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ABSTRACT
In this paper we introduce a response time analysis technique
for Synchronous Data Flow programs mapped to multiple
parallel dependent tasks running on a compute cluster of
the Kalray MPPA-256 many-core processor. The analysis
we derive computes a set of response times and release dates
that respect the constraints in the task dependency graph.
We extend the Multicore Response Time Analysis (MRTA)
framework by deriving a mathematical model of the multi-
level bus arbitration policy used by the MPPA. Further,
we refine the analysis to account for the release dates and
response times of co-runners, and the use of memory banks.
Further improvements to the precision of the analysis were
achieved by splitting each task into two sequential phases,
with the majority of the memory accesses in the first phase,
and a small number of writes in the second phase. Our
experimental evaluation focused on an avionics case study.
Using measurements from the Kalray MPPA-256 as a basis,
we show that the new analysis leads to response times that
are a factor of 4.15 smaller for this application, than the
default approach of assuming worst-case interference on each
memory access.

1. INTRODUCTION
The design, development, and verification of

safety-critical real-time embedded systems are subject to
specific requirements that follow from guidelines and
standards such as DO-178B/C for avionics and ISO26262
for automotive systems. Both the functional and the timing
behaviour of such systems is required to be correct. In order
to ensure that applications meet their deadlines, predictable
upper bounds are required on the execution times of
software components. These enable the derivation of sound
upper bounds on the worst-case response times (WCRT),
from input stimulus to output response, and thus
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verification of compliance with timing constraints.
With the relatively simple hardware (single processor, no

cache, no advanced hardware acceleration features, etc.)
used in legacy systems, it was possible to ensure
predictability of execution times, to tightly bound
worst-case execution times (WCET) either via static
analysis or via measurements of all relevant paths, and to
compose tight upper bounds on overall response times. Due
to an increasing demand for compute performance,
combined with Size, Weight, and Power consumption
(SWaP) requirements, the emphasis has shifted from ever
faster single-core processors, which had reached physical
limitations due to issues with heat dissipation, to more
complex multi-core and many-core architectures. Ensuring
predictable and tightly bounded timing behaviour in such
systems is very challenging. This is due to the contention
for multiple shared hardware resources between co-running
applications on the different processors. Examples include
contention for cache, network or memory bus, and other
interference effects such as DRAM refreshes. For example,
on the Freescale P4080, the latency of a read operation
varies from 40 to 600 cycles depending on the total number
of cores running competing tasks [14]. Similarly, a 14 times
slowdown has been reported [19] due to interference on the
L2-cache for tasks running on Intel Core 2 Quad processors.
Recent work [22] shows that even with cache partitioning,
contention for registers accessed on both cache hits and
misses can cause a 21 times slow down due to contention
caused by co-runners on the ARM cortex A-15 multi-core
architecture.

A few modern architectures are however designed with
the requirements of real-time embedded systems, in
particular predictability, in mind. In this paper, we study
the Kalray MPPA-256 [9] many-core processor (more
precisely the second generation, called Bostan). This
processor has 256 cores arranged in 16 clusters. The clusters
are linked by a 2-D torus dual Network-On-Chip (NoC).
Independent applications may run on different clusters.
Although inter-cluster interference may be largely
eliminated there is still the potential for interference among
the tasks running on the same cluster due to accesses to
shared resources such as the shared memory [15]. Hardware
partitioning and replication (e.g. memory banks) are used
to significantly reduce this interference, but do not remove
it completely. Details of the architecture are discussed in
Section 2.1.



Synchronous Data Flow (SDF) languages such as
Lustre [11] and SCADE [4] have been industrialised and are
widely used for embedded systems. A certified SDF
compiler can produce sequential code which facilitates
deterministic behaviour. The challenge is to parallelise this
sequential code without loss of determinism. An SDF
application can be represented by a set of tasks with
dependence relations between them. The tasks produce and
consume a statically defined number of tokens. This model
is deterministic in terms of communications, i.e., we know
the topology and the amount of data sent and received. The
parallelism in this case is trivial: tasks can be mapped to
available processing elements (cores), respecting the
dependence relations, and allowing independent tasks to run
in parallel.

Existing work by Puffitsch et al. [18] and Walter and
Nebel [23] tackles the challenge of porting and mapping
Synchronous Data Flow programs to multi-core
architectures by proposing different scheduling techniques.
These approaches assume that an upper bound WCET is
known for each task, and schedule the tasks accordingly.
The scheduling techniques used optimise parameters such as
the global execution time, CPU utilisation or energy
efficiency. Using WCETs that are independent of co-runner
interference can be very pessimistic (as shown in [15]) which
may affect the efficiency of the approach. However, we note
that accounting for the actual interference from co-runners
also depends on the scheduling technique used.

Contributions: Our approach differs from previous work,
in that we consider the influence of scheduling on timing
analysis. As a consequence, the scheduling step considers
a WCET bound for each task that also accounts for the
interference from co-runners.

Our main contribution is an algorithm to compute a
static, time-driven, periodic schedule (further detailed in
Section 2.3), as commonly used in hard real time systems
for maximum predictability. We assume that the mapping
of tasks to cores and the execution order is given (either
manually or provided by a separate tool), and compute a set
of release dates (offsets) and response times for each task.
This is an iterative process, with release dates dependent on
the response times of preceding tasks, and response times
dependent on the set of co-runners, which are in turn
dependent on task release dates. The process either
converges on a valid, all dependence relations respected, and
schedulable configuration or deems the system
unschedulable with that task mapping, in which case a
different mapping could be tried. The proof of convergence
is included in the long version of this paper published as a
technical report [20]. It is non-trivial since the usual
monotonicity argument does not apply; the sequence of
release dates computed at each iteration may not be
monotonic.

