same cachelines. These are ar-

M2R Placement Report 23/50

Parallelisation of SystemC Samuel Jones

guments in favour of using a distributed memory model with semantics that clearly describe
the interactions between processes (such as the MPI standard), even on a single machine.

However, we believe that the use of a such a model would make SystemC harder for devel-
opers to use. Even if we managed to make the distributed nature of the memory transparent
by means of a careful implementation, programs written assuming shared memory would al-
most certainly not have optimal performance. Performance-conscious developers would have
to learn a new programming style.

Furthermore, the pthreads library has another advantage: that of portability. It is the
POSIX standard for threads and implementations exist on most UNIX-like operating systems,
and are often installed by default, being included in the glibc library. There is even an
implementation of the standard for Windows. Furthermore, although it is not enabled by
default, SystemC can be compiled to use pthreads, so the use of pthreads is in keeping with the
existing multi-threading setup, as well as being portable. On the contrary, an implementation
of MPI is rarely installed by default.

Since, in terms of performance, it seems there appears to be no compelling reason to use
one model over the other, we decided to use the pthreads library because it is highly portable
and fits well with the SystemC kernel.

4.4 Interface Requirements

Our interface should enable the user to address these two major threats to simulation cor-
rectness:

1. Temporal violations: Is it legal to execute an action that occurs on P1 at simulation
time 40 before an action that occurs on P2 at simulation time 30? How do we know?

2. Race conditions: This problem has two facets.

(a) As in other work, we assume accesses to shared variables which are not part of
the SystemC kernel must be protected or irrelevant, or that the user has care-
fully placed the threads involved on the same scheduler (assigned them the same
affinity).

(b) Multi-stage operations such as read-modify-write sequences are not guaranteed to
be atomic when using a parallel simulator. Consider Figure 4.4: Let us imagine
that two processes want to increment d in this manner, and the two processes are
run in parallel on different CPUs. In this example, even if individual accesses to
the bus are serialized, by protecting the bus read and write calls with mutexes,
we can still obtain a result impossible in standard SystemC, given the following
sequence of executions:

i. P1 reads d.

bus . read (0 x1000 , &d) ;
d = d + 1 ;
bus . wr i t e (0 x1000 , d) ;

Figure 4.4: The read-write-modify paradigm

M2R Placement Report 24/50

Parallelisation of SystemC Samuel Jones

ii. P2 reads d.

iii. Both processes increment d locally.

iv. P1 writes d.

v. P2 writes d.

The end result is that d has been incremented only once.

Our interface is made up of both global and local tools for addressing these issues. At the
global level we provide a parameter which controls the maximum separation in time between
any two schedulers. At the local level we provide a simple API allowing the programmer to
specify certain constraints.

4.5 Global Control

Inspired by the quantum keeping approach used in TLM, we have implemented a global
quantum parameter which can be used to control the time difference over all schedulers. For
example, if the maximum distance is 30ms, no two schedulers will ever be separated by more
than 30ms in time. This is not exactly the same as in TLM quantum keeping, where the
distance is an offset from global time. We have no notion of global time; rather one can think
of our quantum as a window that moves along the time line. It enables us to assert that at
any point in time, no scheduler can be more than the global quantum ahead of or behind any
other. The quantum prevents one scheduler with a lighter workload running away from the
others, and can be used as a knob controlling the tradeoff between speed and accuracy.

C1

C2

100

50

Figure 4.5: The effect of the global quantum on legal system states

Figure 4.5 illustrates this effect when we consider only two schedulers. Let us imagine
that we have set the global quantum to 50. The clock of the first scheduler is on the x-axis,
and the clock of the second is on the y-axis. As wall-clock time advances, we consider the
clocks of each scheduler and plot one against the other. The plotted line shows one possible
path. The hatched areas denote states defined as illegal when the global quantum is at 50.
We can see that the global quantum constrains the possible combinations of states.

M2R Placement Report 25/50

Parallelisation of SystemC Samuel Jones

CPU uses network

Network starts bootstrap

Network finishes bootstrap

Possible Variation Without Behaviour Change

Figure 4.6: Loose timing

4.5.1 Notion

The global quantum tool is perfect for expressing what was said about loosely-timed models in
Section 2.5.4: Loosely-timed models, by their very nature, use little time-based synchronisation.
Little, but still some, for convenience reasons. For example, how does one model a timer in
an untimed world?

Let us consider an example: We have two processes, representing a network card and
a CPU. When we launch the simulation, the CPU configures the network card with some
parameters and requests it to begin bootstrapping, an operation that may take around 1
ms. The CPU then continues with other work, the expected duration of which is 10 ms.
The scenario is shown in Figure 4.6. Then, the CPU uses the network card directly without
any synchronisation. We make the assumption that the network card is ready because our
understanding of loose doesn’t let us envisage a scenario where the network card initialisation
might not finish before the CPU’s work. We might revise our estimations of the timing details
one way or another when the chip is finalised, but we don’t expect them to vary so much that
the network card does not finish before the CPU.

So, the obvious question is: Just how much variation do we envisage?. Another way of
expressing the same idea is: How long ago does something need to have occurred (according to
the current loose timing values) for us to safely assume it has occurred?, or How far apart in
time must events be for us to use implicit synchronisation? The answer to all these questions
is actually the ideal value for the global quantum.

Let us imagine a simulation where we know that the answer to the above questions is
5 milliseconds. For interactions occuring in less than 5 milliseconds according to the loose
timing values, event-based synchronisation is used, but for any others, implicit synchronisation
is used. This means that even if up to 5 milliseconds of variation should occur, our simulation
will behave in the same way, because we are using explicit synchronisation. If we set the global
quantum to 5 milliseconds, then the variation between different schedulers will be limited to
5 milliseconds, and the behaviour of the simulation will remain unchanged.

4.5.2 Practice

The global quantum is a simple, yet remarkably powerful, idea. It is one simple parameter
that allows us to maximise parallelism without threatening correctness. The difficulty we face
is choosing the right value.

If the communication pattern of the system is simple, then one only has to set the quantum

M2R Placement Report 26/50

Parallelisation of SystemC Samuel Jones

to just below the frequency at which different schedulers communicate to assure correctness
and enable a degree of parallelism. However, in a more complex system, this may be difficult.
In this case, an experimental approach can be used. If the global quantum is set to 0, then
the schedulers will advance in lock-step with one another, as in the conservative approaches
mentioned in chapter 3. This is useful because it enables us to compare our solution to a
traditional conservative parallelisation approach. It also allows us to progressively increase
the global quantum from a known good starting point and observe the behaviour of the
system. At some value of the quantum, the system will start to deviate from its intended
behaviour, and we will know that we have gone too far.

It may be that in a complex system, in general a fairly large quantum could be tolerated,
but a few small parts of the system require closer synchronisation. In this case, we provide a
degree of local control that can be used to enable the global quantum to be left at a larger
value.

If the quantum is not set, the schedulers will not be constrained to a certain time window.
The quantum can be set by a simple function call. The quantum is disabled by default, as it
would be difficult to choose a meaningful default value.

