
Prehistory History Linux Bazaar Conclusion

Distributed Version Control Systems

Matthieu Moy

Computer Science and Automation
Indian Institute of Science

Bangalore

October 2006

Matthieu Moy (CSA/IISc) DVC October 2006 < 1 / 43 >

Prehistory History Linux Bazaar Conclusion

Outline

1 Motivations, Prehistory

2 History and Categories of Version Control Systems

3 Version Control for the Linux Kernel

4 Bazaar (bzr): One Decentralized Revision Control System

5 Conclusion

Matthieu Moy (CSA/IISc) DVC October 2006 < 2 / 43 >

Prehistory History Linux Bazaar Conclusion

Outline

1 Motivations, Prehistory

2 History and Categories of Version Control Systems

3 Version Control for the Linux Kernel

4 Bazaar (bzr): One Decentralized Revision Control System

5 Conclusion

Matthieu Moy (CSA/IISc) DVC October 2006 < 3 / 43 >

Prehistory History Linux Bazaar Conclusion

Backups: The Old Good Time

Basic problems:
I “Oh, my disk crashed.” / “Someone has stolen my laptop!”
I “@#%!!, I’ve just deleted this important file!”
I “Oops, I introduced a bug a long time ago in my code, how can I see

how it was before?”

Historical solutions:

I Replicate:
$ cp -r ~/project/ ~/backup/

I Keep history:
$ cp -r ~/project/ ~/backup/project-2006-10-4

I Keep a description of history:
$ echo "Description of current state" > \

~/backup/project-2006-10-4/README.txt

Matthieu Moy (CSA/IISc) DVC October 2006 < 4 / 43 >

Prehistory History Linux Bazaar Conclusion

Backups: The Old Good Time

Basic problems:
I “Oh, my disk crashed.” / “Someone has stolen my laptop!”
I “@#%!!, I’ve just deleted this important file!”
I “Oops, I introduced a bug a long time ago in my code, how can I see

how it was before?”

Historical solutions:

I Replicate:
$ cp -r ~/project/ ~/backup/

I Keep history:
$ cp -r ~/project/ ~/backup/project-2006-10-4

I Keep a description of history:
$ echo "Description of current state" > \

~/backup/project-2006-10-4/README.txt

Matthieu Moy (CSA/IISc) DVC October 2006 < 4 / 43 >

Prehistory History Linux Bazaar Conclusion

Backups: The Old Good Time

Basic problems:
I “Oh, my disk crashed.” / “Someone has stolen my laptop!”
I “@#%!!, I’ve just deleted this important file!”
I “Oops, I introduced a bug a long time ago in my code, how can I see

how it was before?”

Historical solutions:
I Replicate:

$ cp -r ~/project/ ~/backup/

I Keep history:
$ cp -r ~/project/ ~/backup/project-2006-10-4

I Keep a description of history:
$ echo "Description of current state" > \

~/backup/project-2006-10-4/README.txt

Matthieu Moy (CSA/IISc) DVC October 2006 < 4 / 43 >

Prehistory History Linux Bazaar Conclusion

Backups: The Old Good Time

Basic problems:
I “Oh, my disk crashed.” / “Someone has stolen my laptop!”
I “@#%!!, I’ve just deleted this important file!”
I “Oops, I introduced a bug a long time ago in my code, how can I see

how it was before?”

Historical solutions:
I Replicate:

$ cp -r ~/project/ ~/backup/
I Keep history:

$ cp -r ~/project/ ~/backup/project-2006-10-4

I Keep a description of history:
$ echo "Description of current state" > \

~/backup/project-2006-10-4/README.txt

Matthieu Moy (CSA/IISc) DVC October 2006 < 4 / 43 >

Prehistory History Linux Bazaar Conclusion

Backups: The Old Good Time

Basic problems:
I “Oh, my disk crashed.” / “Someone has stolen my laptop!”
I “@#%!!, I’ve just deleted this important file!”
I “Oops, I introduced a bug a long time ago in my code, how can I see

how it was before?”

