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ABSTRACT
SystemC is becoming a de-facto standard for the descrip-
tion of complex systems-on-a-chip. It enables system-level
descriptions of SoCs: the same language is used for the de-
scription of the architecture, software and hardware parts.

A tool like Pinapa is compulsory to work on realistic SoCs
designs for anything else than simulation: it is able to ex-
tract both architecture and behavior information from Sys-
temC code, with very few limitations. Pinapa can be used
as a front-end for various analysis tools, ranging from “su-
perlint” to model-checking. It is open source and available
from http://greensocs.sourceforge.net/pinapa/. There
exists no equivalent tool for SystemC up to now.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Hardware description
languages

General Terms
Languages

Keywords
SystemC, front-end, parser, static, dynamic, elaboration

1. INTRODUCTION

Using SystemC to Model Systems-on-a-Chip
Performance and quality requirements for embedded sys-
tems are increasing quickly. The physical capacity of chips
can usually grow fast enough to satisfy those needs, but
one of the design flow bottlenecks is the design productivity
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GIÈRES — France
†STMicroelectronics, HPC, System Platforms Group. 850
rue Jean Monnet, 38920 CROLLES — France

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’05,September 19–22, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-091-4/05/0009 ...$5.00.

(this is often referred to as the “design gap”). New tech-
niques such as component reusability and use of embedded
software have to be settled continuously to be able to fill in
this gap. These new methodologies raised the need for new
modeling and simulation languages, since low-level hardware
description languages such as VHDL or Verilog would not
be simulated fast enough to allow software development or
preliminary architectural exploration.

SystemC [13] has been designed to meet these require-
ments. It provides system-level descriptions of SoCs. A Sys-
temC program has modules, signals to model the low-level
communication and synchronization of the system, and a no-
tion of simulation time. SystemC modules and programs are
made of several processes that run “in parallel”, according to
a scheduling policy that is part of the SystemC library spec-
ifications. Other classes can be added to allow higher level
communication like bus or network protocols, to raise the
level of abstraction to the Transaction Level Modeling [12].
The architecture of a SoC, the code describing the activ-
ity of its software parts, and the description of its hardware
parts, can be described in SystemC.

A number of other approaches have been proposed for
the description of heterogeneous hardware/software systems
with an emphasis on formal analysis. See, for instance,
Metropolis [4]. In this type of approach, the definition of
the description language is part of the game. The language
can be defined formally, and tailored to allow easy connec-
tions to validation tools. On the contrary, SystemC has not
been defined with formal analysis in mind. it is primarily
a simulation and coordination language, aiming at accept-
ing all kinds of hardware or software descriptions in a single
simulation.

SystemC is deliberately based on open standards like
C and C++, for two reasons: first, it guarantees a fast
learning-curve for the engineers of the domain; second, it
guarantees that the models of systems developed in SystemC
can be exploited even if the tool that was used to build them
is no longer available. SystemC is normalized by the Open
SystemC Consortium Initiative, involving the major actors
of the domain. An IEEE standardization is ongoing. Sys-
temC is currently used by major silicon companies like Intel,
STMicroelectronics, Philips, Texas Instruments, ...

Developing analysis tools for SystemC is therefore inter-
esting. SoC case-studies written directly in SystemC can
be obtained from industry, and used to validate an analysis
approach. The use of any academic formal language as the
core of an analysis tool would imply that any case study is
first translated into this language, before analysis can be per-



formed. If the transformation is manual, then the validity
of the results obtained, with respect to the original system,
can be questioned.

A tool like Pinapa is compulsory for anybody who wants
to extract information from realistic SoCs designs: it is able
to extract both architecture and behavior information from
a piece of SystemC code, with very few limitations. It is
open source and available to public.

Static and dynamic information in SystemC
SystemC, like several programming languages or runtime
environments, is used for describing: 1) the architecture of
a system and then 2) the activity of the elements in this
system. The architecture, although it is built by the ex-
ecution of some piece of code (the so called “elaboration”
phase), is not really dynamic, and will not change dur-
ing the simulation of the program activity. It is described
in a general-purpose programming language because of the
expressivity of such languages, compared to the dedicated
pseudo-languages of “configuration files”.