4.6 Local Control

Global control is effective at partially desynchronising parallel processes and enabling a de-
gree of parallelism without ramifications on correctness. However, it is not sufficiently flexible.
The entire system need not be constrained to a certain quantum if only two minor subcompo-
nents actually require tight temporal constraints. Furthermore, it does not solve the shared
resources problem.

We have implemented ad-hoc, or local, synchronisation primitives, designed to address
both these problems.

4.6.1 Atomicity

When executing threads in parallel, it is possible that there may be race conditions between
the threads. In our kernel, this only applies to threads running on distinct schedulers, as all
threads within a scheduler share co-operative semantics as in standard SystemC. One example
of why atomic sections are necessary is the read-modify-write paradigm shown in Figure 4.4
- if the section of code is executed by two threads at the same time, then d may only be
incremented once.

We have added support to initiator sockets for atomic sections. An atomic section is a
piece of code which can only be executed by one thread at at time. If two threads try to
execute the section at the same time, one will block until the other has finished all of the
instructions in the section.

In our work, an atomic section locks down the bus and allows only the scheduler responsible
for the thread issuing the lock to access it. This ensures that no other transactions take place
on the bus while it is locked and protects the integrity of multi-stage modifications. Two
examples showing the use of atomic sections are given in Figures 4.7 and 4.8. One can
either make an explicit function call (begin atomic() or end atomic()) on the socket, or an
argument can be combined with a synchronisation specifier (see following section).

Atomic sections should be used only where necessary, and with care. Omitting an
end atomic() or placing two begin atomic()s in succession will cause deadlock. Calls to

M2R Placement Report 27/50

Parallelisation of SystemC Samuel Jones

void increment (addr){
int temp ;

bus socke t . read (addr , &temp , BEGIN ATOMIC) ;
temp++;
bus socke t . wr i t e (addr , temp , END ATOMIC) ;

}

Figure 4.7: Declaring an atomic section with parameters

void increment (addr){
int temp ;

bus socke t . beg in atomic () ;
bus socke t . read (addr , &temp) ;
temp++;
bus socke t . wr i t e (addr , temp) ;
bus socke t . end atomic () ;

}

Figure 4.8: Declaring an atomic section with function calls

wait should be avoided within an atomic section, as yielding control to another thread while
holding a lock will lead to deadlock if the second thread also attempts to begin an atomic
section. Indeed, this is to be expected, as the idea of an atomic section runs contrary to the
idea of yielding control of the processor.

We have included two different syntaxes for the comfort of the programmer, each one
being more elegant in certain situations.

4.6.2 Transaction Timing Specifiers

We introduce transaction timing specifiers, arguments that can be provided when components
communicate. The idea is to specify constraints on the state of the clocks of the schedulers
participating in the transaction. When a transaction is performed, we provide keywords
that can be provided as parameters to the read or write call to describe the relative state
of the clocks of the two schedulers. Considering two processes A and B, where A performs
the transaction and B is the remote module, with their scheduler clocks CA and CB, the
keywords can be described as follows:

1. SYNC WAIT : If CB < CA, block A until CB ≥ CA, and then perform the transaction.
If CB ≥ CA, perform the transaction immediately. Figure 4.9a shows the effect this
has on the clocks of the two schedulers. On the x-axis is the clock of the scheduler S1
performing the transaction and specifying SYNC WAIT. On the y-axis is the clock of the
scheduler S2 on the receiving end of the transaction. In our example, it so happens
that in this run of the program when S1 reaches the point where it wants to perform
the transaction (local time 100), S2 is only at local time 50. The SYNC WAIT construct

M2R Placement Report 28/50

Parallelisation of SystemC Samuel Jones

C1

C2

100

50

100

(a) SYNC WAIT

C1

C2

50

100

100

(b) SYNC CATCH UP

Figure 4.9: The effect of SYNC WAIT and SYNC CATCH UP on legal system states

prevents S1 from advancing until S2 has reached its own local time 100. The hashed area
on the graph represents an illegal state implied by the use of this particular construct.

2. SYNC CATCH UP : If CB > CA, block B, insert a call to wait(CB−CA), and then perform
the transaction. This situation is described in Figure 4.9b. In this case, it so happens
that when S1 wants to execute a transaction at local time 50, S2 already has local time
100. The SYNC CATCH UP construct blocks S2 so that it cannot continue, until S1’s local
time reaches 100. Again, the hatched area represents states disallowed by the use of
this construct.

Note that in this example the transaction is executed when both clocks are equal to 100.
However, if S2’s clock had been behind S1’s when S1 wanted to execute the transaction,
the transaction would have been executed when S1’s clock was equal to 50. This means
that, when using this construct, we cannot necessarily know in advance at what time the
transaction will be executed, as it depends on the hardware executing the simulation.

3. FULL SYNC : Perform a SYNC WAIT followed by a SYNC CATCH UP, then execute the trans-
action. This guarantees that the clocks of the two participating schedulers will be
equal at the time of the transaction, but suffers the same weakness as is inherent to
SYNC CATCH UP. If the target scheduler’s clock is ahead of the initiator’s, the only thing
that can be changed is to move the initiator’s forward. This is because we do not
envisage a roll-back scheme. Figure 4.10 shows a possible scenario.

4. SYNC INSTANT : Perform the transaction, then block A until CB ≥ CA and B finishes its
work for that time instant. Rather than verifying some constraint and then performing
the transaction, the transaction is performed first, and then we wait for the constraint
before continuing. This is useful when we wish to wait for the remote component to
react to our transaction before continuing execution, as we will see in Section 4.8.2.

5. NO SYNC : Perform the transaction regardless of the clocks.

These options allow the programmer to assert that certain properties should hold at the
time of a transaction. However, the programmer should be aware of the following points:

M2R Placement Report 29/50

Parallelisation of SystemC Samuel Jones

C1

C2

50

100

100

Figure 4.10: The effect of FULL SYNC on legal system states

• NO SYNC is the default option. This decision was not straightforward - if we do not syn-
chronise by default then a simple oversight can wreak havoc with the model. However,
if we do synchronise by default then all transactions have to be explicitly labeled with
NO SYNC for the user to see any speed-up using our simulator. Since we assume that
most transactions do not require synchronisation, we decided to avoid synchronising by
default.

• SYNC CATCH UP should be used only with care. Since it may insert a call to wait, it
can change the semantics of a model. Furthermore, it should not be used within an
atomic section, as calls to wait within an atomic section are dangerous. This applies
to FULL SYNC as well as their related window variants.

• SYNC WAIT is actually very powerful. Not only does it not have the dangerous behaviour
that full synchronisation has, but it can be used by two communicating threads that
communicate in a ping-pong style to approximate full synchronisation. We will see this
in the examples section.

• The WAIT and CATCH UP constructs also come with a WINDOW variant. This variant
accepts a time parameter t and asserts that the remote scheduler be no more than t
behind or ahead, respectively. This allows more flexibility.

