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Prehistory History Linux Bazaar Conclusion

Backups: The Old Good Time

Basic problems:
I “Oh, my disk crashed.” / “Someone has stolen my laptop!”
I “@#%!!, I’ve just deleted this important file!”
I “Oops, I introduced a bug a long time ago in my code, how can I see

how it was before?”

Historical solutions:

I Replicate:
$ cp -r ~/project/ ~/backup/

I Keep history:
$ cp -r ~/project/ ~/backup/project-2006-10-4

I Keep a description of history:
$ echo "Description of current state" > \

~/backup/project-2006-10-4/README.txt
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Backups: Improved Solutions

Replicate over multiple machines

Incremental backups: Store only the changes compared to previous
revision

I With file granularity
I With finer-grained (diff)

Many tools available:
I Standalone tools: rsync, rdiff-backup, . . .
I Versionned filesystems: VMS, Windows 2003+, cvsfs, . . .
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Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:

I Never two person work at the same time. When one person stops
working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . . )
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Doesn’t scale up!

I People work trying to avoid conflicts, and merge later.
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Merging: Problem and Solution

My version

#include <stdio.h>

int main () {

printf("Hello");

return EXIT_SUCCESS;

}

Your version

#include <stdio.h>

int main () {

printf("Hello!\n");

return 0;

}

Common ancestor

#include <stdio.h>

int main () {

printf("Hello");

return 0;

}

Tools like diff3 can solve this

Merging relies on history!

Collaborative development linked to backups
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Merging

Space of possible revisions

(arbitrarily represented in 2D)

Mine

YoursAncestor

Merged revision
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Revision Control System: Basic Idea

Keep track of history:
I User makes modification and use commit to keep a snapshot of the

current state,
I Meta-data (user’s name, date, descriptive message,. . . ) recorded

together with the state of the project.

Use it for merging/collaborative development.
I Each user works on its own copy,
I User explicitly “takes” modifications from others when (s)he wants.

Efficient storage (“delta-compression” ≈ incremental backups):

I At least at file level (git)
I Usually store a concatenation of diffs

(Optional) notion of branch:

I Set of revisions recorded, but not visible in mainline,
I Can be merged into mainline when ready.
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CVS: The Centralized Approach

Configuration:
I 1 repository (contains all about the history of the project)
I 1 working copy per user (contains only the files of the project)

Basic operations:
I checkout: get a new working copy
I update: update the working copy to include new revisions in the

repository
I commit: record a new revision in the repository
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CVS: Example

Start working on a project:
$ cvs checkout project
$ cd project

Work on it:
$ vi foo.c # or whatever

See if other users did something, and if so, get their modifications:
$ cvs update

Review local changes:
$ cvs diff

Record local changes in the repository (make it visible to others):
$ cvs commit -m "Fixed incorrect Hello message"
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Commit/Update Approach

Space of possible revisions
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Commit/Update Approach

Space of possible revisions

Existing revision

New
upstream
revisions

User runs "update"

"commit" creates new revision

And so on ... !
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Conflicts

When several users change the same line of code concurrently,

Impossible for the tool to guess which version to take,

⇒ CVS leaves both versions with explicit markers, user resolves
manually.

Merge tools (Emacs’s smerge-mode, . . . ) can help.
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Conflicts: an Example

Someone added \n, someone else added !:

#include <stdio.h>

int main () {
<<<<<<< hello.c
printf("Hello\n");

=======
printf("Hello!");

>>>>>>> 1.6

return EXIT_SUCCESS;
}

Matthieu Moy (CSA/IISc) DVC October 2006 < 15 / 43 >



Prehistory History Linux Bazaar Conclusion

CVS: Obvious Limitations

File-based system. No easy way to get back to a consistant old
revision.