Historical solutions:
I Replicate:

$ cp -r ~/project/ ~/backup/
I Keep history:

$ cp -r ~/project/ ~/backup/project-2006-10-4
I Keep a description of history:

$ echo "Description of current state" > \
~/backup/project-2006-10-4/README.txt

Matthieu Moy (CSA/IISc) DVC October 2006 < 4 / 43 >

Prehistory History Linux Bazaar Conclusion

Backups: Improved Solutions

Replicate over multiple machines

Incremental backups: Store only the changes compared to previous
revision

I With file granularity
I With finer-grained (diff)

Many tools available:
I Standalone tools: rsync, rdiff-backup, . . .
I Versionned filesystems: VMS, Windows 2003+, cvsfs, . . .

Matthieu Moy (CSA/IISc) DVC October 2006 < 5 / 43 >

Prehistory History Linux Bazaar Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:

I Never two person work at the same time. When one person stops
working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . .)
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Doesn’t scale up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (CSA/IISc) DVC October 2006 < 6 / 43 >

Prehistory History Linux Bazaar Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:

I Never two person work at the same time. When one person stops
working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . .)
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Doesn’t scale up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (CSA/IISc) DVC October 2006 < 6 / 43 >

Prehistory History Linux Bazaar Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . .)
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Doesn’t scale up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (CSA/IISc) DVC October 2006 < 6 / 43 >

Prehistory History Linux Bazaar Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . .)
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Doesn’t scale up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (CSA/IISc) DVC October 2006 < 6 / 43 >

Prehistory History Linux Bazaar Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . .)
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Doesn’t scale up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (CSA/IISc) DVC October 2006 < 6 / 43 >

Prehistory History Linux Bazaar Conclusion

Collaborative Development: The Old Good Time

Basic problems: Several persons working on the same set of files
1 “Hey, you’ve modified the same file as me, how do we merge?”,
2 “Your modifications are broken, your code doesn’t even compile. Fix

your changes before sending it to me!”,
3 “Your bug fix here seems interesting, but I don’t want your other

changes”.

Historical solutions:
I Never two person work at the same time. When one person stops

working, (s)he sends his/her work to the others.
⇒ Doesn’t scale up! Unsafe.

I People work on the same directory (same machine, NFS, . . .)
⇒ Painful because of (2) above.

I People lock the file when working on it.
⇒ Doesn’t scale up!

I People work trying to avoid conflicts, and merge later.

Matthieu Moy (CSA/IISc) DVC October 2006 < 6 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {

printf("Hello");

return EXIT_SUCCESS;

}

Your version

#include <stdio.h>

int main () {

printf("Hello!\n");

return 0;

}

Common ancestor

#include <stdio.h>

int main () {

printf("Hello");

return 0;

}

Tools like diff3 can solve this

Merging relies on history!

Collaborative development linked to backups

Matthieu Moy (CSA/IISc) DVC October 2006 < 7 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {

printf("Hello");

return EXIT_SUCCESS;

}

Your version

#include <stdio.h>

int main () {

printf("Hello!\n");

return 0;

}

Common ancestor

#include <stdio.h>

int main () {

printf("Hello");

return 0;

}

Tools like diff3 can solve this

Merging relies on history!

Collaborative development linked to backups

Matthieu Moy (CSA/IISc) DVC October 2006 < 7 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {

printf("Hello");

return EXIT_SUCCESS;

}

Your version

#include <stdio.h>

int main () {

printf("Hello!\n");

return 0;

}

Common ancestor

#include <stdio.h>

int main () {

printf("Hello");

return 0;

}

Tools like diff3 can solve this

Merging relies on history!

