
Fast and Modular
Transaction-Level-Modeling
and Simulation of Power and

Temperature

Claude Helmstetter, Tayeb Bouhadiba, Matthieu Moy and
Florence Maraninchi

Verimag Research Report no

January 15, 2014

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - Grenoble INP - UJF
Centre Équation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr


Fast and Modular Transaction-Level-Modeling
and Simulation of Power and Temperature

Claude Helmstetter, Tayeb Bouhadiba, Matthieu Moy and Florence Maraninchi

January 15, 2014

Abstract

How to cite this report:

@techreport {,
title = {Fast and Modular Transaction-Level-Modeling

and Simulation of Power and Temperature},
author = {Claude Helmstetter, Tayeb Bouhadiba, Matthieu Moy and Florence Maraninchi},
institution = {{Verimag} Research Report},
number = {},
year = {}

}



stimating power consumption and temperature of systems-on-a-chip has become a key point. Early
estimations require high-level models and sufficiently fast simulations. We consider the approach called
Transaction-Level Modeling (TLM), implemented with the standard SystemC. It enables the execution of
the actual embedded software on a simulated hardware. The hardware model mimicks its functional be-
havior, and can be instrumented to provide timing and consumption estimations. Temperature estimation
can be obtained by coupling this SystemC/TLM model with a temperature model. All this allows capturing
the effects of the software on power consumption and temperature, e.g., when the power and tempera-
ture management policy of the chip is implemented in software (reading temperature sensors, and acting
dynamically on the voltage and frequency).

Following existing proposals on the modeling of power in SystemC models, we provide libraries for
a systematic, easy, and fast instrumentation of SystemC/TLM approximately-timed models. We adapt
the existing instrumentation principles in order to benefit from SystemC/TLM optimizations like temporal
decoupling and direct-memory-interface, which are compulsory in industrial-size models.

We evaluate our approach on several use cases, showing that after a simple integration, the software
developer can easily distinguish an ill-founded from a correct software in terms of power consumption or
temperature control.

1 Introduction
Reducing power consumption of Systems-on-a-Chip is an important challenge. Clearly, portable devices
should save energy to maximise battery life, but other issues like heat dissipation, voltage drop or faster
ageing due to overheating are also of growing importance.

With modern CMOS processes, static power consumption, due to leakage current, is increasing. Power-
saving techniques like clock-gating, that act only on dynamic consumption are no longer sufficient. More
heavy-weight techniques are necessary to control the consumption. A system-on-chip may be structured
into several power or frequency domains, so that the clock and power supplies of a part can be controlled
independently of the others, based on sensors for temperature, voltage, ... The power-management policy
itself is usually implemented in software.

Developing such power-management policies requires an execution platform, including models of sen-
sors, actuators, and taking into account the feedback loop between actuators and sensors. Low-level (gate
or RTL) simulations are possible, but too late in the design flow and their simulation is not fast enough
for system-level simulation including non-trivial software. On the other hand, an accurate model of power
consumption and temperature requires a realistic model of timing. SystemC/TLM allows several levels of
details for the timing: cycle-accurate is the most precise, while “approximately-timed” [2] is more relaxed
and improves simulation speed.

Instrumentation guidelines to introduce power and/or temperature estimations into SystemC models at
the “approximately-timed” transaction-level or at the cycle-accurate level, have been proposed in [5, 6, 12,
18].

The instrumentation consists in associating physical parameters to the hardware behavior described in
SystemC/TLM. The simulation then computes the consumption and temperature of the whole system-on-
a-chip, based on these per-component parameters, including the effect of power and thermal management
policy and software. This allows detecting non-functional bugs in the embedded software (failure to enter
a low-power mode, polling instead of explicit wait for an interrupt) or comparing different policies. The
contributions of this paper are:

• We propose a general instrumentation method based on activity ratios. The power consumption of
each component is then computed as a generic function of the voltage, the frequency, the tempera-
ture, and this component’s activity ratio. Modelling dynamic voltage and frequency scaling (DVFS)
requires no extra modelling effort, and the generic function is provided in the library.

• We provide new modeling guidelines, and new implementations of the principles described in [5],
which are now compatible with existing TLM optimisation techniques, like temporal decoupling and
direct memory interface (DMI). This is compulsory to get satisfactory simulation speed, but requires
a significant modification of the principles. In contrast with the results reported in [5], the simulation
speed overhead of our instrumentation is independent of the SystemC step.

