
Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Advanced use of Git

Matthieu Moy

Matthieu.Moy@imag.fr
http://www-verimag.imag.fr/~moy/cours/formation-git/

advanced-git-slides.pdf

2015

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 1 / 63 >

http://www-verimag.imag.fr/~moy/cours/formation-git/advanced-git-slides.pdf
http://www-verimag.imag.fr/~moy/cours/formation-git/advanced-git-slides.pdf

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Goals of the presentation

Understand why Git is important, and what can be done with it
Understand how Git works
Motivate to read further documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 2 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline

1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Clean local history

5 Repairing mistakes: the reflog

6 Workflows

7 More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 3 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git blame: Who did that?
git gui blame file

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 4 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Bisect: Find regressions
$ git bisect start
$ git bisect bad
$ git bisect good v1.9.0
Bisecting: 607 revisions left to test after this (roughly 9 steps)
[8fe3ee67adcd2ee9372c7044fa311ce55eb285b4] Merge branch ’jx/i18n’
$ git bisect good
Bisecting: 299 revisions left to test after this (roughly 8 steps)
[aa4bffa23599e0c2e611be7012ecb5f596ef88b5] Merge branch ’jc/coding-guidelines’
$ git bisect good
Bisecting: 150 revisions left to test after this (roughly 7 steps)
[96b29bde9194f96cb711a00876700ea8dd9c0727] Merge branch ’sh/enable-preloadindex’
$ git bisect bad
Bisecting: 72 revisions left to test after this (roughly 6 steps)
[09e13ad5b0f0689418a723289dca7b3c72d538c4] Merge branch ’as/pretty-truncate’
...
$ git bisect good
60ed26438c909fd273528e67 is the first bad commit
commit 60ed26438c909fd273528e67b399ee6ca4028e1e

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 5 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 6 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 6 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 6 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 6 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Bisect: Binary search
git bisect visualize

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 6 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t

compilable.

Clean history is important
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 7 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t

compilable.

Which one do you prefer?

Clean history is important
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 7 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t

compilable.

Clean history is important
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 7 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Then what?
git blame and git bisect point you to a commit, then ...

Dream:
I The commit is a 50-lines long patch
I The commit message explains the intent of the programmer

Nightmare 1:
I The commit mixes a large reindentation, a bugfix and a real feature
I The message says “I reindented, fixed a bug and added a feature”

Nightmare 2:
I The commit is a trivial fix for the previous commit
I The message says “Oops, previous commit was stupid”

Nightmare 3:
I Bisect is not even applicable because most commits aren’t

compilable.

Clean history is as important as comments
for software maintainability

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 7 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Two Approaches To Deal With History

Approach 1

“Mistakes are part of history.”

Approach 2

“History is a set of lies agreed upon.”1

1Napoleon Bonaparte

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 8 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Approach 1: Mistakes are part of history

≈ the only option with Subversion/CVS/...
History reflects the chronological order of events
Pros:

I Easy: just work and commit from time to time
I Traceability

But ...
I Is the actual order of event what you want to remember?
I When you write a draft of a document, and then a final version,

does the final version reflect the mistakes you did in the draft?

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 9 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Approach 2: History is a set of lies agreed upon

Popular approach with modern VCS (Git, Mercurial. . .)
History tries to show the best logical path from one point to
another
Pros:

I See above: blame, bisect, ...
I Code review
I Claim that you are a better programmer than you really are!

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 10 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Another View About Version Control

2 roles of version control:
I For beginners: help the code reach upstream.
I For advanced users: prevent bad code from reaching upstream.