We target applications running on the Kalray MPPA-256
many-core processor. We identify all the sources of
interference for an application running on a compute cluster,
and provide a mathematical model for them. The model
builds upon the Multi-core Response Time Analysis
(MRTA) framework [1]; a generic approach to response time
analysis for multi- and many-core systems. Unlike MRTA,
we consider a static, time-driven schedule, and hence cannot
use the same fixed-point algorithm. Instead, we provide a
novel algorithm that uses not only the mapping but also the

information about when each task is executed to model
interference precisely. Finally, we evaluate our approach
with a micro-benchmark and apply it to a case study
obtained from a realistic avionics application.

Related Work: In 2014, Lampka et al. [12] proposed an
approach based on timed automata and abstract
interpretation. The main idea is to analyse a
phase-structured task model [17, 21] using Real-Time
Calculus to derive the arrival curves for access requests and
the availability curves for the shared resources (in this case
the shared bus). The authors proposed timed automata
models of several bus arbiters (FCFS, Round-Robin,
TDMA). Although modelling a more complex arbiter can be
feasible in timed automata, it increases the complexity of
the model and may lead to an explosion of states during
analysis. Architectures such as the Kalray MPPA-256 have
several shared resources. This adds to the complexity of the
analysis and may significantly affect its scalability.

In 2015, Dasari et al. [7] presented an approach for
response time analysis taking into account interference on
the bus. The number of accesses were obtained from
measurements during the task’s execution (Regions of task
execution were used for a more fine-grained analysis). The
bus itself was modelled by considering the earliest and latest
available communication slots for the task under analysis.
This representation depends on the arbitration policy of the
bus. The authors give mathematical models of the most
widely used bus arbiters; however, it is difficult to see how
to represent with this approach a less conventional
arbitration policy such as that employed in the Kalray
MPPA-256.

In 2015, Carle et al. [5] described the implementation of
data flow applications on multi-core systems. The authors
focus on the optimisation of an off-line schedule taking into
account non-functional properties such as release dates and
deadlines. This work aims to eliminate the interference
on shared resources by providing temporal isolation. Our
proposed approach accounts for the interference and hence
may be complementary to this previous work.

In 2016, Giannopoulou et al. [10] proposed a response
time analysis on the Kalray MPPA 256 considering mixed-
criticality scheduling. The main difference with our approach
is that [10] considers a ”Flexible time-triggered scheduling”
model which divides time into frames, and forces a global
synchronization barrier between frames. This potentially
creates core under-utilization while they wait for the barrier.
Our scheduling policy does not require any global barrier.
Also, we model the multi-level round-robin arbiter while [10]
considers only one level.

Organization: The remainder of the paper is organised
as follows. Section 2 describes the system and application
models used, and outlines the MRTA framework which we
build upon. Section 3 provides response time analysis for
synchronous data flow programs running on a compute
cluster of the Kalray MPPA-256. This analysis is evaluated
in section 4 via a set of micro-benchmarks and a case study
application. Section 5 concludes with a summary and
discussion of future work.

2. SYSTEM AND APPLICATION MODEL
This section presents the system and application models

considered, thus defining the context for our work. We
describe the hardware architecture and its relevant
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Figure 1: Compute cluster architecture for the
Kalray MPPA-256

characteristics, give an outline of the MRTA framework
which we build upon, and describe the application model
that we later analyse.

2.1 Kalray MPPA-256 Architecture
The Kalray MPPA-256 is a many-core processor [9]. It is

composed of 16 tiles (called compute clusters) of 16 + 1
cores. The processor is connected to the external
environment through 2 I/O quad-core clusters. Inter-cluster
communication is achieved via a 2D-torus dual
Network-On-Chip (NoC) for data and control. In this paper,
we are interested in applications running on a compute
cluster and the interference due to intra-cluster
communications.

Compute Cluster: Figure 1 illustrates the architecture
of a single compute cluster. It has 16 cores plus 1 Resource
Manager (RM). The compute cluster connects to the NoC
via two DMA (Direct Memory Access) interfaces; one for
receiving (Rx) and one for transmitting (Tx). The cluster
also has a Debug Support Unit (DSU).

The cores have an in-order Very Long Instruction Word
(VLIW) pipeline and separate 8 KByte 2-way set-associative
private caches with 64 Byte lines for instructions and data.
The data cache has a write buffer with 8 fully associative 64-
bit entries. There is no cache coherency mechanism between
the cores. Each core has its own real-time clock. Clocks in
the same cluster are synchronous.

Shared Memory: In order to provide spatial isolation,
the memory is partitioned into 16 banks. Each memory
bank is accessed via a separate bus arbiter which
significantly reduces the amount of interference compared to
the alternative of a single arbiter. There are two possible
configurations for the memory banks: interleaved mode
where sequential memory addresses move from one bank to
another, and blocked mode where each block of 128 KB
consecutive memory addresses are contained in a memory
bank. In this paper, we assume that blocked mode is
selected, since it gives more control over the bus
interference. This is because with blocked mode, cores that
access different memory banks go through different arbiters
hence they do not interfere with each other. We use a fixed
association between cores and memory banks. More
precisely, in our application model, each task has a local
memory buffer, and the buffers of all tasks running on the
same core are mapped to the same memory bank. As a
result, read accesses are private but write requests may
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Figure 2: Request arbitration to a shared memory
bank (RR: Round-Robin. FP: Fixed Priority)

access another core’s memory bank.
Bus Arbitration: Figure 2 illustrates the specific multi-

level policy used to arbitrate accesses to the shared memory.
We distinguish three groups which are arbitrated over three
levels:
• G1 = {i ∈ [0, 15] : Pi}: access requests from the 16

cores are initially subject to round-robin arbitration.
• G2 = {Tx ,DSU ,RM }: access requests from the

Resource Manager (RM), Debug Support Unit (DSU)
and Tx requests to the NoC are initially subject to
round-robin arbitration.
• G3 = {Rx}: Rx requests from the NoC.