Collaborative development linked to backups

Matthieu Moy (CSA/IISc) DVC October 2006 < 7 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging: Problem and Solution

My version

#include <stdio.h>

int main () {

printf("Hello");

return EXIT_SUCCESS;

}

Your version

#include <stdio.h>

int main () {

printf("Hello!\n");

return 0;

}

Common ancestor

#include <stdio.h>

int main () {

printf("Hello");

return 0;

}

Tools like diff3 can solve this

Merging relies on history!

Collaborative development linked to backups

Matthieu Moy (CSA/IISc) DVC October 2006 < 7 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

(arbitrarily represented in 2D)

Matthieu Moy (CSA/IISc) DVC October 2006 < 8 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

(arbitrarily represented in 2D)

Mine

Yours

Matthieu Moy (CSA/IISc) DVC October 2006 < 8 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

(arbitrarily represented in 2D)

Mine

YoursAncestor

Matthieu Moy (CSA/IISc) DVC October 2006 < 8 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

(arbitrarily represented in 2D)

Mine

YoursAncestor

Merged revision

Matthieu Moy (CSA/IISc) DVC October 2006 < 8 / 43 >

Prehistory History Linux Bazaar Conclusion

Revision Control System: Basic Idea

Keep track of history:
I User makes modification and use commit to keep a snapshot of the

current state,
I Meta-data (user’s name, date, descriptive message,. . .) recorded

together with the state of the project.

Use it for merging/collaborative development.
I Each user works on its own copy,
I User explicitly “takes” modifications from others when (s)he wants.

Efficient storage (“delta-compression” ≈ incremental backups):

I At least at file level (git)
I Usually store a concatenation of diffs

(Optional) notion of branch:

I Set of revisions recorded, but not visible in mainline,
I Can be merged into mainline when ready.

Matthieu Moy (CSA/IISc) DVC October 2006 < 9 / 43 >

Prehistory History Linux Bazaar Conclusion

Revision Control System: Basic Idea

Keep track of history:
I User makes modification and use commit to keep a snapshot of the

current state,
I Meta-data (user’s name, date, descriptive message,. . .) recorded

together with the state of the project.

Use it for merging/collaborative development.
I Each user works on its own copy,
I User explicitly “takes” modifications from others when (s)he wants.

Efficient storage (“delta-compression” ≈ incremental backups):
I At least at file level (git)
I Usually store a concatenation of diffs

(Optional) notion of branch:

I Set of revisions recorded, but not visible in mainline,
I Can be merged into mainline when ready.

Matthieu Moy (CSA/IISc) DVC October 2006 < 9 / 43 >

Prehistory History Linux Bazaar Conclusion

Revision Control System: Basic Idea

Keep track of history:
I User makes modification and use commit to keep a snapshot of the

current state,
I Meta-data (user’s name, date, descriptive message,. . .) recorded

together with the state of the project.

Use it for merging/collaborative development.
I Each user works on its own copy,
I User explicitly “takes” modifications from others when (s)he wants.

Efficient storage (“delta-compression” ≈ incremental backups):
I At least at file level (git)
I Usually store a concatenation of diffs

(Optional) notion of branch:
I Set of revisions recorded, but not visible in mainline,
I Can be merged into mainline when ready.

Matthieu Moy (CSA/IISc) DVC October 2006 < 9 / 43 >

Prehistory History Linux Bazaar Conclusion

Outline

1 Motivations, Prehistory

2 History and Categories of Version Control Systems

3 Version Control for the Linux Kernel

4 Bazaar (bzr): One Decentralized Revision Control System

5 Conclusion

Matthieu Moy (CSA/IISc) DVC October 2006 < 10 / 43 >

Prehistory History Linux Bazaar Conclusion

CVS: The Centralized Approach

Configuration:
I 1 repository (contains all about the history of the project)
I 1 working copy per user (contains only the files of the project)