The originality is that SystemC, although often referred
to as a language, is not actually a language, but a library
for C++. Execution of a SystemC program is trivial, since
it can be compiled with any supported C++ compiler. But
simulation is not the only thing one may want to do with a
language. In many contexts, one will need to get some static
information on the program. This is useful for example to
synthesize a lower-level view of the program, to visualize it
graphically, to generate some documentation automatically,
or to connect to formal verification tools.

Pinapa: requirements
This paper presents Pinapa (For Pinapa Is Not A PArser),
a SystemC front-end. Our requirements when we started
writting Pinapa were the following (They also apply for a
general use):

1. As few a priori limitations as possible. We cannot
make any assumption about a well-defined subset of
SystemC used in the programs we want to analyze,
and we don’t want the tool to require any manual an-
notation.

2. The tool must give precise information on all parts of
the program: architecture, software parts, hardware
parts. Abstractions may be done in the back-end if
necessary, but the front-end must not lose information.

3. Pinapa should maximize code reuse, because using an
ordinary C++ front-end when possible avoids creating
C++ dialects, and using the reference implementation
of SystemC also helps complying with the SystemC
specifications.

4. The programs we want to manipulate use some high
level Transaction Level Modeling constructs, that are
not yet standardized by the SystemC consortium. The
tool must be able to manage those constructs.

Contributions
Pinapa satisfies all the abovementioned requirements. The
contributions are the following: 1) a general principle for
building front-ends of “simulation” languages in which part
of the system architecture that has to be extracted statically
is actually built by the execution of some piece of code; 2)
an open source implementation of this principle for full Sys-
temC (it has been tested on the TLM model of the Example

AMBA SYstem (EASY) [3] from ARM written in SystemC
by STMicroelectronics, whose complexity is representative
of the designs written in SystemC); 3) working connections
to analysis tools.

When fed with a SystemC program, Pinapa executes the
elaboration phase of the program, parses it with GCC, and
outputs a data structure useable through GCC and SystemC
API, plus some additional Pinapa-specific functions.

Structure of the paper
Section 3 presents SystemC. Section 4 explains the principles
of our tool, its limitations, and its uses. Section 5 gives
more details about practical problems and their solutions.
Section 2 lists existing SystemC tools and compares them
with our requirements; it also mentions tools from other
application domains using a comparable approach. section 6
is the conclusion.

2. RELATED WORK

2.1 Existing SystemC Tools
Several other tools manipulate SystemC programs. Some

present themselves as SystemC front-ends, but none of them
meet our requirements.

SystemPerl [15] is a perl library containing, among other
tools, a netlist extractor for SystemC (a netlist is a descrip-
tion of the connections between modules). It uses a simple
grammar-based parser and will therefore not be able to deal
with complex code in the constructors of the program, and
does not extract any information from the body of the pro-
cesses. This does not satisfy requirement 2 in section 1.

SynopsysTM developed a SystemC front-end that has suc-
cessfully been included in products like CoCentric SystemC
Compiler and CoCentric System Studio [18][17]. It parses
the constructors and the main function, as well as the body
of the modules with the EDG [7] C++ front-end, and in-
fers the structure of the program from the syntax tree of
the constructors. SystemCXML [10] seems to use the same
approach, using doxygen’s [19] C++ front-end, but the im-
plementation details are not published as of now. Using
this technique, to be able to parse any SystemC program
(requirement 1), one must be able to compute the state of
any program at the end of the execution of the constructors
knowing their bodies. In other words, the tool must contain
a re-implementation of a C++ interpreter (which does not
satisfy requirement 3).

The University of Bremen recently developed a SystemC
front-end called ParSyC [8]. The approach is similar to the
one of SynopsysTM, except that the grammar is written from
scratch (including both SystemC and C++ constructs) in-
stead of reusing an existing C++ front-end. It has impor-
tant limitations regarding the complexity of the elaboration
phase. For example, for loops have to be unrolled, which
is not possible if the bounds are not constant. sc2v [20] is
also a SystemC synthesizer, built with the same approach.
To be complete, this approach needs to include all the C++
syntax (to parse the program) and semantics (to interpret
the constructors).