At level L1, requests issued by data and instruction caches
local to a core are processed by a local round-robin arbiter.
At level L2, there is round-robin arbitration within each
of the groups G1 and G2. This is followed by round-robin
arbitration between these two groups at level L3. Finally,
G3 is included in the last level of the arbitration (L4), which
uses a non-preemptive fixed priority (FP) arbiter and gives
the highest priority to access requests coming from G3.

To summarise, an access request from a task running on
a core crosses three levels of round-robin arbitration and a
level of fixed priority arbitration to reach the shared memory.

2.2 Multicore Response Time Analysis
In this subsection, we outline the generic framework for

Multi-core Response Time Analysis (MRTA) introduced by
Altmeyer et al. [1], which we subsequently build upon.

Given a set of n sporadic tasks Γ = {τ1, . . . , τn}, where
each task τi has a period or a minimum inter-arrival time Ti

and a deadline Di and is statically assigned to a core, the
MRTA framework computes the response time of each task
taking into account the total interference at the different
levels of the hardware that could occur during the task’s
response time. By convention, we use Px to mean the core
that the task under analysis is mapped to, and Py to indicate
some other core. The subset of tasks mapped to a core Py is
denoted by Γy.

In the MRTA framework, tasks are represented by a set of
traces, each of which consists of an ordered list of
instructions, where each instruction carries information
about the memory locations accessed (if any). A set of
exhaustive traces (i.e. for different paths) can be used to
give a sound over-approximation of the memory demand
and the processor demand of a task by taking the maximum
memory (processor) demand over all traces for the task. As
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Figure 3: Example of a data flow program

a result, the framework decouples response time analysis
from a reliance on context independent WCET values (in
isolation). Instead, the analysis formulates response times
directly from the demands on different hardware resources.
Such a separation of concerns trades different sources of
pessimism. The simplifications used in [1] to make the
analysis tractable are unable to take advantage of overlaps
between processing and memory demands; however, this
compromise is set against substantial gains acquired by
considering the worst-case behaviour of hardware resources,
such as the memory bus, over long durations equating to
task response times, rather than summing the worst case
over short durations such as a single accesses, as is the case
with the traditional approach using context-independent
WCETs.

With the MRTA framework, the response time Ri of task
τi executing on core Px is computed using the following
recurrence relation:

Ri = PDi+I
PROC(i, x,Ri)+IBUS(i, x,Ri)+IDRAM(i, x, Ri)

(1)
Where PDi is the processor demand, which equates to the
execution time of task τi in isolation assuming a perfect bus
and memory with zero latency. IPROC is the interference on
the core due to higher priority tasks preempting or delaying
task τi. I

BUS is the interference on the bus computed using
a mathematical model of the bus arbiter. Finally IDRAM is
the interference due to DRAM refreshes. Equation (1) is
solved as part of a larger fixed-point iteration which operates
over the set of tasks, see Algorithm 1 in [1] for details.

The MRTA framework represents a generic and
compositional solution for response time analysis. It allows
the modelling of a wide range of different arbitration
policies (and a combination of them), as well as different
memory models (no cache, data and instruction cache,
scratchpads, etc. and a combination of them). In this paper,
we build upon the MRTA framework, instantiating it for
different hardware components, bus arbitration policies, and
application models.

2.3 The Synchronous Data Flow Model
Our aim is to obtain accurate bounds on the worst-case

response time for data flow programs. A simple example of
a data flow program is shown in Figure 3. In this work, we
consider mono-rate programs, i.e. all tasks have the same
period. In the case of a multi-rate program, we assume
unfolded execution to the hyper-period (the least common
multiple of the tasks’ periods), effectively reducing the

problem to a mono-rate one 1. Also, we consider that all
tasks in a cycle must complete before the end of the cycle,
which is a common constraint when scheduling synchronous
programs. As a consequence, scheduling can be done on one
period (or hyper-period); the same schedule is then repeated
indefinitely.

In terms of scheduling, the tasks in the data flow program
are seen as an acyclic dependency graph. A task is released
only when all its predecessors have finished their execution,
i.e. when they produce tokens for the next tasks. In the
example given in Figure 3, the output data of task τ1 must
be available to task τ4 before it can execute. Hence, the
release date of task τ4 should be greater than the finish time
of task τ1. The data produced is written into a memory
location where the consumer task can read it. In this case
the memory bus is a shared resource and concurrent accesses
may suffer from arbitration delays. In the example, tasks
τ2, τ4, and τ6 write to the memory of task τ3 which creates
potential interference within the response time of each task.