1



• We report on several new use cases to show how the simulation can help software developers.
We use ATMI [13] for temperature modeling and simulation, and we develop a graphical interface (Fig. 3)
showing the evolutions of the temperature map of the circuit.

2 Related Work
The TLM Power tool presented in [12, 18] proposes to model a system-on-a-chip in SystemC/TLM, run-
ning the actual software on top of a simulated hardware. The objective is to validate a power-management
policy. It is based on the same power-state models as described in [3, 4].

The instrumentation principles described in [5] use the same principles as [12, 18] for the power model,
augmented with the potential feedback of temperature on the functionality of the chip, and on the static
power consumption.

All the abovementioned solutions include all hardware components, at a level of details sufficient to
run the actual software. As a consequence, they focus on simulation: exhaustive exploration with model-
checking like [7] is not applicable at this level of details. In [11], a system-level analytical model is
proposed, to capture the consumption and thermal behaviour of a chip with Power Variability Curves,
based on the framework of real-time calculus. The actual software is not executed, but modelled as a set
of tasks, and the hardware architecture is not detailed. Power consumption is considered to be a function
of the executing software task, hence only processors are considered. [11] computes guaranteed bounds on
temperature peaks. The method is intended to be used at a very early stage of the design.

The work described in [15] is a system-level simulation method including the functionality and power
consumption. It focuses on instruction-level power consumption for software execution, describing in
details how to get the parameters of the power-model, with measures. It is limited to power-consumption
and does not take temperature into account. A case-study from Intel is described, and the simulation results
compared to measures on the real chip.

3 New Power and Temperature Modelling Method

3.1 Initial SystemC/TLM Models
A SystemC/TLM model is made of components and connections. Each component describes the functional
behavior of a hardware element (a processor, a bus, a memory, ...) and its approximate timing. The model
of the processor is able to run embedded software, for instance using an instruction-set-simulator. Figure 1
is an example with a processor, a memory, a temperature sensor, a DVFS controller, an interrupt controller,
a VGA screen controller, and a bus. The simulation is performed by a discrete-event engine with simulated
time.

3.2 Instrumentation Parameters
Instrumenting such a model for power consumption estimation means associating instantaneous power
consumption with states of the components (e.g., Off, Idle, ...), or with activities (e.g., low or high traffic
on the bus). This is done by function calls in the SystemC code that constitutes the model of the hardware.
For each hardware component of the SystemC/TLM initial model, we now define the following categories
of parameters:

• static parameters: Floorplan parameters: location of the component on the chip; used to compute
the area of the component, and the neighbour relations. Technology-dependent parameters: physical
values that depend on the technology used to produce the physical chip; this includes capacitance,
leakage current, influence of temperature on the leakage, etc. Most of these values are common to
all components.

• dynamic configuration parameters: Voltage used by the component. May change from time to
time if the chip provides voltage scaling. Frequency used by the component. May change from time
to time if the chip provides frequency scaling. This value is used to compute the clock period.

2



frequency

voltage

module
TOP

module

pwtMEMORY
module

pwtMEMORY

ATMI

library

ATMI

wrapper

pwt module

interrupt

pwt module

module

pwt

controller

pwt module

controller
VGA

TEMP.

SENSOR module

pwt

BUS

pwt

module PROCESSOR

controller
DVFS

add_activityadd_activity

lock

SC_THREAD
add_activity

set_activity

set_temperature

set_activity

graphical

user interface

Figure 1: Example of a minimal SoC model with its power and temperature extensions.

while (true) {
1. wait(atmi_step_duration);
2. for each component, compute its average power density
3. during the last step elapsed.
4. atmi_simulator_step(atmi_instance,
5. power_densities) //call ATMI
6. set component temperature and call associated callbacks
}

Figure 2: SystemC ATMI wrapper.

• activity ratio: approximate ratio of gates that are active. This is a number between 0 and 1: close to
1 means the module is busy, below 0.1 generally means the component is idle. This value can change
up to every clock cycle.

In order to relate the functional behavior of a system-on-a-chip, its timing and power consumption, and
its temperature, we map the SystemC/TLM components to the areas of an ATMI [13] temperature model.
ATMI takes as input a floorplan, i.e., a set of areas of the chip, described by their coordinates, and the
initial temperature.