4.6.3 An implementation problem

The intuitive meaning of the local timing specifiers is that the given property should hold when
the transaction is carried out. This causes a problem for the implementation of SYNC CATCH UP

and the like. The transaction itself is arbitrary user code unknown to the TLM interface a
priori, but the TLM interface can execute its own code just before and just after the execution
of the transaction. If component A is catching up on B, and we perform the synchronisation
operation just before performing the transaction, then we are forced to release the lock that
blocks B from advancing just before we hand over to the user code. However, the execution
order from that point is subject to the whims of the host operating system - meaning B
could advance its clock before A actually executes the transaction. For correct behaviour, it
is necessary to keep blocking B throughout the entire transaction.

M2R Placement Report 30/50

Parallelisation of SystemC Samuel Jones

Note that this is not necessary for SYNC WAIT, which guarantees only that the Cremote is
not less than Clocal but does not stipulate that it should be equal.

4.6.4 Persistent Events

In Section 2.5.2 we stated that SystemC events are non-persistent. Typically, if a persistent
event is required, the programmer uses a Boolean variable in conjunction with the event as
shown in Figure 4.11. Unfortunately, in a parallel environment, the programmer is unable to
write his own persistent events in this way, as the test of the variable and the wait on the
event are not atomic vis-à-vis the other threads that may be notifying the event. Since the
wait is performed by the kernel, the programmer is unable to modify this method to build an
atomic test-and-set. For this reason, our parallel kernel has to provide persistent events for
the user.

s c even t event ;
bool n o t i f i e d ;

P1 :

n o t i f i e d = 1 ;
event . n o t i f y () ;

P2 :

i f (! n o t i f i e d)
wait (event) ;

n o t i f i e d = 0 ;

Figure 4.11: Using non-persistent events to build persistent events

4.7 Usage guidelines

We provide the following guidelines on partitioning and avoiding race conditions, when using
our simulator.

4.7.1 Partitioning

As stated before, a good partitioning will minimise communications between schedulers and
balance workload. Consider the system in question: Where are the components placed on
the chip? In the SystemC model, which are the components that perform a lot of work? The
priority should be the load balance, with a preference for placing communicating components
together. Obviously, if one places all communicating components together, then the entire
system is controlled by one scheduler, and there will be no speed-up at all! If two components
have particularly sporadic or unknown communications, it may simplify things to place them
on the same scheduler.

M2R Placement Report 31/50

Parallelisation of SystemC Samuel Jones

If two components are placed on the same scheduler and therefore it is not necessary to
pay attention to their communication and atomic sections, this will save development time
and increase simulation speed. However, it does mean that if ever it becomes desirable to
separate these two components, it will be necessary to deal with these questions at that time.

4.7.2 Race conditions

As explained in Section 2.5.3, the functions that components export for remote execution will
be executed in the context of the remote thread. This means that, to take an example, a
component modeling main memory that exports a function write() allows that function to
be executed by threads on other partitions, in parallel. This introduces two possible types of
race conditions:

1. A race between the remote thread in the write function and any threads resident in
the memory component, if both manipulate shared data.

2. A race between two remote threads both executing the write function at the same time.

Careful attention should be paid to these race conditions, and mutexes should be used
where correctness is at stake.

Race 1 can turn out to be more complicated than it first seems. It may be the case that
the remote thread does very little work - simply setting a flag or sentinal, and notifying an
event. However, although we have made events thread safe and setting a flag may be an
atomic action, the cache coherency protocols of real hardware may still mean that the actions
of the remote thread are not visible to the local thread when they should be. Since the use of
mutexes will ensure that memory barriers are used at the correct time, the simplest solution
is just to place a mutex in the transport layer around the call to the arbitrary user code
implementing the transaction.

Furthermore, it may be known that only one remote component will ever attempt to
communicate, avoiding race condition 2. Where this is not the case we provide a target
socket containing a mutex that serialises all transactions on the component it is bound to.
However, this approach may be too heavy-handed and negatively affect performance.

4.8 Discussion

We now discuss the difficulties faced when attempting to use our interface to parallelise a
common communication paradigm used in SystemC/TLM. This will clarify our design and
highlight the strengths and weaknesses of our approach. We discuss the producer-consumer
paradigm.

4.8.1 Producer & Consumer - time based

We first consider a purely time-synchronised producer and consumer example. For reference,
Figure 4.12 shows what a classical time-based SystemC/TLM implementation might look
like. First the producer writes to the main memory over the bus, and then sleeps for 10
milliseconds, to allow the consumer time to read the current value, and then it repeats. The
consumer waits 5 milliseconds, to allow the producer time to write the value, and then begins
sampling the memory address every subsequent 10 milliseconds.

M2R Placement Report 32/50

Parallelisation of SystemC Samuel Jones

void
producer : : produce (){

ens i t lm : : data t x = 0 ;

while (x++ < 10){
out . wr i t e (0 x0 , x) ;
wait (10 , s c c o r e : : SC MS) ;

}

return ;
}

void
consumer : : consume (){

ens i t lm : : data t d = 0 ;

wait (5 , s c c o r e : : SC MS) ;

while (d < 10){
out . read (0 x0 , d) ;
wait (10 , s c c o r e : : SC MS) ;

}

return ;
}

Figure 4.12: Producer-consumer paradigm in classical SystemC

This is not an example of the loosely-timed coding style, as there is a tight timing depen-
dency between the two components. However, as we pointed out in Section 2.4.1, although
in theory one coding style should be rigourously used throughout a given model, in practice
a mix of styles can be observed. A globally LT model containing some more tightly coupled
sections might require the following approach.

We now discuss two different ways of implementing this paradigm using our simulator.

Global quantum

Using our simulator, the simplest way to ensure this model was correct would be to set the
global quantum to 4 milliseconds. Figure 4.13 shows the relevant code. We choose the value
4 because any value greater than or equal to 5 could cause deviant behaviour. Consider the
situation where the producer has t = 0 and the consumer t = 5 at the same wall-clock time:
with a global quantum of 5, the consumer could execute before the producer.

s c c o r e : : s c se t quantum enabled (true) ;
s c c o r e : : s c t ime t (4 , s c c o r e : : SC MS) ;
s c c o r e : : sc set quantum time (t) ;

Figure 4.13: Setting the global quantum

Local Timing Specifiers

We can achieve the same effect using local timing specifiers. In this case it is only necessary
to use backward synchronisation, which is preferable. At each read or write, we insert the
backward synchronisation specifier, SYNC WAIT, instructing each component to wait until the
other has caught up before executing the transaction. This effectively means that:

• The consumer will never read until Cproducer >= Cconsumer. This means that the
consumer will never read too early, and risk reading a value as yet unwritten.