Our algorithm takes as input a fixed mapping of tasks
to cores, and a fixed order for tasks mapped to the same
core. We purposely delegate the mapping and ordering to
a separate tool, dedicated to optimisation of the schedule
and mapping, and focus on the analysis part. Mapping and
ordering of tasks can also be done manually. We produce
a completely static, time-driven schedule. There cannot be
two tasks active on the same core at the same time, hence
we do not use preemption and a task starts immediately
when it is released. The schedule specifies the exact, fixed
release date for each task. This is in a way pessimistic in
the sense that each task waits for the worst-case response
time of each of the tasks it is dependent on (it cannot start
even if all of them have completed well before their deadline);
however, our aim is to optimise the worst case, not the
average case. The scheduling scheme has good properties for
a hard-real time system. First, it enables the application to
be executed without any operating system: we only require
communication primitives, and one primitive to wait for a
specified instant; they can be provided as a simple library.
Also, it makes the whole execution highly predictable since
the release date of a task does not depend on the execution
time of previous tasks: we avoid any potential domino effects
in timing.

We introduce the following additional notation used in our
analysis: Each task τi has a release date reli (effectively an
offset relative to the start of the data flow program) Θ =
{rel1, ..., reln} is the set of release dates and R = {R1, ..., Rn}
is the set of upper bound response times of tasks in Γ. Note
that there is no order relation between reli and reli+1 (resp.
Ri and Ri+1) in the set Θ (resp. R). Recall that each task
is statically mapped to a core.

The approach we propose takes into account the
interference on the bus as part of the response time analysis.
Using the SDF model, we know which tasks could
potentially execute at the same time and therefore be
co-runners. We make use of this information to derive tight
bounds on the amount of interference. Moreover, there is an

1The unfolding preserves the required minimum separation
between jobs, since our scheduling scheme includes fixed
release dates for each task. The unfolding process thus
assigns proper release dates to multiple instances of the same
task. We note the potentially large size of the hyper-period
which may introduce a complexity issue.



implicit dependency between two successive periodic
instances which allows us to limit the analysis to only one
instance of the task graph. Our analysis, based on an
adaptation of the MRTA framework, assumes static
non-preemptive scheduling based on the task graph.

In summary, in addition to providing a model for the
Kalray MPPA-256’s bus arbiter, the main difference between
the basic MRTA approach [1] and our approach is that MRTA
considers sporadic tasks, but does not exploit any knowledge
of dependencies or sequentiality between them. In contrast,
we take into account the task dependencies (similarly to [6])
and the precise schedule including release dates and response
times. As a consequence, we have to solve another fixed-point
problem since the schedule depends on the response times of
each task, and vice-versa.

3. ANALYSIS FOR SDF APPLICATIONS
ON THE MPPA-256

In this section we first quantify the different sources of
interference that need to be considered in analysing
synchronous data flow applications running on a compute
cluster of the Kalray MPPA-256. We then describe how bus
interference can be computed using the task dependency
graph for a synchronous data flow program, thus avoiding
pessimism in the analysis caused by lack of information
about co-runners. We then derive a mathematical model of
the multi-level arbiter of the Kalray MPPA-256. Finally we
describe our response time analysis algorithm.

3.1 Quantification of the Interference
We now highlight the main sources of interference that need

to be considered as part of (1) when determining the response
time Ri of task τi, given the hardware and application models
considered.

The interference on the core IPROC(i, x,Ri) typically
comes from delays or preemptions due to the execution of
higher priority tasks on the same core. In our application
model, we assume a static non-preemptive scheduler. Task
release dates are set such that only one task is active per
core at any given time. This effectively eliminates all
interference from higher priority tasks executing on the
same core. It also simplifies the analysis by removing all
cache-related preemption delays [2].

The interference due to the DRAM is mainly due to
refresh cycles. The Kalray MPPA-256 supports a DDR
memory accessed through the I/O clusters. An access from
a core in a compute cluster has to cross the NoC and the
I/O cluster and finally the DDR controller. All these layers
add to the complexity of the analysis and the access delay.
For predictable operation, such accesses are generally
avoided by pre-loading all of the code and data into the
shared memory of the compute cluster. The on-chip RAM
of the MPPA is 32 MB, 2 MB per cluster, which is sufficient
for many applications. We therefore assume that
∀t > 0, IDRAM(i, x, t) = 0.

The interference on the bus depends on the specific
arbitration policy used. Cache misses in the private data
and instruction caches issue requests to the shared memory
that are granted according to the multi-level arbiter. A
detailed derivation of the IBUS(i, x,R,Θ) function that
depends on the set of release dates of all tasks is given in
the following section.

Taking the above considerations into account, the response
time formula given in (1) simplifies to:

Ri = PDi + IBUS(i, x,R,Θ) (2)

Note, here R is the set of response times and Θ is the set of
release dates for all tasks.

3.2 Bus Interference
In our application model, we consider a task dependency

graph mapped to a set of cores. The hardware architecture
allows the mapping of contiguous addresses to the same
memory bank. Thus, concurrent accesses are independent
as long as they are done in different memory banks, which
reduces the bus interference. We exploit this by allocating
the memory of each task running on the same core to the
same bank. Tasks run on their locally reserved memory
banks and access other locations only when writing data to
the next successive task(s) in the task graph. We denote by
MDb

i the memory demand of task τi on memory bank b.
The bus interference is given by:

IBUS(i, x,R,Θ) =
∑
b∈Bi

BUSb(i, x,R,Θ)× d (3)

where d is the latency of a bus access without interference,
Bi is the set of memory banks accessed by task τi, and
BUSb(i, x,R,Θ) is a function that, accounting for the
arbitration policy, gives an upper bound on the number of
accesses that can delay completion of task τi (running on
core Px) during a given time interval. Note that
BUSb(i, x,R,Θ) includes both accesses of the task of
interest and accesses performed by other tasks, since both
delay the execution by the bus latency.