4 Instrumentation Method and Architecture of the Tool

4.1 Overview
Figure 1 shows an example model of system-on-a-chip, and the main elements of our solution. The left
part is the SystemC/TLM model. It communicates with ATMI through the ATMI wrapper. A graphical
user interface (GUI) can be used to monitor and control the simulation, see Fig. 3.

During simulation, ATMI computes the temperature of each area based on its power consumption, ex-
pressed as a power density, and computed on the SystemC side (thanks to the pwt_module, see below).
This computation is done at a regular pace, such as once every millisecond (SystemC time). Since ATMI
is packaged as a C library, it can be directly called from SystemC code. This is done by the ATMI wrap-
per, written in SystemC. The wrapper contains a SystemC thread that calls the ATMI library repeatedly,
according to the ATMI pace, as shown on Figure 2. Given the power densities, computing the compo-
nent’s temperature is just a function call to the ATMI library. For any SystemC component, it is possible
to provide a callback method that is called each time the temperature of the corresponding area changes
according to ATMI. For example, the temperature sensor defines a callback method that raises an interrupt
when the temperature reaches some thresholds.

3



4.2 Instrumentation on the SystemC side
The instrumentation of a component is done by inserting calls to a function set_activity and
add_activity (more details in section 4.4). Each SystemC component mapped to an ATMI area must
inherit from the pwt_module class (pwt standing for PoWer and Temperature). This class stores all the
static and dynamic parameters, and the activity ratios (as defined in section 3.2). In order to define fre-
quency and power domains, we allow additional PWT modules which do not correspond to actual hardware
components, i.e., are not mapped on the floorplan. Such modules only provide the voltage and frequency
parameters, which are forwarded to their children modules. Other methods are disabled; in particular, they
have no power densities. For example, the chip on Figure 1 has one DVFS (Dynamic Voltage and Fre-
quency Scaling) controller and a single power domain. So, in SystemC, the model of the DVFS controller
is bound to the top module; the DVFS controller TLM module calls the methods set_frequency and
set_voltage of the top module, which in turn calls the set_frequency and set_voltage methods of all
its children PWT modules.

4.3 Computation of Power Densities
The wrapper (Figure 2) computes the the average power density consumed during the last step elapsed
(lines 2-3). This computation is done in the new pwt_module class. Given all the parameters of the
component (static, dynamic, and activity ratios), the pwt_module class computes the average of the power
density during the last step elapsed. It is the sum of the static power and the dynamic power.

The static power is due to the leakage current, and it is proportional to the voltage and the leakage cur-
rent intensity. The intensity itself increases when the temperature increases; in the current implementation,
we use a linear approximation of the temperature effect.

The dynamic power corresponds to the cost of voltage changes in gates. It is proportional to the fre-
quency, to the number of gates involved (i.e., the activity ratio), and to the square of the voltage. Moreover,
it is proportional to a constant that depends on the capacitance per gate and on the gate density. The general
formula is of the form:

P = Pstatic + Pdynamic =
V ×K1 × (1 +K2 × T ) + F × V 2 × α×K3

where V is the voltage, T is the temperature, F is the frequency, α is the activity ratio, and Ki are static
parameters depending on the component area and on the technology.

Because PWT modules contain the general formula, which involves explicitly the frequency and the
voltage, the power model manages DVFS for free. Other approaches [12] let model developers provide the
actual power value, using their own function that may or may not take into account that the voltage or the
frequency may change. If needed, a module that has a specific power model can also redefine the method
that computes its power density.

4.4 Setting the Activity Ratio
The main task to extend a SystemC/TLM model with power consumption and temperature estimations is
to set dynamically the activity ratio of each module. The pwt_module class provides two ways to set this
ratio. The first one allows to set the activity ratio starting from now and until another level is set:
void set_activity(float ratio,

sc_time now = sc_time_stamp()).
The second one adds some extra-activity spanning on an interval of some duration (given as a number

of cycles), starting from now:
void add_activity(float ratio_increment,

unsigned nb_cycles,
sc_time now = sc_time_stamp()).

In general, the first method is best suited for initiator modules (like processors) whereas the second
is better for interconnects (busses) and target modules (like memories). For example, a processor’s TLM
model will call the set_activity method when it enters an idle state and when it becomes busy again. Us-
ing this method, we get an activity state-based power model, as in [12]. If more accuracy is needed, one can

4



develop an instruction-based power model as in [8] by using the second method and calling add_activity
for each instruction, with a ratio depending on the instruction kind and the register values. Obviously, the
second approach requires a lot of additional manpower and will slow down the simulation.