M2R Placement Report 33/50

Parallelisation of SystemC Samuel Jones

void
producer : : produce (){

ens i t lm : : data t x = 0 ;

while (x++ < 10){
out . wr i t e (0 , x ,

ens i t lm : : SYNC WAIT) ;
wait (10 , s c c o r e : : SC MS) ;

}

return ;
}

void
consumer : : consume (){

ens i t lm : : data t d = 0 ;

wait (5 , s c c o r e : : SC MS) ;

while (d < 10){
out . read (0 x0 , d , ens i t lm : : SYNC WAIT) ;
wait (10 , s c c o r e : : SC MS) ;

}

return ;
}

Figure 4.14: Producer-consumer with timing specifiers

• The producer will never write until Cconsumer >= Cproducer. This means the producer
will never write too early, and risk overwriting a value which has not yet been read.

CProducer

CConsumer

5

15

25

35

45

10 20 30 40 50

Figure 4.15: Consumer-producer paradigm with local timing specifiers

These two facts are combined to ensure correct execution. The code is shown in Fig-
ure 4.14. The state graph is shown in Figure 4.15. Although the two threads are executed in
parallel, we can still see why this works by considering an example execution sequence:

1. Consumer reaches read before Producer reaches write. Cconsumer = 5, as we are in the
first iteration of the loop. As Producer has not yet written the value, Cproducer = 0.
The Consumer thread will block before executing the read.

2. Producer reaches the write call. Since Cconsumer = 5 and Cproducer = 0, it can execute
the transaction, and does so. It then sets Cproducer = 10 and loops back to the write

call. Since Cconsumer < 10, Producer blocks before carrying out the write.

3. Consumer wakes up when Producer increases its clock. Since Cconsumer < Cproducer, it
executes the read and gets the value 1. It then increases its clock and loops back to

M2R Placement Report 34/50

Parallelisation of SystemC Samuel Jones

read. Since Cproducer = 10 and Cconsumer = 15, Consumer blocks before carrying out
the read.

4. Producer wakes up when Consumer increases its clock. The cycle continues...

And so, by the simple addition of a parameter to each call, we have ensured correct
execution order in parallel system. There is, however, a small detail that we have neglected
to mention.

Memory Access Synchronisation

We said that the producer and the consumer were communicating via an address in main
memory. The main memory is a component that makes up part of the SystemC/TLM model,
and as such must be placed on a specific partition, which will be on a specific scheduler.
A read transaction over the bus with a SYNC WAIT argument means synchronise with the
target component. In our example, in both cases, the main memory is the target component,
which breaks our example, as Producer and Consumer are not actually synchronising on one
another, but on the main memory.

// producer has SC AFFINITY(0)
bus . add synchro range (0 x0 , s izeof (ens i t lm : : data t) , 0) ;
// consumer has SC AFFINITY(1)
bus . add synchro range (0 x0 , s izeof (ens i t lm : : data t) , 1) ;

Figure 4.16: Annotating ranges of memory with scheduler affinities

While the interface we have provided is technically behaving correctly, this is rather awk-
ward. Conceptually, when the producer writes to the main memory, we imagine that we are
communicating with the consumer, because it is the consumer which will subsequently read
the value. We would like to avoid having to insert a dummy transaction with the consumer
just for synchronisation purposes. It is for this reason that we have enabled the annotating
of ranges of memory with the affinities of schedulers, so that when this memory is accessed,
any timing specifiers trigger synchronisation also on these schedulers. These ranges can be
added and removed both statically and dynamically. To complete our example, we used the
to calls shown in Figure 4.16 to set up the ranges.

4.8.2 Producer & Consumer - event-based

There is another way of writing the producer-consumer paradigm, which we have called event-
based. It is not entirely event-based, but rather a hybrid of the two approaches. The producer
is the only component using time, and the consumer is notified over the bus when the producer
has written a value. We refer to this as an “interrupt”, even though real interrupts are not
sent over the bus. For reference, Figure 4.17 shows what this might look like in classical
SystemC/TLM. The consumer simply waits on the event. When it is woken up, it reads a
value, and goes back to sleep. The TLM layer automatically routes the write on the memory-
mapped bus on the address CONSUMER INT to the consumer’s write function. The wait at
the beginning of the producer code is necessary, otherwise, if both components were eligible
at t = 0, the producer might send the interrupt before the consumer started waiting. The

M2R Placement Report 35/50

Parallelisation of SystemC Samuel Jones

producer writes the value to the memory and then interrupts the consumer, then waits and
begins the cycle again.

void producer : : produce (){
ens i t lm : : data t x = 0 ;

wait (5 , s c c o r e : : SC MS) ;

while (x++ < 10){
out . wr i t e (0 x0 , x) ;
out . wr i t e (CONSUMER INT, 1) ;

wait (10 , s c c o r e : : SC MS) ;
}

}

void consumer : : consume (){
ens i t lm : : data t d = 0 ;

while (d < 10){
wait (c i n t) ;
out . read (0 x0 , d) ;

}
}

void consumer : : wr i t e (addr t , da ta t){
c i n t . n o t i f y () ;

}

Figure 4.17: Producer-consumer paradigm using events in classical SystemC/TLM

This style is harder to write correctly in our simulator. The introduction of SystemC
events brings up some interesting questions. The first of which is the simple observation that,
as we have written it, the consumer does not advance time. There is no call to wait(time)

in its code. An obvious first problem is therefore finding the answer to the questions: what
will happen if we use SYNC WAIT on the producer’s side? Since the consumer does not move
time forward, how can the synchronisation specifier ever be satisfied?

An absence of time

In classical SystemC/TLM, a call to wait(event) removes the calling thread from the eligible
queue. The thread will not be placed in the eligible queue again until a notify is performed
on the event. This means that while a thread is waiting on an event the rest of the simulation
proceeds normally. This is necessary in classical, sequential SystemC/TLM, as, if the call to
wait were to block, the entire simulation would halt. Since there is only one notion of time
and there are no external events, the waiting thread will be woken up at the same point in
every simulation run and the simulation will be in the same global state.

In a parallel simulation with distributed time, there are two clocks in play when an event
is notified - the clock of the waiting thread’s scheduler, and the clock of the notifying thread’s
scheduler. We would like the thread to wake up when Cwaiting = Cnotifying to avoid temporal
violations. If Cnotifying > Cwaiting when the notify is performed, we can insert the wake
up as a timed event that the waiting thread’s scheduler will execute in the future. However,
if Cwaiting > Cnotifying, we have a problem. The damage has been done, and a roll-back
scheme would be required to bring Cwaiting back to Cnotifying. In this case, we can either say
that we don’t care, and continue the transaction anyway, or we can set Cnotifying = Cwaiting

and then perform the transaction. This corresponds to usage of the WAIT CATCH UP identifier
introduced earlier.

To come back to our original question: what will happen if we use SYNC WAIT on the
producer’s side?. By saying SYNC WAIT, we are specifying that we want Cwaiting ≥ Cnotifying

before we execute the transaction. Unfortunately, in our example, the transaction itself is
what will set Cwaiting = Cnotifying, because it is the transaction that notifies the event and

M2R Placement Report 36/50

Parallelisation of SystemC Samuel Jones

inserts the timed event discussed above. Therefore, a natural implementation will deadlock
at this point.