No management of rename (remove + add)

Bad performances

Matthieu Moy (CSA/IISc) DVC October 2006 < 16 / 43 >



Prehistory History Linux Bazaar Conclusion

Subversion: A Replacement for CVS

Idea of subversion: drop-in replacement for CVS (could have been
“CVS, version 2”, fix the obvious limitation, but no major
change/innovation:

I Atomic, tree-wide commits (commit is either successful or unsuccessful,
but not half),

I Rename management,
I Optimized performances, some operations available offline.
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Remaining Limitations

Weak support for branching,

Most operations can not be performed offline,

Permission management:
I Allowing anyone on earth to commit compromises the security,
I Denying someone permission to commit means this user can not use

most of the features
I Constraint acceptable for private project, but painful for Free Software

in particular.
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Decentralized Revision Control Systems

Idea: not just 1 central repository. Each user has his own repository.

By default, operations (including commit are done on the user’s
private branch)

Users publish their repository, and request a merge.
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Linux: A Project With Huge Needs in Version Control

Not the biggest Open-Source project, but probably the most active,

≈ 10Mb of patch per month,

≈ 20,000 files, 280Mb of sources.

Many branches:
I Short life: work on a feature in a branch, request merge when ready.
I Long life: things that are unlikely to get into the official kernel before

some time (grsecurity, reiserfs4, SELinux in the past, . . . )
I Test, debug: a modification goes through several branches, is tested

there, before getting into mainline
I Distributor: Most distributions maintain a modified version of Linux

⇒ Centralized revision control is not manageable.
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A bit of history

1991: Linus Torvalds starts writing Linux, using CVS,

2002: Linux adopts BitKeeper, a proprietary decentralized version
control system (available free of cost for Linux),

2002-2005: Flamewars against BitKeeper, some Free Software
alternatives appear (GNU Arch, Darcs, Monotone). None are
good enough technically.

2005: BitKeeper’s free of cost license revoked. Linux has to
migrate.

2005: Unsatisfied by the alternatives, Linus decides to start his own
project, git.

2006: Many young, but good projects for decentralized revision
control: Darcs, git, Monotone, Mercurial, Bazaar, . . .

200?: Most likely, several projects will continue to compete, but I
guess only 2 or 3 of the best will be widely adopted.
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History of Bazaar

GNU Arch: First Free Software Decentralized Revision Control.
Extremely complex for what it does, very slow,

Baz: Fork of GNU Arch. Unmaintained as of now,

Bazaar: Complete rewrite of Baz, with different concepts and user
interface. “Bazaar” is the name of the project, “bzr” is the
unix command.

http://bazaar-vcs.org/

Matthieu Moy (CSA/IISc) DVC October 2006 < 24 / 43 >
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Bazaar Concepts

Revision: State of a project at a point in time, with meta-information,

Repository: Set of revisions, with ancestry information,

Branch: Totally ordered (and numbered) set of revisions,

Working tree (aka Checkout): The project itself (set of files,
directories. . . ).
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Starting a Project

Create a new, empty project:
$ bzr init project
$ cd project

Alternatively, create a project in an existing directory:
$ cd existing-project
$ bzr init

This creates a repository, a branch, and a working tree in the same
place. Try “ls .bzr/” to understand what happened.
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Create the First Revision

Add files (bzr won’t touch the files unless you explicitly add them):
$ bzr add
or individually
$ bzr add file1; bzr add file2

Commit (record new revision):
$ bzr commit -m "descriptive message"
(if you don’t provide -m, an editor will be opened to let you type your
message)
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Look at Your Own Changes

Short summary:

$ bzr status

added:

foo.c

modified:

bar.c

Complete diff:

$ bzr diff

=== modified file ’foo.c’

--- foo.c 2006-10-04 18:17:30 +0000

+++ foo.c 2006-10-04 18:17:35 +0000

@@ -1,5 +1,5 @@

#include <stdio.h>

int main () {

- printf("Hello");

+ printf("Hello\n");

}
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Look at the History

See the past revisions:

$ bzr log

------------------------------------------------------------

revno: 2

committer: Matthieu Moy <Matthieu.Moy@imag.fr>

branch nick: foo

timestamp: Wed 2006-10-04 23:55:49 +0530

message:

fixed a bug

------------------------------------------------------------

revno: 1

committer: Matthieu Moy <Matthieu.Moy@imag.fr>

branch nick: foo

timestamp: Wed 2006-10-04 23:47:30 +0530

message:

initial revision
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Publish your branch

Up to now, your branch is just on your hard disk, no one else sees it,

Publish you branch:
$ bzr push sftp://some-host.com/project-upstream

Other people can now get their own copy:
$ bzr get http://some-host.com/project-upstream
(assuming the sftp location and http location are the same on
some-host.com).
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Working on an Existing Project

Get your own branch:
$ bzr branch http://some-host.com/project
$ cd project
(note: get is indeed an alias for branch).