Concerning interconnect and target modules, the best solution is to call the add_activity method
once per transaction. In general, the ratio increment depends on the command (READ or WRITE) whereas
the duration (nb_cycles) depends on the transaction size. Note that it would be harder to use the activity
state-based method, because the local activity state depends on the external initiators, and is not known
locally.

The add_activity method could be implemented using two calls of the set_activity method, as
follow: remember the current activity level as current_ratio, set the activity level to current_ratio +
ratio_incr, increase the local date, and finally re-set the activity to current_ratio. However, this code
is not reentrant, which is mandatory for a bus or memory module, and pretty slow. On the contrary, the
add_activity method is reentrant and quick.

The rationale of the parameter “sc_time now” of the methods set_activity() and add_activity
is to ensure the compatibility with temporal decoupling [16], when using the coding rules
defined in [2]. When temporally decoupled, the local date of a process is expressed as
“sc_time_stamp()+local_offset” (instead of “sc_time_stamp()”), allowing to advance the local time
by executing a low-cost “local_offset += T” instead of a costly “wait(T)”. This local offset is part of
all transactions, so it can be used by interconnects and target modules too. Consequently, to set the activity
ratio at the right date, the methods set_activity and add_activity must be called with the parameter
now set to “sc_time_stamp()+local_offset”. Since this parameter has a default value, it can be safely
ignored for all processes that are not temporally decoupled.

The date used to call the activity methods may be later than the next ATMI step boundary. Indeed, some
TLM modules modelled at a coarse grain may simulate up to one second of SystemC time before yielding
back to the scheduler. Consequently, each PWT module contains a list of activity counters. The list head
contains the activity counter of the current ATMI step, and successive list elements store the activity of
future steps. The ATMI wrapper pops the front element once every step. The traffic model of [5] can be
implemented on top of this, but it is currently not part of the tool presented here.

4.5 Direct-Memory-Interface Management
To improve simulation speed, some TLM modules use a technique called Direct Memory Interface (DMI).
It speeds up memory accesses by providing the initiator (e.g., a processor given as an instruction-set-
simulator) with a pointer to the memory array. So, when accessing memory, the initiator will directly use
the memory pointer instead of generating a transaction that goes through the bus. Since a transaction would
involve many indirect function calls plus routing in the interconnects, the speed gain is significant. That is
functionally correct but may bypass some side effects, because the code related to timing and power into
the interconnects and the memory is no longer executed. For the timing issue, [2] suggests to provide the
initiator with two durations: the read latency and the write latency. Thus, the initiator can add the latency
to its local offset when a memory access is simulated. Because the latencies depend on the frequency, the
DMI descriptor must be updated every time the frequency is changed. We use the same idea for power
modelling. However, providing a single activity ratio increment per transaction is not enough, since the
activity increment must be added to each module involved in the transaction. Indeed, if the additional
activity was assigned to the initiator, then the initiator temperature would be overestimated whereas the
bus and memory temperatures would be underestimated. The solution is to add into the DMI descriptor a
pointer list of all PWT modules that are on the transaction path. Our DMI manager class provides a method
apply_side_effects(command, size) that increases the local time offset according to the latency and
calls the add_activity method of all the PWT modules in the list.

For monitoring, the GUI provides the current temperatures as text values, a graph of the floorplan
where each module is coloured with respect to its temperature (from blue for cold, to red for hot module).
Additionally, a plot provides either the temperature or the power consumption or the power density of each
module depending on the time.

5



5 Evaluation and Applications

5.1 Development Cost
For the development and the evaluation of our approach, we have developed a demonstration platform
based on a small FPGA system. The main components are a processor (MicroBlaze) and a VGA con-
troller. There are two memories, one for instructions and the other for data, plus the usual devices: timers,
UART, interrupt controller, etc. Compared to the initial FPGA system, we have added in the TLM model a
temperature sensor and a DVFS controller. The whole TLM model uses the blocking TLM interfaces of [2],
with the generic payload plus an ignorable extension for DMI configuration. We reuse some open-source
TLM code from SoCLib [1] and SimSoC [9].

We have applied some classic optimisations in the TLM model, so that the base simulation speed is
similar to the simulation speed of an industrial TLM model. In particular, we use temporal decoupling in
all places where it is useful, and the processor and VGA controller models use the Direct Memory Interface
mechanism. When the processor is busy, the simulation speed is around 50 MIPS (million instructions per
second).