Basic operations:
I checkout: get a new working copy
I update: update the working copy to include new revisions in the

repository
I commit: record a new revision in the repository

Matthieu Moy (CSA/IISc) DVC October 2006 < 11 / 43 >

Prehistory History Linux Bazaar Conclusion

CVS: Example

Start working on a project:
$ cvs checkout project
$ cd project

Work on it:
$ vi foo.c # or whatever

See if other users did something, and if so, get their modifications:
$ cvs update

Review local changes:
$ cvs diff

Record local changes in the repository (make it visible to others):
$ cvs commit -m "Fixed incorrect Hello message"

Matthieu Moy (CSA/IISc) DVC October 2006 < 12 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

User works on a checkout

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

User works on a checkout

New
upstream
revisions

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

User works on a checkout

New
upstream
revisions

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

User works on a checkout

New
upstream
revisions

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

User works on a checkout

New
upstream
revisions

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

User works on a checkout

New
upstream
revisions

User runs "update"

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

New
upstream
revisions

User runs "update"

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

New
upstream
revisions

User runs "update"

"commit" creates new revision

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Commit/Update Approach

Space of possible revisions

Existing revision

New
upstream
revisions

User runs "update"

"commit" creates new revision

And so on ... !

Matthieu Moy (CSA/IISc) DVC October 2006 < 13 / 43 >

Prehistory History Linux Bazaar Conclusion

Conflicts

When several users change the same line of code concurrently,

Impossible for the tool to guess which version to take,

⇒ CVS leaves both versions with explicit markers, user resolves
manually.

Merge tools (Emacs’s smerge-mode, . . .) can help.

Matthieu Moy (CSA/IISc) DVC October 2006 < 14 / 43 >

Prehistory History Linux Bazaar Conclusion

Conflicts: an Example

Someone added \n, someone else added !:

#include <stdio.h>

int main () {
<<<<<<< hello.c
printf("Hello\n");

=======
printf("Hello!");

>>>>>>> 1.6

return EXIT_SUCCESS;
}

Matthieu Moy (CSA/IISc) DVC October 2006 < 15 / 43 >

Prehistory History Linux Bazaar Conclusion

CVS: Obvious Limitations

File-based system. No easy way to get back to a consistant old
revision.

No management of rename (remove + add)

Bad performances

Matthieu Moy (CSA/IISc) DVC October 2006 < 16 / 43 >

Prehistory History Linux Bazaar Conclusion

Subversion: A Replacement for CVS

Idea of subversion: drop-in replacement for CVS (could have been
“CVS, version 2”, fix the obvious limitation, but no major
change/innovation:

I Atomic, tree-wide commits (commit is either successful or unsuccessful,
but not half),

I Rename management,
I Optimized performances, some operations available offline.

Matthieu Moy (CSA/IISc) DVC October 2006 < 17 / 43 >

Prehistory History Linux Bazaar Conclusion

Remaining Limitations

Weak support for branching,

Most operations can not be performed offline,

Permission management:
I Allowing anyone on earth to commit compromises the security,
I Denying someone permission to commit means this user can not use

most of the features
I Constraint acceptable for private project, but painful for Free Software

in particular.

Matthieu Moy (CSA/IISc) DVC October 2006 < 18 / 43 >

Prehistory History Linux Bazaar Conclusion

Decentralized Revision Control Systems

Idea: not just 1 central repository. Each user has his own repository.

By default, operations (including commit are done on the user’s
private branch)

Users publish their repository, and request a merge.

Matthieu Moy (CSA/IISc) DVC October 2006 < 19 / 43 >

Prehistory History Linux Bazaar Conclusion

Outline

1 Motivations, Prehistory

2 History and Categories of Version Control Systems

3 Version Control for the Linux Kernel

4 Bazaar (bzr): One Decentralized Revision Control System

5 Conclusion

Matthieu Moy (CSA/IISc) DVC October 2006 < 20 / 43 >

Prehistory History Linux Bazaar Conclusion

Linux: A Project With Huge Needs in Version Control

Not the biggest Open-Source project, but probably the most active,

≈ 10Mb of patch per month,

≈ 20,000 files, 280Mb of sources.