Work on it!

Commit your changes:
$ bzr commit -m "implemented something awesome"

Publish it and request a merge:
$ bzr push sftp://my.isp.com/project-contrib/
$ mail -s "please, merge ..."
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Merging

Two use cases:
I A contributor started working on a feature in your own branch, but you

want to follow upstream development.
I The contributor’s feature is completed, upstream wants to merge it.

Symetry in both use-cases,

Successive merge possible,

Bazaar keeps track of merge history. It knows what you miss, and
what has already been merged.

Matthieu Moy (CSA/IISc) DVC October 2006 < 32 / 43 >



Prehistory History Linux Bazaar Conclusion

Merging

Merge the changes into the working tree:

$ bzr merge ../bar/
All changes applied successfully.

Check what happened:

$ bzr status
modified:
foo.c

pending merges:
Matthieu Moy 2006-10-05 implemented something awesome

Commit:

$ bzr commit -m "merged awesome feature from X"
Committed revision 3.

When commiting, bzr records both the previous revision and the
merged revision as ancestor.
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Merging

Space of possible revisions

Resulting revision history is a DAG
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Other Features of Interest

Light Checkout: A working tree pointing to an branch located somewhere
else (a la CVS). bzr update to get changes from the branch
into the working tree,

Heavy Checkout: A working tree plus a duplicate of the branch used as a
cache. Allows local commits (bzr commit --local),

Shared repository: Multiple branches sharing the common revisions for
storage,

Revision Bundle: Pack a set of revisions in a single file (to be sent by
email and merged in another branch for example), together
with a human-readable diff,

Plugins: Extensibility via a plugin system in Python,

Foreign Branches: Experimental plugins to access a Subversion branch
directly with bzr.
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Outline

1 Motivations, Prehistory
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Benefit of Version Control

Working alone:
I Possibility to revert to a previous revision,
I Makes it easy to review your own code (before committing),
I Synchronization of multiple machines.

Collaborative development:
I One can work without disturbing others,
I Merge is automated.

Text editing without version control is like
sky diving without a parachute!
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Benefit of Decentralized Version Control

Easy branch/merge,

Simplifies permission management
(no need to give any permission to other users),

Disconnected operation
(useful for laptop users in particular).
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Other Decentralized Version Control Systems

Monotone: A clever system based on hashes (SHA1). Inspired git a lot.
http://venge.net/monotone/

git: Designed for speed. Used by the Linux kernel,
http://git.or.cz/

Mercurial: Close in concepts and performance to git. Written in python,
with a plugin system.
http://www.selenic.com/mercurial/

Darcs: Based on a powerful patch theory. Was the first system to
have a really simple user-interface.
http://abridgegame.org/darcs/

SVK: Distributed Version Control built on top of Subversion.
http://svk.bestpractical.com/
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Emacs Users

[ Warning: Self advertisement ]

Most version control systems have an Emacs integration.

Check out DVC: http://download.gna.org/dvc/
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Version Control and Backups

Version Control is a good complement for backups

But your repository should be backed-up/replicated !
(many users lost their data and their revision history at the same time
with a disk crash)

Usually:
I Version Control = User side (manual creation of project, manual add

of source files, manual commits, . . . )
I Backup = System Administrator side (cron job, backing up everything)
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Last Word on Backups

Don’t trust your hard disk,

Don’t trust a CD (too short life),

Don’t trust yourself,

Don’t trust Anything!

REPLICATE!!!
I Multiple machines for normal work
I Multiple sites for important work (are you ready to loose you thesis if

your house or lab burns?)
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Learn More

Bazaar: http://bazaar-vcs.org/

Bazaar Docs: http://doc.bazaar-vcs.org/

Version Control: http://en.wikipedia.org/wiki/Revision control

This presentation:
http://www-verimag.imag.fr/∼moy/slides/bzr/
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