Some lint tools such as AccurateC [1] also manipulate Sys-
temC code. AccurateC can check rules both in the code (this
is an extension of a C++ lint tool) and in the netlist. How-
ever, it does not need the link between the behavior and the



netlist (unfortunately, the internal structure of AccurateC
has not been published at time of writing).

Some simulation tools provide an alternative to the refer-
ence simulator, with additional features like VHDL or Ver-
ilog cosimulation. For simulation, these tools do not need
information about the body of the processes in uncompiled
form, so, their requirements are different from ours. One
particular case is NC-SystemC [5] from Cadence: it also
provides source-level debugging, using the EDG C++ front-
end. The approach is therefore similar to ours, since the
tool has to deal with both syntax and architecture informa-
tion. However, this tool is focused on debugging, and the
front-end is anyway not available to the public.

2.2 Other combinations of static and dynamic
analyzers

2.2.1 Reverse engineering
The combination of static and dynamic information ex-

traction is used in other domains. In particular, several
reverse engineering techniques use a comparable approach:
in [9], the dynamic analysis is used to refine the result of the
static analysis and eliminate false positive in design pattern
recognition, and in [14], the static and dynamic information
are combined to generate UML diagrams. In both cases, the
difference is that the dynamic information extracted relates
to the behavior of the program, and not to an elaboration
phase as we are doing in SystemC.

2.2.2 Graphical User Interfaces
The most similar works are to be found in the domain

of Graphical User Interfaces. Most GUI toolkits have this
notion of elaboration phase where graphical elements are
built and displayed, followed by the behavior of the pro-
gram which consists in waiting for an event and execut-
ing the corresponding action. The difference with hardware
modeling is that GUI elements can be created dynamically.
Many tools and Integrated Development Environments need
to deal with the static part of the interface (in particular, to
provide a graphical editor for it). The approach followed by
most of them is the one presented in section 4.3.2, defining a
dedicated language to describe the interface, and providing
a code generator or a dynamic loader.

3. THE SYSTEMC “LANGUAGE”
SystemC provides a set of components (some usable out-

of-the-box, and some as base classes to be derived and im-
plemented), and an execution kernel.

Figures 1 gives an example of a SystemC program, used to
illustrate the explanations of the following sections. A Sys-
temC program is made of a set of modules. Each module
may contain one or more processes. The process code is an
ordinary C++ function (like code1 line 8 and code2 line 24).
In a module, the user declares that such a function is to be
used as a process, by using two macros: SC THREAD (...)

and SC METHOD (...) (the “threads” execute the code in
a infinite loop, while the “methods” are executed periodi-
cally in null time). Communication internal to a module can
be done in many ways (shared variables, events, etc.), but
inter-module communication should be limited to SystemC
communication primitives: ports and channels.

A module contains ports, which are the interface to the
external world. The ports of different modules are bound

1 #include "systemc.h"
2 #include <iostream>
3 #include <vector>
4
5 struct module1 : public sc_module {
6 sc_out<bool> port;
7 bool m_val;
8 void code1 () {
9 if (m_val) {

10 port.write(true);
11 }
12 }
13 SC_HAS_PROCESS(module1);
14 module1(sc_module_name name, bool val)
15 : sc_module(name), m_val(val) {
16 // register "void code1()"
17 // as an SC_THREAD
18 SC_THREAD(code1);
19 }
20 };
21
22 struct module2 : public sc_module {
23 sc_in<bool> ports[2];
24 void code2 () {
25 std::cout << "module2.code2"
26 << std::endl;
27 int x = ports[1].read();
28 for(int i = 0; i < 2; i++) {
29 sc_in<bool> & port = ports[i];
30 if (port.read()) {
31 std::cout << "module2.code2: exit"
32 << std::endl;
33 }
34 wait(); // wait with no argument.
35 // Use static sensitivity list.
36 }
37 }
38 SC_HAS_PROCESS(module2);
39 module2(sc_module_name name)
40 : sc_module(name) {
41 // register "void code2()"
42 // as an SC_METHOD
43 SC_METHOD(code2);
44 dont_initialize();
45 // static sensitivity list for code2
46 sensitive << ports[0];
47 sensitive << ports[1];
48 }
49 };
50
51 int sc_main(int argc, char ** argv) {
52 bool init1 = true;
53 bool init2 = true;
54 if (argc > 2) {
55 init1 = !strcmp(argv[1], "true");
56 init2 = !strcmp(argv[2], "true");
57 }
58 sc_signal<bool> signal1, signal2;
59 // instantiate modules
60 module1 * instance1_1 =
61 new module1("instance1_1", init1);
62 module1 * instance1_2 =
63 new module1("instance1_2", init2);
64 module2 * instance2 =
65 new module2("instance2");
66 // connect the modules
67 instance1_1->port.bind(signal1);
68 instance1_2->port.bind(signal2);
69 instance2->ports[0].bind(signal1);
70 instance2->ports[1].bind(signal2);
71 sc_start(-1);
72 }