Many branches:
I Short life: work on a feature in a branch, request merge when ready.
I Long life: things that are unlikely to get into the official kernel before

some time (grsecurity, reiserfs4, SELinux in the past, . . .)
I Test, debug: a modification goes through several branches, is tested

there, before getting into mainline
I Distributor: Most distributions maintain a modified version of Linux

⇒ Centralized revision control is not manageable.

Matthieu Moy (CSA/IISc) DVC October 2006 < 21 / 43 >

Prehistory History Linux Bazaar Conclusion

A bit of history

1991: Linus Torvalds starts writing Linux, using CVS,

2002: Linux adopts BitKeeper, a proprietary decentralized version
control system (available free of cost for Linux),

2002-2005: Flamewars against BitKeeper, some Free Software
alternatives appear (GNU Arch, Darcs, Monotone). None are
good enough technically.

2005: BitKeeper’s free of cost license revoked. Linux has to
migrate.

2005: Unsatisfied by the alternatives, Linus decides to start his own
project, git.

2006: Many young, but good projects for decentralized revision
control: Darcs, git, Monotone, Mercurial, Bazaar, . . .

200?: Most likely, several projects will continue to compete, but I
guess only 2 or 3 of the best will be widely adopted.

Matthieu Moy (CSA/IISc) DVC October 2006 < 22 / 43 >

Prehistory History Linux Bazaar Conclusion

A bit of history

1991: Linus Torvalds starts writing Linux, using CVS,

2002: Linux adopts BitKeeper, a proprietary decentralized version
control system (available free of cost for Linux),

2002-2005: Flamewars against BitKeeper, some Free Software
alternatives appear (GNU Arch, Darcs, Monotone). None are
good enough technically.

2005: BitKeeper’s free of cost license revoked. Linux has to
migrate.

2005: Unsatisfied by the alternatives, Linus decides to start his own
project, git.

2006: Many young, but good projects for decentralized revision
control: Darcs, git, Monotone, Mercurial, Bazaar, . . .

200?: Most likely, several projects will continue to compete, but I
guess only 2 or 3 of the best will be widely adopted.

Matthieu Moy (CSA/IISc) DVC October 2006 < 22 / 43 >

Prehistory History Linux Bazaar Conclusion

A bit of history

1991: Linus Torvalds starts writing Linux, using CVS,

2002: Linux adopts BitKeeper, a proprietary decentralized version
control system (available free of cost for Linux),

2002-2005: Flamewars against BitKeeper, some Free Software
alternatives appear (GNU Arch, Darcs, Monotone). None are
good enough technically.

2005: BitKeeper’s free of cost license revoked. Linux has to
migrate.

2005: Unsatisfied by the alternatives, Linus decides to start his own
project, git.

2006: Many young, but good projects for decentralized revision
control: Darcs, git, Monotone, Mercurial, Bazaar, . . .

200?: Most likely, several projects will continue to compete, but I
guess only 2 or 3 of the best will be widely adopted.

Matthieu Moy (CSA/IISc) DVC October 2006 < 22 / 43 >

Prehistory History Linux Bazaar Conclusion

Outline

1 Motivations, Prehistory

2 History and Categories of Version Control Systems

3 Version Control for the Linux Kernel

4 Bazaar (bzr): One Decentralized Revision Control System

5 Conclusion

Matthieu Moy (CSA/IISc) DVC October 2006 < 23 / 43 >

Prehistory History Linux Bazaar Conclusion

History of Bazaar

GNU Arch: First Free Software Decentralized Revision Control.
Extremely complex for what it does, very slow,

Baz: Fork of GNU Arch. Unmaintained as of now,

Bazaar: Complete rewrite of Baz, with different concepts and user
interface. “Bazaar” is the name of the project, “bzr” is the
unix command.

http://bazaar-vcs.org/

Matthieu Moy (CSA/IISc) DVC October 2006 < 24 / 43 >

http://bazaar-vcs.org/

Prehistory History Linux Bazaar Conclusion

Bazaar Concepts

Revision: State of a project at a point in time, with meta-information,

Repository: Set of revisions, with ancestry information,

Branch: Totally ordered (and numbered) set of revisions,

Working tree (aka Checkout): The project itself (set of files,
directories. . .).