The TLM model without power and temperature counts 5000 lines of code, and uses some general
development kits counting in total 1400 lines of code. In this version, the temperature sensor and the
DVFS controller modules are included but they have no behaviour.

The core classes we have developed for power and temperature modelling counts 700 lines of code (not
including the ATMI library, which is 2700 lines long). Additionally, the graphical user interface counts
close to 600 lines.

For the instrumentation of the platform itself, we have added about 100 lines of code. Note that this
is quite small compared to the platform size, showing that once the tools are available, instrumenting an
existing TLM model for power and temperature estimations requires a very little cost. One must provide
the physical values used in the power and thermal model; this calibration task is out of the scope of this
paper.

5.2 Simulation Speed Overhead
To evaluate the simulation speed, we use our demonstration platform and make it run a benchmark appli-
cation. In this benchmark, the processor is periodically computing: it waits one second and then computes
during about 0.8 seconds (SystemC time). The application computes the “game of life”, waiting 1 second
between images. Additionally, the VGA controller is active and loads the image buffer 60 times per second.
Between two consecutive reloads, the VGA controller remains idle during a few milliseconds.

The first time the model is simulated, the ATMI library computes many data in advance in order to
accelerate the simulation itself. Those data are cached in a file for future simulations. Modifying the
floorplan or some technology-dependent parameters requires to compute this file again. This computation
takes about two minutes.

Simulating 10 seconds (SystemC time) takes:
• 3.4 seconds (wall-clock time) for the initial functional TLM model
• 6.4 seconds with power and temperature estimations (6.6 seconds with GUI), assuming that the

ATMI cache file was ready.
So, the simulation duration overhead for instrumented models is about +88%. We consider that it is a
significant but acceptable overhead.

If the DMI is disabled, the functional simulation consumes 9.1 seconds whereas the PWT simulation
consumes 12.8 seconds. So, without our extended DMI mechanism, the total overhead would be 9.4
seconds, i.e. +276% (5.7 seconds for disabling the DMI plus 3.7 seconds for power and temperature
computations). Naturally, running the PWT simulation with DMI but without the extension is quick (≈5
seconds) but incorrect: we have observed errors of more than 1 degree Celsius.

Looking at the profile obtained with callgrind+kcachegrind [17], we notice that there are two
performance-consuming spots: 1. computations internal to the ATMI library (≈28% of total simulation
time), 2. applications of transaction side effects when using DMI (≈12% of total simulation time). The

6



pwt_module class has been implemented with the optimisation of this second performance-consuming spot
in mind.

Concerning the time spent in the ATMI library, the user may optimise it by adapting the ATMI step
duration. The values above are given for a step duration of one millisecond. As shown by Table 1, the
longer the ATMI step, the faster the simulation, but the cost is a loss of accuracy. The temperature error is
higher in modules whose power density changes at a fast pace.

Table 1: Effect of the ATMI step duration
ATMI simulation standard deviation (σ)
step duration processor VGA bus temp. sensor

0.25 ms 15.3 s (+139%) reference reference reference reference
0.5 ms 8.9 s (+39%) 0.01 ◦C 0.05 ◦C 0.09 ◦C 0.00 ◦C
1 ms 6.4 s (ref.) 0.03 ◦C 0.11 ◦C 0.12 ◦C 0.01 ◦C
2 ms 5.2 s (-19%) 0.06 ◦C 0.23 ◦C 0.15 ◦C 0.03 ◦C
4 ms 4.6 s (-28%) 0.13 ◦C 0.42 ◦C 0.19 ◦C 0.05 ◦C

5.3 Applications
Using the “game of life” benchmark previously presented, we can observe that temperature plots are as
expected. Figure 4 shows those plots at different time scales. Looking at a short time range, we see that
the VGA temperature fluctuates with an amplitude slightly above 1 ◦C; as a consequence, the temperature
sensor fluctuates too, but with a smaller amplitude. On the second plot, we see that the processor tempera-
ture fluctuates at a slower pace, since it is computing about one second every two. Moreover, other module
temperatures evolve according to the processor temperature. Finally, the third plot shows that the whole
system takes about 100 seconds to reach its maximum temperature. It is one reason why simulators must
be fast enough to allow simulations of many minutes of SystemC time.