In order to derive BUSb(i, x,R,Θ), we need to compute
an upper bound on all bus accesses during the response time
of task τi. We define Sx,b

i (R) as an upper bound on the
number of accesses by the task of interest τi running on core
Px within its response time. Note that since the scheduler
is non-preemptive the bus accesses from core Px come only
from the memory demand of task τi on the memory bank b
(MDb

i ). Since we analyse one instance of task τi, we have:

Sx,b
i (R) = MDb

i (4)

We define ∆
i,k

(R,Θ) the overlap duration between tasks τi

and τk. The computation of the overlap is trivial since we
already know the release dates and response times of tasks τi
and τk. Note that ∆

i,k
(R,Θ) is 0 when the tasks do not overlap.

We use W
i,k

b(R,Θ) to denote an upper bound on the number

of accesses by task τk that may interfere with task τi at the
memory bank b during its response time. In the absence of
detailed information on the pattern of access requests within
a task, we consider that any two tasks that overlap in time
can interfere on each of their accesses. W

i,k

b(R,Θ) is given by:

W
i,k

b(R,Θ) = min(MDb
k,


∆
i,k

(R,Θ)

d

) (5)

We use Ay,b
i (R,Θ) to denote an upper bound on the

number of accesses by all tasks running on core Py 6= Px

during the response time of task τi. The number of accesses



is bounded by the memory demand of each task on memory
bank b. Ay,b

i (R,Θ) is therefore given by:

Ay,b
i (R,Θ) =

∑
k∈Γy

W
i,k

b(R,Θ) (6)

The terms Sx,b
i (R) and Ay,b

i (R,Θ) are used to derive an
upper bound on the number of accesses that contribute to the
interference during the response time of task τi, which also
depends on the bus arbitration policy. The multi-level arbiter
of the Kalray MPPA-256 requires a combination of several
policies (see Figure 2). We initially make the pessimistic
assumption that the bus arbiter is work-conserving2 and
that the accesses from the task of interest τi are dealt with
last of all. (We note that compared to the analysis given
in [1] there is no +1 term accounting for an access from
a lower priority preempted task. Since we assume a static
non-preemptive schedule, any previous task and its accesses
must have completed before task τi starts). Thus we have:

BUSb(i, x,R,Θ) = Sx,b
i (R) +

∑
Ay,b

i (R,Θ)
y∈G1∧y 6=x

+AG2,b(R,Θ) +AG3,b(R,Θ) (7)

(We recall that G1, G2 and G3 are the three groups in the
arbitration hierarchy defined in Section 2.1).

3.3 Model of the Multi-level Bus Arbiter
In this section, we study the multi-level arbitration policy

used in the Kalray MPPA-256 architecture. We consider the
bus arbiter to a memory bank b as shown in Figure 2. The
policy operates over 4 levels which we label L1 to L4 where
L1 is the first (left-most) level, and L4 the final level which
is based on fixed priority arbitration. Our analysis is built
up following the hierarchy from level L1 to level L4.

Level L1: As input to the first level, we assume that the
maximum number of accesses that can be generated by each
source in the response time of a task can be determined.
These values are as follows:
• First group (G1): this is a core and may be treated in

the same way as the analysis given for a round-robin
arbiter in [1]. Note that we do not need to distinguish
between accesses that come via the Instruction Cache
(IC) and those that come via the Data Cache (DC),
since all must be processed before the task of interest τi
can complete. Hence we may represent the output from
this group as either Sx,b

i (R) or Ay,b
i (R,Θ) depending

on whether we are computing the accesses from the
core that τi executes on, or from another core.
• Second group (G2): here we only need to compute

the overall output from the group: AG2,b
i (R,Θ) =

ATx,b
i (R,Θ) +ADSU,b

i (R,Θ) +ARM,b
i (R,Θ), since we

are only interested in the interference it generates.
• Third group (G3): there is only one item, hence the

output is the same as the input:
AG3,b

i (R,Θ) = ARx,b
i (R,Θ).

Level L2: At level L2 the outputs (accesses) from all 16
processors are combined via a 16 to 1 Round-Robin (RR)
arbiter. Note that each core has only one slot in the RR
cycle. The number of accesses to bank b that can delay the

2A work-conserving bus arbiter will not idle the bus as long
as there are pending requests.

execution of a task on core Px at the output of L2 is given
by:

BUSL2
b (i, x,R,Θ) = Sx,b

i (R)

+
∑

y∈G1∧y 6=x

min
(
Ay,b

i (R,Θ), Sx,b
i (R)

)
(8)

where x is the index of the core Px that task τi executes on,
and similarly y ranges over the other 15 cores.

The worst-case situation occurs when each access in Sx,b
i

is delayed by each core Py 6= Px for 1 slot. Given the
round-robin arbiter, interference by core Py is limited to the
minimum of the number of accesses from Py and from Px,

i.e. min
(
Ay,b

i (R,Θ), Sx,b
i (R)

)
.

Level L3: At level L3, the output from the level L2
arbiter, i.e. (8), is combined with that from the second
group, i.e. AG2,b(R,Θ), again via a round-robin arbiter,
hence we have:

BUSL3
b (i, x,R,Θ) = BUSL2

b (i, x,R,Θ)

+ min
(
AG2,b

i (R,Θ),BUSL2
b (i, x,R,Θ)

)
(9)

Again, the worst-case situation occurs when each access in
BUSL2

b (i, x,R,Θ) is delayed by the output of G2 for 1 slot.