Matthieu Moy (CSA/IISc) DVC October 2006 < 25 / 43 >

Prehistory History Linux Bazaar Conclusion

Starting a Project

Create a new, empty project:
$ bzr init project
$ cd project

Alternatively, create a project in an existing directory:
$ cd existing-project
$ bzr init

This creates a repository, a branch, and a working tree in the same
place. Try “ls .bzr/” to understand what happened.

Matthieu Moy (CSA/IISc) DVC October 2006 < 26 / 43 >

Prehistory History Linux Bazaar Conclusion

Create the First Revision

Add files (bzr won’t touch the files unless you explicitly add them):
$ bzr add
or individually
$ bzr add file1; bzr add file2

Commit (record new revision):
$ bzr commit -m "descriptive message"
(if you don’t provide -m, an editor will be opened to let you type your
message)

Matthieu Moy (CSA/IISc) DVC October 2006 < 27 / 43 >

Prehistory History Linux Bazaar Conclusion

Look at Your Own Changes

Short summary:

$ bzr status

added:

foo.c

modified:

bar.c

Complete diff:

$ bzr diff

=== modified file ’foo.c’

--- foo.c 2006-10-04 18:17:30 +0000

+++ foo.c 2006-10-04 18:17:35 +0000

@@ -1,5 +1,5 @@

#include <stdio.h>

int main () {

- printf("Hello");

+ printf("Hello\n");

}

Matthieu Moy (CSA/IISc) DVC October 2006 < 28 / 43 >

Prehistory History Linux Bazaar Conclusion

Look at the History

See the past revisions:

$ bzr log

--

revno: 2

committer: Matthieu Moy <Matthieu.Moy@imag.fr>

branch nick: foo

timestamp: Wed 2006-10-04 23:55:49 +0530

message:

fixed a bug

--

revno: 1

committer: Matthieu Moy <Matthieu.Moy@imag.fr>

branch nick: foo

timestamp: Wed 2006-10-04 23:47:30 +0530

message:

initial revision

Matthieu Moy (CSA/IISc) DVC October 2006 < 29 / 43 >

Prehistory History Linux Bazaar Conclusion

Publish your branch

Up to now, your branch is just on your hard disk, no one else sees it,

Publish you branch:
$ bzr push sftp://some-host.com/project-upstream

Other people can now get their own copy:
$ bzr get http://some-host.com/project-upstream
(assuming the sftp location and http location are the same on
some-host.com).

Matthieu Moy (CSA/IISc) DVC October 2006 < 30 / 43 >

Prehistory History Linux Bazaar Conclusion

Working on an Existing Project

Get your own branch:
$ bzr branch http://some-host.com/project
$ cd project
(note: get is indeed an alias for branch).

Work on it!

Commit your changes:
$ bzr commit -m "implemented something awesome"

Publish it and request a merge:
$ bzr push sftp://my.isp.com/project-contrib/
$ mail -s "please, merge ..."

Matthieu Moy (CSA/IISc) DVC October 2006 < 31 / 43 >

Prehistory History Linux Bazaar Conclusion

Working on an Existing Project

Get your own branch:
$ bzr branch http://some-host.com/project
$ cd project
(note: get is indeed an alias for branch).

Work on it!

Commit your changes:
$ bzr commit -m "implemented something awesome"

Publish it and request a merge:
$ bzr push sftp://my.isp.com/project-contrib/
$ mail -s "please, merge ..."