Several opportunities to reject bad code:
I Before/during commit
I Before push
I Before merge

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 11 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

What is a clean history

Each commit introduce small group of related changes (≈ 100
lines changed max, no minimum!)
Each commit is compilable and passes all tests (“bisectable
history”)
“Good” commit messages

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 12 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline

1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Clean local history

5 Repairing mistakes: the reflog

6 Workflows

7 More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 13 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

2 Clean commits
Writing good commit messages
Partial commits with git add -p, the index

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 14 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Reminder: good comments
Bad:

int i; // Declare i of type int
for (i = 0; i < 10; i++) { ... }
f(i)

Possibly good:

int i; // We need to declare i outside the for
// loop because we’ll use it after.

for (i = 0; i < 10; i++) { ... }
f(i)

Common rule: if your code isn’t clear enough,
rewrite it to make it clearer

instead of adding comments.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 15 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Reminder: good comments
Bad: What? The code already tells

int i; // Declare i of type int
for (i = 0; i < 10; i++) { ... }
f(i)

Possibly good: Why? Usually the relevant question

int i; // We need to declare i outside the for
// loop because we’ll use it after.

for (i = 0; i < 10; i++) { ... }
f(i)

Common rule: if your code isn’t clear enough,
rewrite it to make it clearer

instead of adding comments.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 15 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Good commit messages

Recommended format:
One-line description (< 50 characters)

Explain here why your change is good.

Write your commit messages like an email: subject and body
Imagine your commit message is an email sent to the maintainer,
trying to convince him to merge your code2

Don’t use git commit -m

2Not just imagination, see git send-email

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 16 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Good commit messages: examples
From Git’s source code

https://github.com/git/git/commit/bde4a0f9f3035d482a80c32b4a485333b9ed4875

gitk: Add visiblerefs option, which lists always-shown branches

When many branches contain a commit, the branches used to be shown in
the form "A, B and many more", where A, B can be master of current
HEAD. But there are more which might be interesting to always know about.
For example, "origin/master".

The new option, visiblerefs, is stored in ~/.gitk. It contains a list
of references which are always shown before "and many more" if they
contain the commit. By default it is ‘"master"’, which is compatible
with previous behavior.

Signed-off-by: Max Kirillov <max@max630.net>
Signed-off-by: Paul Mackerras <paulus@samba.org>

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 17 / 63 >

https://github.com/git/git/commit/bde4a0f9f3035d482a80c32b4a485333b9ed4875

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Good commit messages: counter-example
GNU-style changelogs

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=237adac78268940e77ed19e06c4319af5955d55f

Use convenient alists to manage per-frame font driver-specific data.

* frame.h (struct frame): Rename font_data_list to...
[HAVE_XFT || HAVE_FREETYPE]: ... font_data, which is a Lisp_Object now.

* font.h (struct font_data_list): Remove; no longer need a special
data type.
(font_put_frame_data, font_get_frame_data) [HAVE_XFT || HAVE_FREETYPE]:
Adjust prototypes.

* font.c (font_put_frame_data, font_get_frame_data)
[HAVE_XFT || HAVE_FREETYPE]: Prefer alist functions to ad-hoc list
management.

* xftfont.c (xftfont_get_xft_draw, xftfont_end_for_frame):
Related users changed.

* ftxfont.c (ftxfont_get_gcs, ftxfont_end_for_frame): Likewise.
Prefer convenient xmalloc and xfree.

Not much the patch didn’t already say ... (do you understand the
problem the commit is trying to solve?)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 18 / 63 >

http://git.savannah.gnu.org/cgit/emacs.git/commit/?id=237adac78268940e77ed19e06c4319af5955d55f

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

2 Clean commits
Writing good commit messages
Partial commits with git add -p, the index

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 19 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 20 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

The index, or “Staging Area”

“the index” is where the next commit is prepared
Contains the list of files and their content
git commit transforms the index into a commit
git commit -a stages all changes in the worktree in the index
before committing. You’ll find it sloppy soon.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 21 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Dealing with the index

Commit only 2 files:
git add file1.txt
git add file2.txt
git commit

Commit only some patch hunks:
git add -p
(answer yes or no for each hunk)
git commit

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 22 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

git add -p: example
$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y

@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n
$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 23 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

git add -p: example
$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y
@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n

$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 23 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

git add -p: example
$ git add -p
@@ -1,7 +1,7 @@
int main()