One possible application of our tool is to detect non-functional errors in embedded software, such as
polling a device register instead of using idle mode and interrupts. Figure 7 shows what happens if the
previous benchmark uses polling instead of interrupts. The functional behaviour is exactly the same, but
we immediately see that the temperatures keep increasing and that the real chip would overheat. Note that
the bus temperature is higher during polling than during frame computation due to the high polling traffic.

Another application is the development and validation of the voltage and frequency control. One simple
solution to avoid overheating is to switch between two modes: a default fast mode where frequency and
voltage are high, and a backup low-power mode where voltage and frequency are low. The controller
(i.e., a part of the embedded operating system) programs the interrupts of the temperature sensor module
according to two thresholds: the high threshold is used to avoid overheating and causes the switch to the
low-power mode, whereas the low threshold determines when to switch back to the fast mode. Testing this
algorithm on a pure functional TLM model is quite difficult, because temperature sensor interrupts will not
occur or will occur at unrealistic dates. On the contrary, using the extended TLM model and its GUI allows
to check easily the controller behaviour, as shown on Figure 5. Again, note that the simulation must be at
least 20 seconds long to be useful, so simulation speed matters.

7



temperature sensor

processor

bus

Figure 7: Variant of the “game of life” benchmark using polling.

Such temperature control based on low and high thresholds has some drawbacks; one is that the frequent
temperature changes may raise the failure rate of the system [19]. Another approach is to use a PID
controller. We have implemented this approach in the embedded software of our demonstration platform.
As shown by Figure 6, we see that the PID-controlled temperature curve is smoother than the previous
threshold-controlled temperature curve. The first plot shows a simulation with a badly tuned PID controller,
where the VGA controller temperature oscillations are amplified instead of smoothed, meaning that the gain
parameters are likely too high.

6 Conclusion
We have shown how to modify existing proposals for the power and temperature instrumentation of
SystemC/TLM models, so as to make them compatible with state-of-the-art transaction-level modeling
guidelines and optimizations. In particular, our solution can benefit from temporal decoupling and direct-
memory-interface, which is compulsory to get reasonable simulation times, even for the non-instrumented
models. The simulation speed overhead of the instrumented models is therefore kept as small as possible.
We have proposed to instrument models with activity ratios instead of power values, which makes the mod-
els more generic, in contexts where the frequency or the voltage may change. We have shown use cases
where the approach presented can help the embedded software developer to detect issues related to power
consumption or temperature.

Using ATMI limits us to 2D designs. It would be interesting to test other thermal solvers such as
HotSpot [10] or 3D-ICE [14], which are able to manage 3D chips.

Further work includes the development of calibration tools: assuming that the temperature or power
consumption are known but not some activity ratios or physical parameters, a calibration tool would have
to find the best values for unknown figures.

8



Another interesting feature would be to add random noise either to the power densities (correspond-
ing to model inaccuracies) or to the computed temperature (to model the inaccuracy of actual hardware
temperature sensors). Indeed, an illusion of accuracy could mislead the software developer by favouring
temperature management policies that are not robust to inaccuracies.

References
[1] An open platform for virtual prototyping of multi-processors system-on-chip. http://www.soclib.

fr/.

[2] Accellera Systems Initiative. IEEE 1666 Standard: SystemC Language Reference Manual, 2011.

[3] L. Benini, R. Hodgson, and P. Siegel. System-level power estimation and optimization. In Proceed-
ings of the 1998 international symposium on Low power electronics and design, ISLPED ’98, pages
173–178, New York, NY, USA, 1998. ACM.

[4] R. A. Bergamaschi and Y. W. Jiang. State-based power analysis for systems-on-chip. In Proceedings
of the 40th annual Design Automation Conference, DAC ’03, pages 638–641, New York, NY, USA,
2003. ACM.

[5] T. Bouhadiba, M. Moy, and F. Maraninchi. System-level modeling of energy in TLM for early vali-
dation of power and thermal management. In Design Automation and Test Europe (DATE), Grenoble,
France, Mar. 2013.

[6] T. Bouhadiba, M. Moy, F. Maraninchi, J. Cornet, L. Maillet-Contoz, and I. Materic. Co-Simulation
of Functional SystemC TLM Models with Power/Thermal Solvers. In Virtual Prototyping of Parallel
and Embedded Systems (VIPES), Boston, États-Unis, May 2013.

[7] D. Das, P. P. Chakrabarti, and R. Kumar. Thermal analysis of multiprocessor SoC applications by
simulation and verification. ACM Trans. Des. Autom. Electron. Syst., 15:15:1–15:52, March 2010.