Figure 1: Example of a SystemC Program.
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Figure 2: Graphical view of the program

together with communication channels to enable commu-
nication. SystemC provides a set of communication inter-
faces such as sc_signal (synchronous signals), and abstract
classes to let the user derive his own communication chan-
nels. In the example, both instances of module1 write on
a signal the value m_val that they have been passed as an
argument, which is received by module2.

The SystemC kernel executes the sc main function. At
the beginning of the execution (lines 52 to 70 on Figure 1)
is the elaboration phase. Components are instantiated in
the usual way for C++ objects. In the pieces of code of Fig-
ure 1, we have two definitions of modules, one of which is
instantiated twice. The program is represented graphically
in Figure 2. Elaboration ends with a call to the function
sc_start() that hands the control back to the SystemC
kernel (line 71). The last part of the execution is the simu-
lation of the program’s behavior where the SystemC kernel
executes the processes one by one, with a non-preemptive
scheduling policy.

With the objective of developing a tool able to extract ar-
chitecture and behaviour information from a SystemC pro-
gram, it is important to note that a SoC designer may write
general C++ code. In the example, the actual architecture
depends on the command line parameters init1 and init2

(see lines 61, 63). Moreover, the example makes use of tem-
plates and macros. Those constructs are commonly used in
the platforms on which we tried Pinapa.

4. PINAPA PRINCIPLES, LIMITATIONS
AND USES

4.1 Principles of PINAPA
The methodology for writing or generating front-ends for

various kinds of languages has been studied extensively (see
for example [2]). Such general techniques are used indirectly
in our tool since we are using a general C++ front-end,
but are not sufficient to get all the necessary information
from a SystemC program. Typically, they cannot extract
the information about the SoC architecture, which is built
by executing the first phase of the SystemC program.

At first, it may appear meaningless to write a front-end
for a library, but the case of SystemC is particular. To
understand what we mean by “SystemC front-end”, we need
to examine the notions of static and dynamic aspects of a
SystemC program.

Observe Figure 3. On the left are the kinds of informa-
tion present in a SystemC program. From the point of view
of a C++ front-end, lexicography and syntax are static and
used to build the AST (Abstract Syntax Tree), while the ar-

chitecture and the behavior are visible during the execution.
From Pinapa’s point of view, the static information extends
to include the architecture. The architecture will be present
in the memory at the end of the elaboration phase. The
dynamic part is reduced to the simulation phase. The static
part is made of: the AST obtained by reusing a standard
C++ front-end on the SystemC program; the architecture-
related information (elab) that stays in memory at the end
of the elaboration phase;
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Figure 3: Static and Dynamic information in a Sys-
temC program

Figure 4 describes the dataflow of Pinapa. The AST is
obtained by parsing the program with a traditional C++
front-end (right hand side of the figure), and elab is ob-
tained by compiling and executing the elaboration phase
(left hand side of the figure).