Since the transaction is arbitrary user code, unknown to the TLM interface a priori, it
is difficult to see how to avoid this problem. We opted for an imperfect, pragmatic solution
to avoid deadlock and to bring time forward on the consumer partition. It is easy to detect
when the entire system is about to deadlock by checking, when the last scheduler attempts
to perform a synchronisation operation, whether all other schedulers are sleeping (out of
work) or synchronising. When this situation occurs we choose the synchronisation operation
with the earliest deadline, move the time on the target scheduler forward, and wake up that
scheduler. That scheduler will execute its work for that time instant, and then wake up any
other schedulers synchronising on it, as per the usual rules.

The fundamental problem is that our local synchronisation primitives are time-based, and
therefore we cannot synchronise correctly with a partition that does not make use of time.
A partition that does not advance its clock requires another type of primitive, which we will
discuss later.

We can, however, handle this kind of situation with the global quantum. If it is the case
that all synchronisers are either asleep or blocked from advancing by the global quantum, the
global quantum algorithm allows the scheduler which has the nearest deadline to advance,
and advances all schedulers’ clocks appropriately. This part of the algorithm allows us to
execute this example correctly with a global quantum ≤ 5.

In presence of time

void producer : : produce (){
ens i t lm : : data t = 0 ;

wait (5 , s c c o r e : : SC MS) ;

while (x++ < 10){
out . wr i t e (0 , x ,

ens i t lm : : FULL SYNC) ;
out . wr i t e (CONSUMER INT, 1 ,

ens i t lm : : FULL SYNC) ;

wait (10 , s c c o r e : : SC MS) ;
}

}

void consumer : : consume (){
ens i t lm : : data t d = 0 ;

while (d < 10){
wait (c i n t) ;
out . read (0 , d , ens i t lm : : NO SYNC) ;

}
}
void consumer : : move time (){

x = 0 ;
while (x++ < 10000)

wait (2 , SC MS) ;
}

void consumer : : wr i t e (addr t , da ta t){
c i n t . n o t i f y () ;

}

Figure 4.18: Producer-consumer paradigm using events in our simulator

We have thus far assumed that the consumer and producer were alone on their respective
partitions. It is interesting to see what can be done when this is not the case. If we add
another thread to the consumer’s partition, that simply advances time in small increments
in a tight loop, then the problem of a lack of time is solved. However, we need to use a
different approach to the original, time-based example. On the consumer side, we can safely

M2R Placement Report 37/50

Parallelisation of SystemC Samuel Jones

say NO SYNC, because the consumer is woken up only once the producer has written the value,
so the consumer cannot possibly read a value before it is written. However, on the producer
side, we need a FULL SYNC. Since the consumer’s partition can easily be ahead of the producer,
use of SYNC WAIT would be insufficient, as the producer could write several values in sequence
before the consumer reads them. We know that:

1. Ccons = Cprod when we wake up the consumer (thanks to the full synchronisation).

2. Ccons cannot advance until the consumer has read the value written by the producer.

3. Cprod must advance before the producer comes to write the next value.

4. Ccons must equal Cprod before the next value is written.

These four facts combine to prevent the producer from overwriting an unread value, and since
the consumer cannot read an unwritten value, this solution is correct. The code is shown in
Figure 4.18. Furthermore, the solution remains correct in presence of another thread that
advances time on the producer’s partition.

Instant synchronisation

Faced with the failure of our synchronisation specifiers to deal with a partition that does not
make any calls to wait(time), we introduced the SYNC INSTANT specifier. The goal of this
specifier is to be able to say: Block until the remote component has reacted to this transaction.
More precisely, if Cremote < Clocal, the local component is woken up only once Cremote = Clocal

and the remote component has finished all its work for this time instant. If Cremote >= Clocal,
then the remote component is pinned to the time instant it is in just before the user code
that constitutes the transaction is executed. Then, the local component unpins the remote,
and sleeps until the remote component finishes the current time instant. At this point, we
are sure that any code triggered by the transaction has been completed.

void producer : : produce (){
ens i t lm : : data t = 0 ;

out . synchron i s e (CONSUMER INT, ens i t lm : : INSTANT SYNC) ;

wait (5 , s c c o r e : : SC MS) ;

while (x++ < 10){
out . wr i t e (0 , x , ens i t lm : : NO SYNC) ;
out . wr i t e (CONSUMER INT, 1 , ens i t lm : : INSTANT SYNC) ;

wait (10 , s c c o r e : : SC MS) ;
}

}

Figure 4.19: Usage of instant synchronisation

This specifier can be used at the point where the producer writes the interrupt that
wakes up the consumer, as shown in Figure 4.19. The initial synchronise operation is used to

M2R Placement Report 38/50

Parallelisation of SystemC Samuel Jones

bootstrap the interaction, that is, to ensure that the consumer is waiting on the event before
beginning. Alternatively, we could have used time to do this as in the earlier examples.

This specifier is very convenient to use, so much so that we considered extending the
principle to include a specifier whose meaning would be: Block until the remote component
has C ≥ x. However, we realised that such a specifier is not really an extension of the same
principle, and its rôle can be fulfilled by the other time-based specifiers which we mentioned
earlier.

The guidelines for using our specifiers discussed here extend naturally to multiple con-
sumers or producers, as well as transmitters (a ring where each node consumers from the
previous and produces for the following).

We have presented how our interfaces can be used in practice and some of their strengths
and weaknesses. We now move on to discuss performance.

M2R Placement Report 39/50

Parallelisation of SystemC Samuel Jones

Chapter 5

Evaluation

We set out to increase the speed of SystemC/TLM simulations while preserving simulation
correctness. We now discuss the performance of our simulator compared with the reference
implementation of the SystemC kernel. We use a thin layer, called ensitlm, to implement the
TLM part of the simulation. The following three major factors limit the possible speed-up
that can be achieved with our simulator:

1. The relationship between the amount of time the model spends doing real work and the
amount of time it spends in the SystemC scheduler and TLM overlay. We do not suggest
a precise way of measuring this proportion but introduce it as a high-level concept that
describes how much calculation a model performs. The more real work to be done, the
greater the speed-up to be expected.

2. The amount of communications occurring between components. More communications
usually implies more synchronisation, and synchronisation will limit the potential speed-
up.

3. The load balancing that can be achieved. The fairer the load balance, the better the
speed-up we might expect.

The ideal use case for our simulator would be a simulation that does a large amount of
independent arithmetic operations with no synchronisation required between the components
performing the calculation. Such a simulation might be a matrix multiplication algorithm or
an algorithm to calculate the value of π. In these cases we might expect a speed-up close to
the number of processors N .

Conversely, the worst use case would be a simulation were very little real work is done and
components spend a large part of their time communicating with one another. An example
of such a simulation might be a simulation implementing a network protocol. Since we have
modified the SystemC kernel to make it thread-safe and to add additional functionality, we
would expect a very low speed-up or even a slow-down in this case.