- int i;
+ int i = 0;

printf("Hello, ");
i++;

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? y
@@ -5,6 +5,6 @@

- printf("i is %s\n", i);
+ printf("i is %d\n", i);

Stage this hunk [y,n,q,a,d,/,K,g,e,?]? n
$ git commit -m "Initialize i properly"
[master c4ba68b] Initialize i properly
1 file changed, 1 insertion(+), 1 deletion(-)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 23 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

git add -p: dangers

Commits created with git add -p do not correspond to what
you have on disk
You probably never tested this commit ...
Solutions:

I git stash -k: stash what’s not in the index
I git rebase --exec: see later
I (and code review)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 24 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline

1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Clean local history

5 Repairing mistakes: the reflog

6 Workflows

7 More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 25 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Why do I need to learn about Git’s internal?

Beauty of Git: very simple data model
(The tool is clever, the repository format is simple&stupid)
Understand the model, and the 150+ commands will become
simple !

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 26 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

3 Understanding Git
Objects, sha1
References

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 27 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

.tx
t file3.txt

tree

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 28 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

.tx
t file3.txt

tree

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 28 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

.tx
t file3.txt

tree

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 28 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

.tx
t file3.txt

tree

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 28 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

.tx
t file3.txt

tree

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 28 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

.tx
t file3.txt

tree

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 28 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Content of a Git repository: Git objects
blob Any sequence of bytes, represents file content

tree Associates object to pathnames, represents a directory

commit Metadata + pointer to tree + pointer to parents

file
1.

tx
t file2.txt

di
r1

.tx
t file3.txt

tree

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 28 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git objects: On-disk format
$ git log
commit 7a7fb77be431c284f1b6d036ab9aebf646060271
Author: Matthieu Moy <Matthieu.Moy@imag.fr>
Date: Wed Jul 2 20:13:49 2014 +0200

Initial commit
$ find .git/objects/
.git/objects/
.git/objects/fc
.git/objects/fc/264b697de62952c9ff763b54b5b11930c9cfec
.git/objects/a4
.git/objects/a4/7665ad8a70065b68fbcfb504d85e06551c3f4d
.git/objects/7a
.git/objects/7a/7fb77be431c284f1b6d036ab9aebf646060271
.git/objects/50
.git/objects/50/a345788a8df75e0f869103a8b49cecdf95a416
.git/objects/26
.git/objects/26/27a0555f9b58632be848fee8a4602a1d61a05f

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 29 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git objects: On-disk format
$ echo foo > README.txt; git add README.txt
$ git commit -m "add README.txt"
[master 5454e3b] add README.txt
1 file changed, 1 insertion(+)
create mode 100644 README.txt

$ find .git/objects/
.git/objects/
.git/objects/fc
.git/objects/fc/264b697de62952c9ff763b54b5b11930c9cfec
.git/objects/a4
.git/objects/a4/7665ad8a70065b68fbcfb504d85e06551c3f4d
.git/objects/59
.git/objects/59/802e9b115bc606b88df4e2a83958423661d8c4
.git/objects/7a
.git/objects/7a/7fb77be431c284f1b6d036ab9aebf646060271
.git/objects/25
.git/objects/25/7cc5642cb1a054f08cc83f2d943e56fd3ebe99
.git/objects/54
.git/objects/54/54e3b51e81d8d9b7e807f1fc21e618880c1ac9
...