Interference by the output of G2 is limited to AG2,b
i (R,Θ).

Level L4: Finally, at level L4, the output from the level
L3 arbiter, i.e. (9), is combined with the output from G3,

i.e. ARx,b
i (R,Θ). As this is done via a fixed priority arbiter

with higher priority given to ARx
i (R,Θ), we have:

BUSL4
b (i, x,R,Θ) = BUSL3

b (i, x,R,Θ) +AG3,b
i (R,Θ) (10)

Finally, given the bus latency d, the bus interference is given
by:

IBUS(i, x,R,Θ) =
∑
b∈Bi

BUSL4
b (i, x,R,Θ)× d (11)

3.4 Response Time Analysis
Our response time analysis algorithm (Algorithm 1) is

based on the MRTA approach [1]. First, we augment the
framework with the model of the multi-level arbiter of the
Kalray MPPA-256, and modify the way computation of the
potential interference is performed: the original MRTA
framework uses a model with sporadic tasks with minimum
inter-arrival times and without dependencies, while we
analyze a single period of a single-rate application, with a
static schedule. Knowing the release dates and response
times, Algorithm 1 computes the number of accesses that
can delay a given task in a given time interval. Since the
potential interference depends on the release dates and
response times, and the response times depend on the
interference, this requires a fixed-point iteration (line 10).

After computing the response times, the schedule we get
may not respect the dependencies and sequentiality
constraints. We modify the release dates so that each task is
released immediately after each of the tasks it depends on is
guaranteed to have completed (Algorithm 2). Modifying the
release dates may change the interference, hence we have to
re-compute it using Algorithm 1, and so on, until a fixed
point is reached (Algorithm 3).

Algorithm 1 solves the recursive equation (2) using a fixed-
point iteration, and computes the response times R of all



Algorithm 1 Response Time Analysis Given a Set of Release
Dates
1: function MultiCoreRTA(Θ)
2: l = 1
3: ∀i : Rl[i] = PDi + MDi· d
4: do
5: for all i do
6: Rl+1[i] = PDi + IBUS(i, x,Rl,Θ)

7: . IBUS is given by equation 11
8: end for
9: l = l + 1

10: while Rl 6= Rl−1

11: return Rl

12: end function

Algorithm 2 Update Release Times to Start After All
Dependencies

1: function UpdateReleases(Θmin,Θ,R)
2: for all i do
3: Θ[i] = max(Θmin[i], {Θ[k] +R[k]|k ∈ deps(i)})
4: end for
5: return Θ
6: end function

tasks given the release dates Θ. Algorithm 2 ensures the
dependency constraints between tasks are satisfied. It is
parameterised by Θmin which gives the earliest release date
for each task: Θmin[i] = t means that task τi cannot start
before t. A task τi is released only when all the tasks it
depends on (denoted by deps(i)) are guaranteed to have
finished. We statically schedule every release date, hence we
set the release date of each task to the maximum of the worst-
case finish time of each task it depends on. Algorithm 3 uses
MultiCoreRTA (Algorithm 1) to compute the response
times of tasks in Γ given a set of release dates (line 5). Then,
UpdateReleases (Algorithm 2) is used to verify and update
the dependency constraints. Algorithm 3 starts from initial
release dates (bounded by the SDF period) (InitRelease,
line 3) and performs a fixed-point iteration.

Algorithm 3 terminates when UpdateReleases does not
change the release dates. When this happens, the response
times Rl+1 computed before the call to UpdateReleases
remain valid afterwards, and hence are valid at the end of
the loop. Termination of Algorithm 1 is guaranteed: we limit
the computation to one period of the task graph; the number
of bus accesses is bounded which implies that the amount
of interference seen by a task is also bounded. The response
time computation of task τi is a monotonically increasing
and bounded function, thus Algorithm 1 converges for any
values in Θ. Termination of Algorithm 3 is non-trivial to
show: the intuition is that a task cannot interfere with its
past. At each iteration, release dates of tasks released before
some instant of time t become fixed and remain the same for
all subsequent iterations, with t advancing by at least one
release date at each iteration. Note this means the number of
iterations of Algorithm 3 is at most (number of tasks− 1).
The complete proof is given in the technical report [20].

Since Algorithm 3 is parameterised by a function
InitRelease, one might think that the choice of
InitRelease could impact the precision of the result.
However, we prove in the technical report [20] that the fixed
point of the composition of MultiCoreRTA and
UpdateReleases is unique, hence the algorithm will return
the same schedule for any function InitRelease, and there

Algorithm 3 Adapt Release Dates to Meet Real-Time
Constraints
1: function ComputeRT(Θmin)
2: l = 0
3: Θl =InitRelease(), Rl = ⊥
4: do
5: Rl+1 =MultiCoreRTA(Θl)
6: Θl+1 =UpdateReleases(Θmin,Θ

l,Rl+1)
7: l = l + 1
8: while Θl 6= Θl−1

9: if ∀i : (Θl[i] +R[i]l) ≤ Di then
10: return schedulable
11: else return not schedulable
12: end if
13: end function

is no point trying to optimise it. In our implementation, we
start with Θ0 = Θmin, i.e. all release dates set to zero.

4. EVALUATION
In this section we evaluate our approach using different

configurations. We show how the application model as well as
the architecture configuration may affect the estimation of the
WCRT. We analyse a didactic micro-benchmark and a case
study of a flight management system controller to validate
our approach. More experiments with detailed results can
be found in the long version of this paper published as a
technical report [20].