Since SystemC models are very varied and there is no system that can be described as
typical, it would not be very instructive to present any one system here, and it would be a very
long report if we attempted to present performance results for all classes of systems. Instead,
we will consider one simple system with different levels of communication and evaluate the
overheads imposed by our parallel kernel and by the use of our primitives.

We begin with a description of our test architecture, and then we discuss an example of
the best case. This is interesting because it confirms the principle of the project and because

M2R Placement Report 40/50

Parallelisation of SystemC Samuel Jones

for (int i = 0 ; i < hw units ; i ++){
i s sue work (i) ;
s c c o r e : : wait (50 , s c c o r e : : SC NS) ;

}

Figure 5.1: Work distribution

Processor

(1)

(2)

(3)

(4)

HW1

HW2

HW3

HW4

(1) (2) (3) (4)

Simulation Time

Figure 5.2: Test Bench Architecture

it provides an upper limit on the results we might reasonably expect. We then investigate
how performance degrades as we make the best case progressively worse, before moving on
to some conclusions.

5.1 Test Architecture

We consider a simple system which cannot be parallelised by conservative approaches, as the
parallel operations are not launched at the same time. For example, consider a simple chip
that calculates the value of π in parallel on several hardware units. A processor hands out
work to the hardware units. We wish to model the fact that all hardware units do not receive
their work at the same time, due to the serial nature of the distribution and the relative
distances of each hardware unit from the processor.

We might model this situation by the code shown in Figure 5.1. Instead of issuing work
to all the hardware units in the same instant, we issue work one by one with a short delay
inbetween each issue. Then each hardware unit will calculate the relevant digits of π, and when
the last hardware unit finishes, the simulation is over. Since we have included the time delay
when distributing work, conservative parallelism is unable to parallelise this model effectively.
Figure 5.2 shows the system architecture and a timeline showing when the distribution of work
occurs.

The system is configurable and divides up the work to be done over a variable number
of hardware units. Each hardware unit is defined to be on its own partition, by use of the
SC AFFINITY macro introduced earlier. Furthermore, the system can be configured to use a
different level of timing accuracy - in concrete terms this means the inclusion or exclusion of
calls to wait, as shown in Figure 5.3. The call to out.sync is only used if we are operating
in TLM transaction specifiers, as will be explained shortly. We remind the reader that the

M2R Placement Report 41/50

Parallelisation of SystemC Samuel Jones

i f (s y n c l e v e l >= 1){
wait (t , s c c o r e : : SC MS) ;

i f (u s i n g t r a n s s p e c){
out . sync (neighbour , SYNC WAIT) ;

}
}

Figure 5.3: Synchronisation in our test model

sync call generates a dummy transaction to be used just for synchronisation purposes. These
levels of timing accuracy allow us to study the effect of synchronisation on speed-up, as we
will use time-based synchronisation to simulate communication between the units.

We use the notation HWn; that is hardware unit number n, and nx; that is the xth step
belonging to hardware unit n, where the work to be done by each thread is divided into steps
such that step n1 is the first step of thread n , step n2 is the second step of thread n etc.
Furthermore, at the end of each step there is a call to wait as described in Figure 5.3. In
other words, at regular intervals throughout its calculation, each hardware unit will make a
call to wait. The higher the level of synchronisation, the more regular the intervals are.

Let us imagine a situation where we want to ensure that nx cannot be executed before
(n − 1)x−1. Put differently, HWn, when it has finished its step nx, must wait for HWn−1

to have finished step (n − 1)x before proceeding. We have to achieve this effect with our
interface.

If we use the global quantum, then the best approximation we can provide to this be-
haviour is that no hardware unit may begin step x+ 1 until all hardware units have finished
working on step x. To do this, we just set the global quantum to a value smaller than the
t provided to the wait call. If we use the TLM transaction specifiers, we can model this
property precisely by inserting a synchronise operation after each call to wait, providing the
neighbour as an argument.

There is a major difference between the two modes: in the global quantum mode we use
a quantum value such that all hardware units must be at the same stage of the calculation
at each point, that is to say they have no freedom to advance their clocks until all hardware
units have finished the current step. In the transaction specifiers mode the hardware units
are arranged into a ring and each unit only has to wait for its neighbour. The constraint is
stronger in the global quantum mode, and we might expect to see this reflected in the results.

We include three levels of synchronisation: none, medium, and strong. The levels them-
selves have been chosen arbitrarily, but to give an idea of what they mean, we have observed
that the level we have called medium corresponds to one call to wait per 70000 machine
instructions executed by the hardware unit. The level we have called strong corresponds to
one call to wait per 40000 machine instructions executed by the hardware unit.

5.2 Results

We performed our experiments on an UltraSparc T1 Niagara, running 64-bit Solaris. The
machine has 6 processors, each supporting concurrent execution of up to 4 threads (Hyper-
Threading). This gives us 24 effective processing units, which we will refer to as cores from

M2R Placement Report 42/50

Parallelisation of SystemC Samuel Jones

this point on, for brevity. In our tests, we test up to 128 threads. This is of interest because
having spare threads to run may enable cores to hide the costs of those threads which are
unable to run because they are contending for a mutex. On the other hand, by increasing
the pressure on critical sections, it may cause a slow-down. Each core has 8KiB of L1 data
cache, using a write-through policy, and there is a 3MiB L2 inclusive cache shared between
all cores.

5.2.1 Best Case

Figure 5.4 shows our results in the best case - no synchronisation between hardware units.
Each hardware unit simply performs its part of the calculation and returns. Since the SystemC
kernel does a minimal amount of work in this case, there is little overhead caused by the extra
code we have added to the kernel. This means that both our kernel and the OSCI version
perform similarly given only 1 processor.

1 2 4 8 16 32 64 128
0

50

100

150

200

250

300

350

Cores

E
x
ec

u
ti

o
n

T
im

e
(s

)

Modified SystemC
OSCI SystemC

Figure 5.4: Relative Performance with no Synchronisation Requirements

Cores Speed-up Efficiency

2 1.81 90%

4 3.31 83%

8 6.02 75%

16 11.46 72%

24 17.42 73%

32 11.54 36%

48 17.14 36%

64 15.32 24%

72 17.14 24%

128 15.10 12%

Table 5.1: Speed-up and Efficiency on a 24-core machine

M2R Placement Report 43/50

Parallelisation of SystemC Samuel Jones

The time taken by the OSCI SystemC kernel remains constant as we add more cores. This
is also to be expected - the only thing we change is that we divide the work up into smaller
chunks, each run by a separate SystemC thread. This means more context switches will be
made (1 per thread) but this is completely insignificant compared to the time taken by the
calculation.

We see that we achieve very good speed-up as we increase the cores to 24 - the precise
speed-up values can be consulted in table 5.1. The maximum speed-up we achieve is 17.42.
After that point, performance begins to vary as we increase the threads used: 32 threads
performs worse than 24 threads and also worse than 48 threads, and 64 threads is worse than
48 threads and 72 threads.