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 30 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git objects: On-disk format

By default, 1 object = 1 file
Name of the file = object unique identifier content
Content-addressed database:

I Identifier computed as a hash of its content
I Content accessible from the identifier

Consequences:
I Objects are immutable
I Objects with the same content have the same identity

(deduplication for free)
I No known collision in SHA1
I Acyclic (DAG = Directed Acyclic Graph)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 31 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

On-disk format: Pack files
$ du -sh .git/objects/
68K .git/objects/
$ git gc
...
$ du -sh .git/objects/
24K .git/objects/
$ find .git/objects/
.git/objects/
.git/objects/pack
.git/objects/pack/pack-f9cbdc53005a4b500934625d...a3.idx
.git/objects/pack/pack-f9cbdc53005a4b500934625d...a3.pack
.git/objects/info
.git/objects/info/packs
$

 More efficient format, no conceptual change
(objects are still there)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 32 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Exploring the object database
git cat-file -p : pretty-print the content of an object

$ git log --oneline
5454e3b add README.txt
7a7fb77 Initial commit
$ git cat-file -p 5454e3b
tree 59802e9b115bc606b88df4e2a83958423661d8c4
parent 7a7fb77be431c284f1b6d036ab9aebf646060271
author Matthieu Moy <Matthieu.Moy@imag.fr> 1404388746 +0200
committer Matthieu Moy <Matthieu.Moy@imag.fr> 1404388746 +0200

add README.txt
$ git cat-file -p 59802e9b115bc606b88df4e2a83958423661d8c4
100644 blob 257cc5642cb1a054f08cc83f2d943e56fd3ebe99 README.txt
040000 tree 2627a0555f9b58632be848fee8a4602a1d61a05f sandbox
$ git cat-file -p 257cc5642cb1a054f08cc83f2d943e56fd3ebe99
foo
$ printf ’blob 4\0foo\n’ | sha1sum
257cc5642cb1a054f08cc83f2d943e56fd3ebe99 -

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 33 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merge commits in the object database

$ git checkout -b branch HEAD^
Switched to a new branch ’branch’
$ echo foo > file.txt; git add file.txt
$ git commit -m "add file.txt"
[branch f44e9ab] add file.txt
1 file changed, 1 insertion(+)
create mode 100644 file.txt

$ git merge master
Merge made by the ’recursive’ strategy.
README.txt | 1 +
1 file changed, 1 insertion(+)
create mode 100644 README.txt

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 34 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merge commits in the object database
$ git checkout -b branch HEAD^
$ echo foo > file.txt; git add file.txt
$ git commit -m "add file.txt"
$ git merge master
$ git log --oneline --graph

* 1a7f9ae (HEAD, branch) Merge branch ’master’ into branch
|\
| * 5454e3b (master) add README.txt

* | f44e9ab add file.txt
|/

* 7a7fb77 Initial commit
$ git cat-file -p 1a7f9ae
tree 896dbd61ffc617b89eb2380cdcaffcd7c7b3e183
parent f44e9abff8918f08e91c2a8fefe328dd9006e242
parent 5454e3b51e81d8d9b7e807f1fc21e618880c1ac9
author Matthieu Moy <Matthieu.Moy@imag.fr> 1404390461 +0200
committer Matthieu Moy <Matthieu.Moy@imag.fr> 1404390461 +0200

Merge branch ’master’ into branch

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 35 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Snapshot-oriented storage

A commit represents exactly the state of the project
A tree represents only the state of the project (where we are, not
how we got there)
Renames are not tracked, but re-detected on demand
Diffs are computed on demand (e.g. git diff HEAD HEADˆ)
Physical storage still efficient

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 36 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

3 Understanding Git
Objects, sha1
References

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 37 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Branches, tags: references
In Java:

String s; // Reference named s
s = new String("foo"); // Object pointed to by s
String s2 = s; // Two refs for the same object

In Git: likewise!
$ git log -oneline
5454e3b add README.txt
7a7fb77 Initial commit
$ cat .git/HEAD
ref: refs/heads/master
$ cat .git/refs/heads/master
5454e3b51e81d8d9b7e807f1fc21e618880c1ac9
$ git symbolic-ref HEAD
refs/heads/master
$ git rev-parse refs/heads/master
5454e3b51e81d8d9b7e807f1fc21e618880c1ac9

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 38 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

References (refs) and objects
file

1.
tx

t file2.txt

di
r1

.tx
t file3.txt

tree

master

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 39 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

References (refs) and objects
file

1.
tx

t file2.txt

di
r1

.tx
t file3.txt

tree

master

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 39 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