4.1 Experimental Setup
Static analysis tools such as, OTAWA [3] and aiT [24]3,

do not yet support the Kalray MPPA-256 Bostan. For this
reason, we establish the task profiles from
measurement-based techniques. Each task is executed in
isolation while profiling processor cycles and the number of
cache misses. Several measurements are performed for each
task and the results show a variance approaching zero. This
reflects the efforts made in the design of the Kalray
MPPA-256 targeting real time applications. In our
experiments, we consider a bus delay d = 10 cycles obtained
from internal specifications (we ignore transaction pipelining
and TLB cache misses). We also consider that the context
switch delay is included in the task execution. We assume
that the Resource Manager (RM), which loads the
application onto the cores before operation starts, does not
interfere with running tasks (ARM,b

i = 0,∀i, b). Finally, the
Debug Support Unit (DSU) is disabled during operation

(ADSU,b
i = 0, ∀i, b).
Bus Model: We assume the benchmark in Section 4.2 is

run in isolation on a compute cluster, i.e. accesses from the
NoC do not occur during the execution of the application of
interest. As a consequence, by setting ARx,b = ATx,b = 0 in
(11), the interference is simplified to one level of round-robin
arbitration. We do consider the accesses from the NoC in
the benchmark in Section 4.3

Execution Model: We first consider a single-phase
execution model where we make no assumptions about the
distribution of read and write accesses between the start
and end of a task. In our code generation scheme for the
SDF model, tasks execute computations, then write the
result to a shared memory location where the next task can

3To the best of our knowledge, aiT supports the first
generation Kalray MPPA-256 Andey only.



task PD (cycles) MD (accesses) dependencies
τ1 5 42 ∅
τ2 8 30 {τ1}
τ3 20 18 {τ2, τ4, τ6}
τ4 5 52 {τ1}
τ5 8 30 ∅
τ6 20 58 {τ5}

Table 1: Task profiles of SDF example in Figure 3

read it. Similar to [13], this execution model allows each
task to be split into a first execution phase limited to
reading the input and doing computations, and then a write
phase where the output is sent to the next task. In the
execution phase, the accesses are to the local memory bank
of the task whereas in the write phase, requests may access
a remote memory bank. We exploit this execution model in
our analysis. We consider the two phases of a task as
separate subtasks with a direct dependency relation. Using
our analysis technique we compare the single-phase model
with the two-phase model.

Experiments: We explore and compare a number of
setups for the experimental evaluation so as to determine
the effectiveness of various techniques that form part of the
schedulability analysis. In the first experiment E1, we use
our approach taking into account a two-phase execution
model. Experiment E2 also applies our approach, but using
a single-phase execution model. In experiment E3, we use a
simplified approach that discards the release dates of tasks,
meaning that all tasks potentially overlap, and considers
the tasks using the two-phase execution model. The same
approach as E3 is used in E4, but using the single-phase
execution model. Finally, we consider in experiment E5 that
co-runners continuously interfere with the task of interest.
This is a pessimistic analysis that assumes the worst-case
interference on each memory access. Note that, this may
result in unbounded interference due to the fixed priority level
of the MPPA bus. In this case, we consider the upper bound
on the number of accesses by all higher priority components
during the analysed execution instance. Then, we assume
that each task access is delayed by all the higher priority
accesses. In the following, we compare the different analyses
with different arbitration policies for each benchmark.

4.2 Didactic Example
We analyse the example given in Figure 3. Table 1

summarises each task profile that consists of the processor
demand and the memory demand. Figure 4 gives a static
schedule computed by our approach which accounts for the
bus interference and the dependencies between tasks.
Figure 5 compares the overall estimated response times
obtained with different analyses. We note that taking into
account the memory banks always yields a better estimation
of the overall response time. Further, taking into account
the two-phase execution model (E1), the estimation is 1.5
times smaller than the pessimistic approach (E5) while the
analysis with the single-phase execution model (E2) is 1.49
times smaller. The approaches that discard the release dates
(E3 and E4) are as pessimistic as E5 in the analysis that
discards the memory banks, and only 1.06 times smaller
while taking into account the memory banks.
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R=1325
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R=1600
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Figure 4: Static scheduling of the example in
Figure 3 considering 3 memory banks
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Figure 6: Flight Management System controller

4.3 ROSACE (Flight Management System)
Pagetti et al. [16] provide a case study of a Flight

Management System (FMS)4. The case study consists of a
multi-rate controller and an environment simulator. In this
kind of application, the input (sampled from physical
sensors) is transmitted to a controller which, after
computation, sends commands to the actuators. Figure 6
illustrates the set of tasks in the SDF application, their
inputs, outputs, dependencies, and their rates. We
established task profiles by executing each task in isolation
and measuring a trace of its execution. The profiles are
given in Table 2. The inputs from sensors and the
commands to the actuators are sent through the NoC via
the Rx and Tx components. Since there are multiple rates,
we unfold the SDF program over a hyper-period in order to

4Open source implementation available on the svn
repository https://svn.onera.fr/schedmcore/branches/
schedmcore-RTAS2014/Case Study RTAS



Task PD (cycles) MD(accesses)
altitude 275 22
az filter 274 22
h filter 326 24
va control 303 24
va filter 301 23
vz control 320 25
vz filter 334 25

Table 2: Task profiles of the FMS controller
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Figure 7: Task-to-core mapping and unfolding of
tasks in the FMS controller
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Figure 8: The smallest schedulable period obtained
with different analyses

make the model compatible with our approach. In this case,
tasks with a frequency of 100 Hz execute twice within the
hyper-period, while tasks with a frequency of 50 Hz execute
only once. Further, the Rx component writes the inputs
(h, az, vz, q, va) to the shared memory four times (200 Hz)
within the hyper-period, while the Tx component reads and
transmits the outputs (δec, δthe) once (50 Hz). Our
experiments consider a time window with the length of the
hyper-period that starts with the Tx accesses from the
previous execution of the program.