This effect is due to a load balancing issue: when we use 32 threads, 8 machine cores have
to handle 2 threads each (2

32 of the workload), while the other 16 only handle 1 each (1
32 of

the workload). Compare this with the 24-thread or 48-thread scenario where each core has
precisely 1

24 of the workload. Since work is pinned to cores and we must wait until all cores
have finished, the execution takes longer with 32 threads than when we use 24 or 48.

We suggest that we do not reach the optimal speed-up of 24 because of the overhead
incurred in our kernel in managing and creating the extra threads. There is a certain cost
involved in the actual creation of pthreads, and there is also overhead in our kernel in managing
these threads. They must be created when SystemC hardware units are first constructed, and
then put to sleep until the processor distributes work to the hardware unit. The creation,
sleeping and waking up of pthreads requires the use of expensive system calls.

Amdahl’s law applies in this case: These management parts of our kernel must be executed
in serial, because we are operating in a shared-memory environment. We call these parts Ks.
The parallel part of the code (the calculation) we call Kp. When we run our code in parallel
the time taken to execute Kp decreases, but the time taken to execute Ks remains the same.
Furthermore, as we add more threads Ks actually grows as the management logic becomes
more complex. Amdahl’s law states that as we continue to parallelise Kp the execution time
of Kp will diminish into insignificance, leaving only the execution time of Ks. This is an
upper limit on the speed-up for a fixed problem size.

5.2.2 Normal case

Figures 5.5 and 5.6 show how the performance of our simulator degrades faced with an
increasing level of synchronisation. In each graph we plot the performance of the global
quantum technique (Modified SystemC GQ) and the TLM transaction specifier (Modified
SystemC TLM) technique. We can make several useful observations.

Firstly, in the unicore case the increased number of calls to wait amplifies the overhead
incurred by the use of our kernel. We can conclude that our more complicated logic is a
serious cause for concern as even in the medium synchronisation example our kernel is about
20% slower than the reference implementation.

Secondly, we can see that the increased level of synchronisation decreases the speed-up
we attain - 12.71 in the medium example and 9.94 in the strong example. However, we do
maintain a useful degree of speed-up. It also causes the tail of the graph to rise, forming
a ‘U’ shape. This means that after a certain point, adding more threads to the problem
just worsens performance. This is often the case in parallel applications. It occurs because
the bottleneck is no longer the calculation being performed but the communications between
threads. Adding more threads just makes the problem worse. As we might expect, at higher

M2R Placement Report 44/50

Parallelisation of SystemC Samuel Jones

1 2 4 8 16 32 64 128
0

100

200

300

400

Cores

E
x
ec

u
ti

on
T

im
e

(s
)

Modified SystemC GQ
Modified SystemC TLM

OSCI SystemC

Figure 5.5: Relative Performance with Medium Synchronisation Requirements

1 2 4 8 16 32 64 128
0

100

200

300

400

500

Cores

E
x
ec

u
ti

on
T

im
e

(s
)

Modified SystemC GQ
Modified SystemC TLM

OSCI SystemC

Figure 5.6: Relative Performance with Strong Synchronisation Requirements

M2R Placement Report 45/50

Parallelisation of SystemC Samuel Jones

levels of synchronisation the problem occurs earlier and the speed-ups obtained are worse.

Concretely, the reasons for this effect in our kernel are as follows:

a. Every time a SystemC process attempts to move its clock forward or to synchronise on
another process, it enters a critical section, and then inspects and modifies some shared
state. The more threads there are, the more contention there is for this critical section
and the more likely it is that threads will have to idle, waiting for access to this section.
Increasing the number of calls to wait has the same effect.

b. When a processor core executes the serial part of our kernel it changes some shared
state. To do this, it first brings the shared state into its level 1 cache. When it changes
the shared state, it invalidates the copies of the state that are stored in other cores’
caches. These cores will then suffer a cache miss next time they wish to access the
shared state, and will have to wait for the state to be fetched from main memory.

As the number of threads increases, the number of cores in use increases and the changes
made to the shared state become more frequent. This inceases the chance of increased
cache misses.

c. If there are more threads than available cores, the cores will switch from one thread to
another. This context switching operation is relatively expensive as the entire state of
the running thread must be saved to memory and the state of the new thread restored.
Furthermore, it requires operating system intervention. The OSCI implementation of
SystemC uses a userspace threading library, called QuickThreads, that implements very
fast context switching without operating system intervention. Userspace threading,
however, does not allow for real parallelism, that is, concurrent execution on different
cores, which is why we are forced to use a heavier-weight library like pthreads.

Thirdly, we note that, at least for numbers of threads between 4 and 48, the TLM trans-
action solution is consistently faster than the global quantum solution. As we suggested in
section 5.1, this is because the constraint that we have specified on the hardware units is
weaker in the TLM solution: a hardware unit only has to wait for its neighbour to have
finished the current section, instead of all other hardware units.

Fourthly, we remark that TLM performance begins to degrade significantly at around
64 threads, before recovering rather dramatically at 128 threads. This is surprising, as we
would expect the results for 64 threads to sit between the results for 32 threads and 128
threads. Furthermore, the results become increasingly erratic - we have included 95% confi-
dence intervals in the graphs where they are of significance. Why should this occur for the
TLM specifiers, but not the global quantum? Although further experiments are necessary to
determine the precise cause, the following factors may contribute to the effect:

a. Due to the chain of dependencies set up by the ring topology, the TLM transaction
specifiers interface is sensitive to the order in which the host operating system schedules
threads. (Consider an execution which schedules the hardware units in reverse order).
Therefore, when we have more threads than cores, we would expect to see more variation
in the results for the TLM interface. This may account for the variation in the results
but not for the poor performance itself, as even the worst scheduling order should be
no worse than the global quantum approach.

M2R Placement Report 46/50

Parallelisation of SystemC Samuel Jones

b. Code using the TLM transaction specifiers actually calls the kernel twice, once for the
wait() and once for the out.sync(). While each of these calls executes less code than
a wait() when the global quantum is active, this behaviour may increase contention on
the critical section and cause threads to spend longer waiting on mutexes. This could
potentially be a factor explaining the spike at 64 threads, but it is not clear why the
results should then improve at 128 threads.

c. Load balancing problems such as those discussed in the previous section could play a
rôle.

5.3 Summary

Our simulator maintains a good degree of speed-up when subjected to non-trivial amounts of
inter-process communication. However, these synchronisation requirements reduce the speed-
up that it is possible to reach and introduce a ‘U’ shaped curve. While some performance
may be gained by using a machine with more than 24 cores, in our example performance
gains start to stagnate around that point anyway.

The performance of the global quantum and TLM transaction specifiers interfaces is sim-
ilar in this simple example, although the global quantum’s performance is limited by its lack
of expressive power - it can only over-approximate the constraint we wish to express.