References (refs) and objects
file

1.
tx

t file2.txt

di
r1

.tx
t file3.txt

tree

master

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 39 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

References (refs) and objects
file

1.
tx

t file2.txt

di
r1

.tx
t file3.txt

tree

master

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 39 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

References (refs) and objects
file

1.
tx

t file2.txt

di
r1

.tx
t file3.txt

tree

master

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 39 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

References (refs) and objects
file

1.
tx

t file2.txt

di
r1

.tx
t file3.txt

tree

master

parent

tree

dir1.txt file3.txt

parent

parent

parent

parent

... ...

HEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 39 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Sounds Familiar?

≈

parent

parent

parent

parent

parent

branch
masterHEAD

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 40 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Branches, HEAD, tags

A branch is a ref to a commit
A lightweight tag is a ref (usually to a commit) (like a branch, but
doesn’t move)
Annotated tags are objects containing a ref + a (signed) message
HEAD is “where we currently are”

I If HEAD points to a branch, the next commit will move the branch
I If HEAD points directly to a commit (detached HEAD), the next

commit creates a commit not in any branch (warning!)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 41 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline

1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Clean local history

5 Repairing mistakes: the reflog

6 Workflows

7 More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 42 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Example

Implement git clone -c var=value : 9 preparation patches, 1
real (trivial) patch at the end!

https://github.com/git/git/commits/
84054f79de35015fc92f73ec4780102dd820e452

Did the author actually write this in this order?

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 43 / 63 >

https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452
https://github.com/git/git/commits/84054f79de35015fc92f73ec4780102dd820e452

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

4 Clean local history
Avoiding merge commits: rebase Vs merge
Rewriting history with rebase -i

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 44 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A

Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A

Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A Merge1

B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A Merge1

B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 1: merge (default with git pull)

A Merge1 B C

Merge2

Drawbacks:
I Merge1 is not relevant, distracts reviewers (unlike Merge2).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 45 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to

continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 46 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to

continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 46 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 2: no merge

A

B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to

continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 46 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 2: no merge

A

B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to

continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 46 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to

continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 46 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 2: no merge

A B C

Merge2

Drawbacks:
I In case of conflict, they have to be resolved by the developer

merging into upstream (possibly after code review)
I Not always applicable (e.g. “I need this new upstream feature to

continue working”)

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 46 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A

A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A

A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2

master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2 master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2 master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Merging With Upstream

Question: upstream (where my code should eventually end up) has
new code, how do I get it in my repo?

Approach 3: rebase (git rebase or git pull --rebase)

A A’

B

C

A”

B’

C’

Merge2 master

topic

Drawbacks: rewriting history implies:
I A’, A”, B’, C’ probably haven’t been tested (never existed on disk)
I What if someone branched from A, A’, B or C?
I Basic rule: don’t rewrite published history

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 47 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

4 Clean local history
Avoiding merge commits: rebase Vs merge
Rewriting history with rebase -i

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 48 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Rewriting history with rebase -i
git rebase: take all your commits, and re-apply them onto
upstream
git rebase -i: show all your commits, and asks you what to
do when applying them onto upstream:
pick ca6ed7a Start feature A
pick e345d54 Bugfix found when implementing A
pick c03fffc Continue feature A
pick 5bdb132 Oops, previous commit was totally buggy

Rebase 9f58864..5bdb132 onto 9f58864
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit’s log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#

Note that empty commits are commented outMatthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 49 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

git rebase -i commands (1/2)
p, pick use commit (by default)

r, reword use commit, but edit the commit message
Fix a typo in a commit message

e, edit use commit, but stop for amending
Once stopped, use git add -p, git commit
-amend, ...

s, squash use commit, but meld into previous commit
f, fixup like "squash", but discard this commit’s log message

Very useful when polishing a set of commits (before
or after review): make a bunch of short fixup patches,
and squash them into the real commits. No one will
know you did this mistake ;-).