C++ front-end
2Compilation

1

data

transformation

link

ELAB

AST

Output of PINAPA

of elaboration
Execution

Executable form

SystemC program

Figure 4: Data-flow of Pinapa

Note that the source code is parsed by a C++ front-end
twice: first, to compile the elaboration phase (step (1) in
Figure 4), and then to get the AST, which, in our case, con-
tains some address offset information, dependent on the bi-
nary interface (ABI) (step (2)). The address offsets obtained
in both cases must be consistent, so the C++ front-ends of
(1) and (2) must be ABI-compatible (in particular, they can
be the same compiler). We currently use GCC (GNU Com-
piler Collection) version 3.4.1 for both. This means that
the program will not be parseable by Pinapa if it does not
compile with this precise version of GCC.

Unlike other existing approaches, Pinapa has no limita-
tion regarding the complexity of the code of the constructors
used to build the architecture, because it does not interpret



them; it compiles and executes them. For example, a pro-
gram reading a configuration file or the command line ar-
guments to determine the number of modules to instantiate
can be parsed correctly by Pinapa. In the example of Fig-
ure 1, for instance, the initial values of some data-members
depend on command-line arguments, but they will be ex-
tracted correctly by Pinapa.

Moreover Pinapa (like the front-end of SynopsysTM) uses
a real C++ front-end and will therefore correctly parse any
code that would have been parsed successfully by the C++
front-end. The limitations regarding the C++ language it-
self are therefore minor (limited to “details” such as the
export keyword not managed by GCC). The use of macros
in the source code is not a problem: The macros will be ex-
panded by the C++ preprocessor. Whether the code use the
macro or its expanded version doesn’t have any influence on
Pinapa. Any tool using a dedicated grammar for SystemC
would have to include all the grammar and typing rules of
the C++ standard in the tool to have a correct parser.

The main task of Pinapa is to establish links between the
AST and elab (last step in Figure 4). The idea behind these
links is illustrated by the following: the SystemC processes
perform actions of the form port.write (...), and these
instructions are present in the AST. The elaboration phase
creates instances of modules and connects ports, building
an architecture that is present in elab. The relationship
between an instruction port.write (...) in the AST, and
the actual data structure describing this port in elab, has
to be established by Pinapa. In practice, Pinapa installs
pointers in both directions between the AST and elab.

4.2 Limitations
While Pinapa has no limitations (except the ones of GCC)

regarding the AST (we use a C++ front-end) or elab (we let
a C++ compiled code execute the constructors), it does have
limitations due to the way we establish the links between the
AST and elab.

It is not always possible to establish these links. If a pro-
cess uses a pointer to a SystemC port or an array of ports,
then, the actual object pointed to by this pointer cannot be
known statically. This is the case of port, declared line 29
in Figure 1. In some cases, advanced static analysis tech-
niques like abstract interpretation would allow to get more
information statically, but the subset of SystemC managed
by the tool would be very hard to define. In practice, those
constructs are usually not considered as good programming
practice and did not appear in the programs used as input
for Pinapa up to now.

Pinapa simply does not manage references and pointers
to SystemC objects (The pointers to ports will appear in
the output of Pinapa, both in AST and in elab, but the
objects in the AST will not be linked to the corresponding
ones in elab). For arrays of SystemC objects, if the index
is a constant, then, the actual object is known statically,
and Pinapa decorates the AST referring to the port with
a pointer to this object (this is the case in the instruction
ports[1] line 27 of the example). Otherwise Pinapa deco-
rates the AST with the index in the array (which is itself an
AST) and a pointer to the first element of the array. In any
case, we could reduce the case of arbitrary array indexes to
the case of constant index by transforming the code to elim-
inate non-constant indexes, while preserving the semantics
of the program. In the example, the transformation would

unroll the for loop or transform ports[i] into
i == 0 ? ports[0] : (i == 1 ? ports[1]

: (abort(),ports[1]))

Pinapa being open-source, such transformation can easily
be added if needed.

The use of templates can sometimes be problematic: For
a program using templates, The AST contains the expanded
templates, and elab contains instances of templates class.
The template parameter is not necessarily know at the time
the back-end is written, so the code of the back-end has
to manipulate pointers to objects whose type is not known.
The same remark applies to Pinapa itself. In practice, the
management of templates made the task harder, but never
impossible for Pinapa and our back-end LusSy (We had
to move relevant data or methods from template classes to
non-templates base class in SystemC and the TLM library).