Matthieu Moy (CSA/IISc) DVC October 2006 < 31 / 43 >

Prehistory History Linux Bazaar Conclusion

Working on an Existing Project

Get your own branch:
$ bzr branch http://some-host.com/project
$ cd project
(note: get is indeed an alias for branch).

Work on it!

Commit your changes:
$ bzr commit -m "implemented something awesome"

Publish it and request a merge:
$ bzr push sftp://my.isp.com/project-contrib/
$ mail -s "please, merge ..."

Matthieu Moy (CSA/IISc) DVC October 2006 < 31 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Two use cases:
I A contributor started working on a feature in your own branch, but you

want to follow upstream development.
I The contributor’s feature is completed, upstream wants to merge it.

Symetry in both use-cases,

Successive merge possible,

Bazaar keeps track of merge history. It knows what you miss, and
what has already been merged.

Matthieu Moy (CSA/IISc) DVC October 2006 < 32 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Merge the changes into the working tree:

$ bzr merge ../bar/
All changes applied successfully.

Check what happened:

$ bzr status
modified:
foo.c

pending merges:
Matthieu Moy 2006-10-05 implemented something awesome

Commit:

$ bzr commit -m "merged awesome feature from X"
Committed revision 3.

When commiting, bzr records both the previous revision and the
merged revision as ancestor.

Matthieu Moy (CSA/IISc) DVC October 2006 < 33 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Merge the changes into the working tree:

$ bzr merge ../bar/
All changes applied successfully.

Check what happened:

$ bzr status
modified:
foo.c

pending merges:
Matthieu Moy 2006-10-05 implemented something awesome

Commit:

$ bzr commit -m "merged awesome feature from X"
Committed revision 3.

When commiting, bzr records both the previous revision and the
merged revision as ancestor.

Matthieu Moy (CSA/IISc) DVC October 2006 < 33 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Merge the changes into the working tree:

$ bzr merge ../bar/
All changes applied successfully.

Check what happened:

$ bzr status
modified:
foo.c

pending merges:
Matthieu Moy 2006-10-05 implemented something awesome

Commit:

$ bzr commit -m "merged awesome feature from X"
Committed revision 3.

When commiting, bzr records both the previous revision and the
merged revision as ancestor.

Matthieu Moy (CSA/IISc) DVC October 2006 < 33 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

merge
runs

upstream

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

merge
runs

upstream

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

merge
runs

upstream

"commit" creates new revision

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

merge
runs

upstream

"commit" creates new revision

And so on ... !

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Merging

Space of possible revisions

Existing revision
User works on a local branch

local commit

New
upstream
revisions

merge
runs

upstream

"commit" creates new revision

And so on ... !

Resulting revision history is a DAG

Matthieu Moy (CSA/IISc) DVC October 2006 < 34 / 43 >

Prehistory History Linux Bazaar Conclusion

Other Features of Interest

Light Checkout: A working tree pointing to an branch located somewhere
else (a la CVS). bzr update to get changes from the branch
into the working tree,

Heavy Checkout: A working tree plus a duplicate of the branch used as a
cache. Allows local commits (bzr commit --local),

Shared repository: Multiple branches sharing the common revisions for
storage,

Revision Bundle: Pack a set of revisions in a single file (to be sent by
email and merged in another branch for example), together
with a human-readable diff,

Plugins: Extensibility via a plugin system in Python,

Foreign Branches: Experimental plugins to access a Subversion branch
directly with bzr.

Matthieu Moy (CSA/IISc) DVC October 2006 < 35 / 43 >

Prehistory History Linux Bazaar Conclusion

Outline

1 Motivations, Prehistory

2 History and Categories of Version Control Systems

3 Version Control for the Linux Kernel

4 Bazaar (bzr): One Decentralized Revision Control System

5 Conclusion

Matthieu Moy (CSA/IISc) DVC October 2006 < 36 / 43 >

Prehistory History Linux Bazaar Conclusion

Benefit of Version Control

Working alone:
I Possibility to revert to a previous revision,
I Makes it easy to review your own code (before committing),
I Synchronization of multiple machines.