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 50 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

git rebase -i commands (2/2)

x, exec run command (the rest of the line) using shell
Example: exec make check. Run tests for this
commit, stop if test fail.
Use git rebase -i -exec ’make check’3 to
run make check for each rebased commit.

3Implemented by Ensimag students!

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 51 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline

1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Clean local history

5 Repairing mistakes: the reflog

6 Workflows

7 More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 52 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 53 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 53 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 53 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Git’s reference journal: the reflog
Remember the history of local refs.
6= ancestry relation.

A A’

B

C

A”

B’

C’

Merge2 master

topic

topic@{0}topic@{1}

topic@{2}

HEAD@{1}

HEAD@{2}

ref@{n}: where ref was before the n last ref update.
ref~n: the n-th generation ancestor of ref
refˆ: first parent of ref
git help revisions for more

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 53 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline

1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Clean local history

5 Repairing mistakes: the reflog

6 Workflows

7 More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 54 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

6 Workflows
Centralized Workflow with a Shared Repository
Triangular Workflow with pull-requests
Code review in Triangular Workflows

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 55 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Centralized workflow
do {

while (nothing_interesting())
work();

while (uncommited_changes()) {
while (!happy) { // git diff --staged ?

while (!enough) git add -p;
while (too_much) git reset -p;

}
git commit; // no -a
if (nothing_interesting())

git stash;
}
while (!happy)

git rebase -i;
} while (!done);
git push; // send code to central repository

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 56 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

6 Workflows
Centralized Workflow with a Shared Repository
Triangular Workflow with pull-requests
Code review in Triangular Workflows

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 57 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Triangular Workflow with pull-requests
Developers pull from upstream, and push to a “to be merged”
location
Someone else reviews the code and merges it upstream

Upstream A’s public repo

A’s private repo

clone, pull

pu
sh

merge
B’s public repo

B’s private repo

clo
ne,

pull

pu
sh

merge

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 58 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline of this section

6 Workflows
Centralized Workflow with a Shared Repository
Triangular Workflow with pull-requests
Code review in Triangular Workflows

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 59 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Code Review

What we’d like:
1 A writes code, commits, pushes
2 B does a review
3 B merges to upstream

What usually happens:
1 A writes code, commits, pushes
2 B does a review
3 B requests some changes
4 ... then ?

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 60 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Iterating Code Reviews

At least 2 ways to deal with changes between reviews:
1 Add more commits to the pull request and push them on top
2 Rewrite commits (rebase -i, . . .) and overwrite the old pull

request
F The resulting history is clean
F Much easier for reviewers joining the review effort at iteration 2
F e.g. On Git’s mailing-list, 10 iterations is not uncommon.

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 61 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

Outline

1 Clean History: Why?

2 Clean commits

3 Understanding Git

4 Clean local history

5 Repairing mistakes: the reflog

6 Workflows

7 More Documentation

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 62 / 63 >

Clean History: Why? Clean commits Understanding Git Clean local history Repairing mistakes: the reflog Workflows More Documentation

More Documentation

http://ensiwiki.ensimag.fr/index.php/Maintenir_
un_historique_propre_avec_Git

http://ensiwiki.ensimag.fr/index.php/Ecrire_de_
bons_messages_de_commit_avec_Git

Matthieu Moy (Matthieu.Moy@imag.fr) Advanced Git 2015 < 63 / 63 >

http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Maintenir_un_historique_propre_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git
http://ensiwiki.ensimag.fr/index.php/Ecrire_de_bons_messages_de_commit_avec_Git

	Clean History: Why?
	Clean commits
	Writing good commit messages
	Partial commits with git add -p, the index

	Understanding Git
	Objects, sha1
	References

	Clean local history
	Avoiding merge commits: rebase Vs merge
	Rewriting history with rebase -i

	Repairing mistakes: the reflog
	Workflows
	Centralized Workflow with a Shared Repository
	Triangular Workflow with pull-requests
	Code review in Triangular Workflows

	More Documentation