4.3 Other possible approaches

4.3.1 Using a C++ Interpreter
An interesting option would be to modify an existing C++

interpreter like UnderC [6]. A C++ interpreter contains a
C++ front-end, and the environment to execute the elabo-
ration phase. Ideally, the C++ interpreter should be 100%
compliant with the C++ standard, and do the interpreta-
tion at the AST level (not on an intermediate byte-code
representation, which is unfortunately the case of UnderC)
to ease the link between the AST and the runtime informa-
tion. We are not aware of any such interpreter.

4.3.2 Avoiding the need for a SystemC front-end
The problem solved by our approach is the expressivity

of the language used to describe the program’s architecture.
Another approach would be to eliminate the problem instead
of solving it, by using a less expressive language.

In particular, the SPIRIT [16] XML Schema can be used
to describe the architecture of the program. There are on-
going works to extend it to support TLM constructs. Ex-
tracting the structure of the program would then consist in
parsing an XML file, and extracting the body of the pro-
cesses would still have to be done with a C++ front-end.
Simulation of the program would also be possible, by gen-
erating C++ from XML and compiling it as usual. This
approach is not applicable today since we need to deal with
existing SystemC programs.

4.4 Pinapa: Current and Future Uses
We currently use Pinapa as a front-end for our formal

verification tool LusSy [11]. Starting from the abstract rep-
resentation of the program provided by Pinapa, we generate
an intermediate representation (a set of communicating au-
tomata) which is itself dumped in a text format used as
input for a traditional model-checker.

We are currently developping a vizualization tool for Sys-
temC using Pinapa: Reading a SystemC program, it will
generate another representation useable by a visualization
tool (either the dot format from graphviz or SPIRIT). This
is a very simple use of Pinapa since it only use the elab
part of the information extracted. Our medium-term plans
include the development of a lint tool for SystemC and our
TLM methodology. The tool will have to be able to identify
both the architectural and the language constructs, which
is exactly the scope of Pinapa.



Pinapa is also successfully being used by a research
project for compositional verification of transactional mod-
els of Systems-on-a-Chip, led by the POP ART team of IN-
RIA Rhône-Alpes (France).

5. IMPLEMENTATION OF PINAPA
Pinapa can be divided into three main tasks: 1) get the

elab information by executing the elaboration phase; 2)
get the AST of the process bodies using GCC; 3) make the
link between the results of phases 1 and 2. Phases 1 and 2
are just software reuse. For phase 1, fortunately, SystemC
keeps a list of most objects in a global variable, it is easy to
examine them.

In Figure 2, each graphical element corresponds to an ob-
ject in elab, which contains :

process handlers. The process handler gives the follow-
ing information: name of the function, name of the class
containing it, type of process (SC_THREAD or SC_METHOD),
and pointer to the code of the function. It also contains the
list of events the process may be waiting for by default after
suspending itself. This list is called the static sensitivity list.
SystemC Objects. Each SystemC object (ports, modules,
...) contains the necessary information about the binding.
In the example above, the port port of instance1_1 con-
tains a pointer to the signal signal1, which itself gives the
list of connected ports (ports[0]).

The AST represents the bodies of the processes. For ex-
ample, the if statement line 9 in Figure 1 would be repre-
sented as in Figure 5. Pinapa will make the link between
the AST of the port port and its instances in elab.

COMPONENT REF

FIELD DECL
m val

IF STMT

CALL EXPR

write

THEN CLAUSEIF COND

...

...

...

INDIRECT REF

this

Figure 5: Abstract Syntax Tree for an if statement

Concretely, Pinapa first launches the elaboration of the
program. We use a slightly modified version of SystemC,
in which we redefined in particular the function sc_start()

called by the program at the end of elaboration. Instead of
launching the simulation, our version of SystemC launches a
C++ front-end. A few other minor modifications have been
necessary. Usually, they were as simple as adding a friend

keyword or a data member to a class. For example, SystemC
did not keep the name of the class for each module, but the
modified SystemC does.

In phase 2, GCC parses the functions one by one. We
actually ignore many of them, since we are only interested
in the body of processes. We get an abstract representation
of the source code of the processes in the form of an Abstract
Syntax Tree (AST).