Collaborative development:
I One can work without disturbing others,
I Merge is automated.

Text editing without version control is like
sky diving without a parachute!

Matthieu Moy (CSA/IISc) DVC October 2006 < 37 / 43 >

Prehistory History Linux Bazaar Conclusion

Benefit of Version Control

Working alone:
I Possibility to revert to a previous revision,
I Makes it easy to review your own code (before committing),
I Synchronization of multiple machines.

Collaborative development:
I One can work without disturbing others,
I Merge is automated.

Text editing without version control is like
sky diving without a parachute!

Matthieu Moy (CSA/IISc) DVC October 2006 < 37 / 43 >

Prehistory History Linux Bazaar Conclusion

Benefit of Decentralized Version Control

Easy branch/merge,

Simplifies permission management
(no need to give any permission to other users),

Disconnected operation
(useful for laptop users in particular).

Matthieu Moy (CSA/IISc) DVC October 2006 < 38 / 43 >

Prehistory History Linux Bazaar Conclusion

Other Decentralized Version Control Systems

Monotone: A clever system based on hashes (SHA1). Inspired git a lot.
http://venge.net/monotone/

git: Designed for speed. Used by the Linux kernel,
http://git.or.cz/

Mercurial: Close in concepts and performance to git. Written in python,
with a plugin system.
http://www.selenic.com/mercurial/

Darcs: Based on a powerful patch theory. Was the first system to
have a really simple user-interface.
http://abridgegame.org/darcs/

SVK: Distributed Version Control built on top of Subversion.
http://svk.bestpractical.com/

Matthieu Moy (CSA/IISc) DVC October 2006 < 39 / 43 >

http://venge.net/monotone/
http://git.or.cz/
http://www.selenic.com/mercurial/
http://abridgegame.org/darcs/
http://svk.bestpractical.com/

Prehistory History Linux Bazaar Conclusion

Emacs Users

[Warning: Self advertisement]

Most version control systems have an Emacs integration.

Check out DVC: http://download.gna.org/dvc/

Matthieu Moy (CSA/IISc) DVC October 2006 < 40 / 43 >

http://download.gna.org/dvc/

Prehistory History Linux Bazaar Conclusion

Version Control and Backups

Version Control is a good complement for backups

But your repository should be backed-up/replicated !
(many users lost their data and their revision history at the same time
with a disk crash)

Usually:
I Version Control = User side (manual creation of project, manual add

of source files, manual commits, . . .)
I Backup = System Administrator side (cron job, backing up everything)

Matthieu Moy (CSA/IISc) DVC October 2006 < 41 / 43 >

Prehistory History Linux Bazaar Conclusion

Last Word on Backups

Don’t trust your hard disk,

Don’t trust a CD (too short life),

Don’t trust yourself,

Don’t trust Anything!

REPLICATE!!!
I Multiple machines for normal work
I Multiple sites for important work (are you ready to loose you thesis if

your house or lab burns?)

Matthieu Moy (CSA/IISc) DVC October 2006 < 42 / 43 >

Prehistory History Linux Bazaar Conclusion

Learn More

Bazaar: http://bazaar-vcs.org/

Bazaar Docs: http://doc.bazaar-vcs.org/

Version Control: http://en.wikipedia.org/wiki/Revision control

This presentation:
http://www-verimag.imag.fr/∼moy/slides/bzr/

Matthieu Moy (CSA/IISc) DVC October 2006 < 43 / 43 >

http://bazaar-vcs.org/
http://doc.bazaar-vcs.org/
http://en.wikipedia.org/wiki/Revision_control
http://www-verimag.imag.fr/~moy/slides/bzr/

	Motivations, Prehistory
	History and Categories of Version Control Systems
	Version Control for the Linux Kernel
	Bazaar (bzr): One Decentralized Revision Control System
	Conclusion