[8] N. Dhanwada, I.-C. Lin, and V. Narayanan. A power estimation methodology for systemc transaction
level models. In Proceedings of the 3rd, CODES+ISSS ’05, pages 142–147, New York, NY, USA,
2005. ACM.

[9] C. Helmstetter, V. Joloboff, and H. Xiao. SimSoC: A full system simulation software for embedded
systems. In Open-source Software for Scientific Computation (OSSC), pages 49–55, 2009.

[10] W. Huang, S. Member, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, M. R. Stan,
S. Member, and S. Member. Hotspot: A compact thermal modeling method for CMOS VLSI systems.
IEEE Transactions on VLSI Systems, 14:501–513, 2006.

[11] P. Kumar and L. Thiele. System-level power and timing variability characterization to compute ther-
mal guarantees. In CODES+ISSS 2011, pages 179–188, Taipei, Taiwan, 2011. ACM.

[12] H. Lebreton and P. Vivet. Power modeling in SystemC at transaction level, application to a DVFS
architecture. In Symposium on VLSI. ISVLSI’08., pages 463–466. IEEE, 2008.

[13] P. Michaud and Y. Sazeides. ATMI: analytical model of temperature in microprocessors. Third Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS), 2007.

[14] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza. 3d-ice: Fast compact transient
thermal modeling for 3d ics with inter-tier liquid cooling. In Computer-Aided Design (ICCAD), 2010
IEEE/ACM International Conference on, pages 463–470, 2010.

[15] A. Varma, E. Debes, I. Kozintsev, P. Klein, and B. L. Jacob. Accurate and fast system-level power
modeling: An xscale-based case study. ACM Trans. Embedded Comput. Syst., 7(3), 2008.

9

http://www.soclib.fr/
http://www.soclib.fr/


[16] E. Viaud, F. Pêcheux, and A. Greiner. An efficient TLM/T modeling and simulation environment
based on conservative parallel discrete event principles. In DATE’06, pages 94–99, March 2006.

[17] J. Weidendorfer. Sequential performance analysis with callgrind and kcachegrind. In M. M. Resch,
R. Keller, V. Himmler, B. Krammer, and A. Schulz, editors, Parallel Tools Workshop, pages 93–113.
Springer, 2008.

[18] M. Yasin, C. Koch-Hofer, P. Vivet, and D. Greaves. TLM power 3.0 (CBG) user manual.
koo.corpus.cam.ac.uk/tlm-power3, 2012.

[19] F. Zanini, D. Atienza, L. Benini, and G. De Micheli. Multicore thermal management with model
predictive control. In European Conference on Circuit Theory and Design (ECCTD 2009), volume 1,
pages 90 – 95. IEEE Press, 2009.

10



Figure 3: Graphical user interface, implemented in the Qt framework, and running in a distinct Posix thread
than the SystemC simulation. The GUI allows to pause the simulation, or to reduce the SystemC simulation
speed. It shows curves and the evolving temperature map.

11



temperature sensor

VGA controller

VGA controller
temp. sensor

processor

temp. sensor

processor

Figure 4: Temperature plots for the “game of life” benchmark, with different time scales.

temperature sensor

processor

processor

zoom

temperature sensor

lo
w

 f
re

q
. 

&
 v

o
lt

ag
e

lo
w

 f
re

q
. 

&
 v

o
lt

ag
e

&
 v

o
lt

ag
e

h
ig

h
 f

re
q

u
en

cy

&
 v

o
lt

ag
e

h
ig

h
 f

re
q

u
en

cy

&
 v

o
lt

ag
e

h
ig

h
 f

re
q

u
en

cy

high threshold = 51 

low threshold = 45.5

Figure 5: Temperature control with low and high thresholds: the software controller toggles between low
and high power modes according to the temperature

processor

temperature sensor temperature sensor

processor

target=50 target=50

Figure 6: Temperature control using a PID controller, with distinct gain parameters

12


	Introduction
	Related Work
	New Power and Temperature Modelling Method
	Initial SystemC/TLM Models
	Instrumentation Parameters

	Instrumentation Method and Architecture of the Tool
	Overview
	Instrumentation on the SystemC side
	Computation of Power Densities
	Setting the Activity Ratio
	Direct-Memory-Interface Management

	Evaluation and Applications
	Development Cost
	Simulation Speed Overhead
	Applications

	Conclusion