There are several possible mappings for the multi-rate
application. We choose the mapping described in Figure 7
and evaluate its schedulability with the previously defined
analyses. We also consider a single-level round-robin bus
(RR) as well as the multi-level arbiter (MPPA). This allows
us to compare the performance of the MPPA against the
conventional RR arbitration policy using our approach.
Figure 8 gives the smallest period, in processor cycles, for
which the mapping in Figure 7 is schedulable. This is

equivalent to finding the slowest processor clock frequency
that satisfies the scheduling requirements.

The results in Figure 8 show that accounting for the
memory banks improves the estimation with a factor of 1.77
to 2.52 in E1, E2, E3, E4 (5 banks vs. 1 bank). Our refined
approach that takes into account the number of memory
banks and the release dates can verify schedulability with a
hyper-period of 2588 cycles (E1) and 2604 cycles (E2)
assuming the MPPA bus. This represents an improvement
by a factor of 4.15 (E1) compared to the pessimistic
approach in E5 with 10748 cycles. The gain achieved by
considering release dates is a factor of 1.68 in E1
(respectively 1.29 in E2) when compared against E3
(respectively E4) which ignores release dates. Our analysis
with the RR bus gives an estimation of 2388 cycles in E1
(respectively 2400 cycles in E2) which corresponds to a gain
of a factor 3.3 when compared to the pessimistic approach
in E5 that has 7900 cycles. Note that the two-phase model
is more pessimistic than the single-phase model when
comparing E3 and E4. This is due to accumulated
pessimistic considerations on the write phase and the
execution phase which may lead in some cases to a higher
estimation than when the execution is considered as a single
phase. We address this in more detail in the technical
report [20]. The analysis of the RR arbiter provides slightly
better performance than that for the multi-level arbiter.
Any pessimistic assumption in the analysis have a higher
effect on the multi-level arbiter than the RR arbiter. This is
due to the fixed priority level that pessimistically counts all
highest priority accesses at each bus access.

Finally, we comment on the run-time of our approach.
The analysis of the FMS controller takes 0.15 seconds (Intel
2.4 GHz CPU). The analysed hyper-period has 18 tasks.
The analysis in E2 (single-phase execution model) takes 4
iterations in Algorithm 3 and at most 20 iterations at each
execution of Algorithm 1. In E1, the analysed hyper-period
has 31 subtasks/tasks and takes 6 iterations in Algorithm 3
and at most 31 iterations at each execution of Algorithm 1.

5. CONCLUSIONS AND FUTURE WORK
We presented an analysis able to compute a valid static

schedule of a synchronous data flow application on the Kalray
MPPA-256 multi-core architecture with shared memory and
a multi-level arbiter. We start the analysis with a given
mapping, set of dependencies between tasks and precedence
constraints: the choice of the mapping and the order of tasks
on a given core can either be defined manually or delegated
to a separate allocation algorithm.

The analysis we derived was based on the Multicore
Response Time Analysis (MRTA) framework [1]. We
extended this framework by deriving a mathematical model
of the multi-level bus arbitration policy used by the Kalray
MPPA-256. Further, we refined the analysis to account for
the release dates and response times of co-runners, and the
use of memory banks. Improvements to the precision of the
analysis may be achieved by splitting each task into two
sequential phases, with the majority of the memory accesses
in the first phase, and a small number of writes in the
second phase. Our experimental evaluation focussed on the
ROSACE avionics case study. Using measurements from the
Kalray MPPA-256 as a basis, we showed that the new
analysis introduced in this paper leads to response times
that are a factor of 4.25 smaller for this application,



compared to the default approach of assuming that each
access is subject to the worst-case interference.

While we accurately model the 3-level bus arbiter and the
set of memory banks in the Kalray MPPA-256 architecture,
some work is still needed to model the end-to-end delay for
a complete application. We focused on local interferences
between cores when accessing the memory. We will later
work on a model of the NoC traffic, i.e. ARx,b

i and ATx,b
i .

Any formula returning a number of accesses for a given time
interval can be plugged into their computation: we can use
the hardware configuration of the packet shaper (at the exit
of each MPPA cluster), which limits the allowed bandwidth
for each compute cluster on the NoC. Computations based
on Network Calculus can also provide the worst-case number
of accesses for a time window [8]. We can also use knowledge
of the application’s architecture (e.g. compute the amount
of data that is written to and from the cluster during each
clock cycle of the SDF application). The resource manager
will also require consideration, as in general it can access the
shared memory and is itself a shared resource to consider in
response time computations.

We considered that each access to the memory takes 10
cycles, and may delay other accesses by 10 cycles. This is
actually a worst case as 10 cycles elapse between the start and
the end of a memory transaction, but a more precise model
should take transaction pipelining into account: during each
of the 10 cycles above, only one stage of the pipeline is used
by the transaction. In the best case, a core and memory
couple can execute one transaction per cycle. Taking this
into account should lead to a dramatic improvement in the
precision of our analysis, but is non-trivial since interference
at different levels of the arbiter happen at different stages of
the pipeline. Other details of the architecture will be modeled
more finely in the future: for example, write transactions are
asynchronous, while read transactions block the core until
completion (no speculation).
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