Then, the actual job of Pinapa begins: we have to make
the link between this AST and elab. Sections 5.1, 5.2
and 5.3 below detail some interesting problems raised by
this phase. Section 5.4 summarizes the architecture of the
tool.

5.1 Links from ELAB to AST
The first step is to make the link from elab to the AST.

There is not much to do: For each process handler, look for
the AST of a method with no argument whose class name
and function name match the ones in the process handler,
and add a pointer to this AST in it.

In the example above, there are two process handlers for
module1::code1 (one for each instance of module1), and
each of them points to the AST of function module1::code1

declared at line 8.

5.2 Links from AST to ELAB
The link from the AST to elab is a bit more complex.

Each instruction in the AST corresponding to a function
or object of the SystemC library must be considered as a
SystemC primitive and requires a special treatment.

5.2.1 SystemC Functions
SystemC function calls (in the process bodies) are recog-

nized by their name and list of arguments. We add a dec-
oration to the tree saying that this function is a SystemC
function (and which one it is).

For wait statements, we also add a representation of the
list of sensitivity (information saying when the process will
wake up) for this statement, either based on the arguments
of the wait, or on the static sensitivity list for a wait with no
argument. In the example of Figure 1, the wait statement
line 34 has no argument. The list of sensitivity used is there-
fore the static list built during elaboration (lines 46 and 47):
Pinapa will attach the list {*ports[0], *ports[1]} to this
statement.

5.2.2 SystemC objects
SystemC objects require much more work. In the AST,

we get an abstract representation of the classes, but in elab,
we have instances of these classes. These instances are built
once and for all during elaboration. Unless the program
uses pointers to SystemC objects, a variable containing such
object will therefore always contain the same object.

Since a module may be instantiated more than once, the
same element in the AST may refer to several objects in
elab. However, for a given process, an element in the
AST only corresponds to one object in SystemC. The link is
therefore actually a hash table: (AST, process handler) −→
SystemC object. For instance, the port referred to line 9
in the example, and in the AST of Figure 5 has two
instances, but the pair (AST of the port, process han-
dler for instance1_2->code1) uniquely identifies the port
instance1_2->port.

We describe two methods to get a pointer to an object in
elab from its AST and process handler, and how we applied
them in the case of GCC. Depending on the information
present in the AST, either one, the other, or both can be
applicable using another C++ front-end, depending on the
information provided by this front-end.



5.2.2.1 An example: SystemC Communication
Ports.

In the case of GCC, SystemC communication ports cor-
respond to a situation where the name of the object does
not appear in the AST. This is due to the way GCC rep-
resents a member function call in the AST: for example,
when the user writes port.write(x); in a process body,
if port is a member of the current class, this is equiva-
lent to this->port.write(x); Which is itself converted to
write(this->port, x); by GCC’s front-end. Now, here is
the bad joke: this code is converted to write(*(this + off-
set of port), x); where offset of port is a literal numerical
constant. At this point, we are still in GCC’s front-end,
but we have lost an important information: the name of the
port.

So, we only have the offset of the port being examined,
and we want to get its instance in elab. Since the compiler
used for the C++ front-end and the one used to compile the
program are ABI-compatible, the solution is the following:
For each instance of the process, we can get a pointer to the
instance of the class containing the process (this information
was already in the original SystemC’s process handlers). If
we add the offset we got from the AST to the value of this
pointer, we get a pointer to the instance of the port.

5.2.2.2 Other objects.
The same approach is used for other SystemC objects like

sc_event.

5.3 C++ Classes Data Members
It is often the case that a data member of a class is ini-

tialized during elaboration, and we would like Pinapa to be
able to extract this information from the program. Pinapa
provides an option to read the value of these data members
at the end of elaboration.

The problem is that in this case, the address offset does
not appear in the AST in the output of the front-end of
GCC. The approach of section 5.2.2.1 is therefore not ap-
plicable. We could compute the offset from the AST (GCC
does this anyway, later in the compilation flow), but we
chose a different approach, that does not require this com-
putation.