M2R Placement Report 47/50

Parallelisation of SystemC Samuel Jones

Chapter 6

Conclusion

In this work we have described an optimistic approach to the parallelisation of System-
C/TLM models on SMP workstations, using language constructs to specify valid execution
orders. We attempted to address the gap in the existing work concerning the parallelisation
of loosely-timed SystemC/TLM models. Our approach goes beyond the existing conservative
approaches in that it can also parallelise loosely-timed models, where there is often only one
runnable thread at each timing point.

We have found that very good speed-ups can be achieved, although contention for critical
sections in the kernel limits performance improvements. We have confirmed the hypothesis
that the amount of inter-process communications involved in a simulation has a direct effect
on its potential for speed-up.

Moreover, we have evaluated the strengths and weaknesses of our language constructs
used to constrain the set of valid execution orders. We conclude that some common Sys-
temC communication paradigms can be expressed correctly using our constructs in a natural
manner. Others are more difficult to express. We have also addressed the problem of loss
of atomicity which occurs in multi-stage protocols such as read-modify-write, although our
approach is rather coarse-grain.

6.1 Future Work

Our work opens up several avenues of potential future work. It would be interesting to
implement our approach in a distributed manner using a communications protocol such as
MPI. This could enable the possibility of higher speed-ups being achieved as the contention
for critical sections could be reduced. It could be difficult to maintain the existing SystemC
programming style.

We could also attempt to improve on our existing work by using finer-grain mutexes.
For simplicity, our work contains relatively few mutexes, and there is potentially room for
optimisation. However, such an attempt would have to be very careful in order to avoid
introducing the possibility of deadlock or data corruption.

Finally, there is more work to do be done in the domain of language constructs to support
parallelism in SystemC. Our work has established semantic constructs which are effective and
natural in some cases. It would be interesting to pursue this research further, in order to find
constructs that allow us to express even more cases in a natural way.

M2R Placement Report 48/50

Bibliography

[1] Ensimag Engineering School. http://ensimag.grenoble-inp.fr/. 4.1

[2] IEEE Standards Association. IEEE 1666-2005 Standard SystemC Language Reference
Manual. 2005. 2.2, 2.6

[3] Chopard B, Combes P, and Zory J. A conservative approach to systemC parallelization.
In International Conference on Computational Science, pages 653–660, 2006. 3, 3.1, 3.4

[4] Yussef Bouzouzou. Accélération des simulations de systèmes sur puce au niveau transac-
tionnel. Diplôme de recherche technologique, Université Joseph Fourier, 2007. 2.1, 2.1.1,
3.4

[5] Philippe Combes, Eddy Caron, Frédéric Desprez, Bastien Chopard, and Julien Zory.
Relaxing synchronization in a parallel systemC kernel. In International Symposium on
Parallel and Distributed Processing with Applications, pages 180–187. IEEE Computer
Society, Washington, DC, USA, 2008. ISBN 978-0-7695-3471-8. URL http://portal.

acm.org/citation.cfm?id=1493613.1494180. 3.1

[6] Giovanni Funchal and Matthieu Moy. ensitlm source code. https://github.com/moy/

cours-tlm/tree/master/TPs/ensitlm. 4.1

[7] Giovanni Funchal and Matthieu Moy. jTLM: an experimentation framework for the
simulation of transaction-level models of systems-on-chip. In Design, Automation and
Test in Europe (DATE), 2011. (to appear). 3.3

[8] Kai Huang, Iuliana Bacivarov, Fabian Hugelshofer, and Lothar Thiele. Scalably dis-
tributed SystemC simulation for embedded applications. International Symposium on
Industrial Embedded Systems, pages 271–274, June 2008. 3.1

[9] Open SystemC Initiative. TLM-2.0 Language Reference Manual. 2007. 2.2, 2.4.2, 3.1

[10] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7:404–425, July
1985. ISSN 0164-0925. URL http://doi.acm.org.gate6.inist.fr/10.1145/3916.

3988. 3.2

[11] Leslie Lamport. Ti clocks, and the ordering of events in a distributed system. Commun.
ACM, 21:558–565, July 1978. ISSN 0001-0782. URL http://doi.acm.org/10.1145/

359545.359563. 3.2

[12] A. Mello, I. Maia, A. Greiner, and F. Pecheux. Parallel simulation of systemC tlm 2.0
compliant mpsoc on smp workstations. In Design, Automation Test in Europe Conference
Exhibition, pages 606 –609, 2010. ISSN 1530-1591. 3.1

49

http://ensimag.grenoble-inp.fr/
https://github.com/moy/cours-tlm/tree/master/TPs/ensitlm
https://github.com/moy/cours-tlm/tree/master/TPs/ensitlm

Parallelisation of SystemC Samuel Jones

[13] Ezudheen P, Priya Chandran, Joy Chandra, Biju Puthur Simon, and Deepak Ravi.
Parallelizing systemc kernel for fast hardware simulation on smp machines. In Work-
shop on Principles of Advanced and Distributed Simulation, PADS ’09, pages 80–87.
IEEE Computer Society, Washington, DC, USA, 2009. ISBN 978-0-7695-3713-9. URL
http://dx.doi.org/10.1109/PADS.2009.25. 3.1

[14] Fred B. Schneider. Synchronization in distributed programs. Trans. Program. Lang.
Syst., 4:125–148, April 1982. ISSN 0164-0925. URL http://doi.acm.org/10.1145/

357162.357163. 3.2

[15] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann. parSC:
synchronous parallel systemC simulation on multi-core host architectures. In Interna-
tional conference on Hardware/software codesign and system synthesis, CODES/ISSS
’10, pages 241–246. ACM, New York, NY, USA, 2010. ISBN 978-1-60558-905-3. URL
http://doi.acm.org/10.1145/1878961.1879005. 3.1, 3.4, 4.3

[16] P Wilsey, D Martin, and K Subramani. SAVANT/TyVIS/WARPED: Components for
the analysis and simulation of vhdl, 1998. 3.2

M2R Placement Report 50/50

	Introduction
	SystemC/TLM
	Modeling Systems-on-Chip
	RTL
	TLM

	SystemC/TLM
	Processes in SystemC
	SC_THREAD
	SC_METHOD
	Co-operative Semantics

	Time in SystemC
	Transaction-Level Modeling
	TLM Temporal Decoupling

	Communication in SystemC
	Delta-cycles
	Events
	TLM Transport
	Synchronisation

	The SystemC Scheduler

	Related Work
	Conservative Approaches
	Optimistic Approaches
	jTLM
	Discussion
	The Disparate Deadlines Problem

	An Optimistic Approach
	Overview
	Thread Partitioning
	Shared-memory parallelism
	Interface Requirements
	Global Control
	Notion
	Practice

	Local Control
	Atomicity
	Transaction Timing Specifiers
	An implementation problem
	Persistent Events

	Usage guidelines
	Partitioning
	Race conditions

	Discussion
	Producer & Consumer - time based
	Producer & Consumer - event-based

	Evaluation
	Test Architecture
	Results
	Best Case
	Normal case

	Summary

	Conclusion
	Future Work