Since we have here both the name of the data member
and the name of the class it is a member of, we can write
a piece of C++ code that would read the value of this data
member. The C++ language is not flexible enough to exe-
cute dynamically this piece of code, but never mind: we can
write it in a file, compile it (run g++ as an external program),
load it dynamically (dlopen, dlsym, ...), and execute it. It
will be executed in the environment elab. An example of
generated code follows:

#include "preprocessed_sc_source.cpp"

namespace pinapa {

struct get_value {

static bool

function_to_get_value_0(sc_module * arg) {

return (static_cast<module1 *>(arg))->m_val;

}

[...]

};

[...]

} // namespace pinapa

In the current implementation, the return value is con-
verted into an AST representing the value of the constant,
which is attached as a decoration to the AST of the program.

There is a limitation here because the return value of the
generated function has the same type as the data-member
that we are examining, which can be any type. To be able to
call this function from Pinapa, we have to know the return
type statically. Concretely, this means we need to write
a piece of code in Pinapa for each data-type we want to
manage. In a future version, it would be interesting to im-
plement the conversion from a concrete value to an AST in
the generated code itself. This way, the return value of the
function would always be an AST, and this would remove
the above limitation. In other words, code generation can be
generic on the type of the variable, whereas function calling
can not.

5.4 Function Call Graph
The resulting function call graph in Pinapa is somewhat

complex (Figure 6), but will be made clearer by the end of
this section.
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Figure 6: Architecture of Pinapa

In the original version of SystemC, the main function is
in the SystemC library itself (it actually does not do much
more than displaying a copyright message and calling the
sc_main function). We have removed it from the library,
considering that the main function should be written by the
user (i.e., the programmer of the back-end). This is the
item (1) of Figure 6.

The call to the sc_main function (and therefore the call to
the Pinapa’s main function) must not return, because the
elaboration phase may have allocated objects on the stack.
We use therefore a callback mechanism (using a C++ func-
tor), so the main function of the back-end should look like:



int main(int argc, char ** argv) {

// The backend is in my_callback::operator()

pinapa::st_backend *callback = new my_callback();

// ...

pinapa::main(..., callback);

}

From the pinapa::main function (2), we call the function
that was originally the main function in the SystemC ker-
nel (3), which in turn calls the pinapa::main_in_parser

function (4), which dynamically loads and executes the
user’s code (5) to elaborate the program. The call to
sc_start (6) that originally started the simulation is by-
passed and calls pinapa::parser_start (7).

The elaboration has now been executed. We call the main
function of the GCC compiler (8). We have modified GCC to
call the function pinapa_gcc_analyze_function_hook (9)
in Pinapa for each function it parses (passing the AST
of this function as an argument). For each func-
tion parsed, pinapa::simcontext_decorate_process (10)
searches for the corresponding process handler in elab and
pinapa::analyze_function_body (11) runs over the AST
to link SystemC primitives to their corresponding object.

5.5 Validation
We developed Pinapa incrementally, following our needs

for the formal verification back-end LusSy. Each feature
added to Pinapa was validated by at least one example,
stimulating both the front-end and the back-end. The cor-
rectness of the translation can be ensured by the examina-
tion of the model-checker’s diagnosis compared to the simu-
lation behavior, and by the visualization tools connected to
LusSy.

6. CONCLUSION
We presented Pinapa, a front-end for SystemC. Unlike

traditional compiler front-ends, it executes a part of the pro-
gram before parsing it, and the main work presented in this
paper is the way to make the link between the source code
representation and the runtime information.

This technique allowed us to write a SystemC front-end
with very few limitations, with a minimal effort. It reuses
megabytes of source code from GCC and SystemC, but
counts itself less than 4,000 lines of code. The performances
are reasonable: most of the time is spent in GCC, so pars-
ing a program with Pinapa takes almost the same time as
compiling it with GCC. It already manages the TLM TAC
and TLM BASIC extensions of SystemC, and other could
be added in the future depending on our needs.

The parser is already operational and used in two for-
mal verification back-ends. It is available under the
terms of the GNU Lesser General Public License at
http://greensocs.sourceforge.net/pinapa/. More de-
tails about the implementation can also be found in the
online documentation.
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