UFR IM?AG

Grenoble IN
i UNIVERSITE ENsimAg
oo Grenoble

74l Alpes

—"T

\l
Software security, secure programming

Lecture 4: an overview of
Software Security Analysis Techniques

Master on Cybersecurity — Master MoSiG

Academic Year 2017 - 2018

Software Security

The ability of a SW to function correctly under malicious attacks

10

Software Security

The ability of a SW to function correctly under malicious attacks

“function correctly” ?

» no crash (!), no disclosure/erasure of confidential data
» no bypass of security policy rules
» no deviation from intended behavior (arbitrary code execution)

— what the SW should not do ...

10

Software Security

The ability of a SW to function correctly under malicious attacks

“function correctly” ?

» no crash (!), no disclosure/erasure of confidential data
» no bypass of security policy rules
» no deviation from intended behavior (arbitrary code execution)

— what the SW should not do ...

“malicious attacks” ?
Well-crafted attack vectors, based on knowledge about:

» execution platform: libraries, OS/HW protections

» target software: code, patches

» up-to-date vulnerabilities and exploit techniques
— much beyond unexpected input/execution conditions

10

Software Security

The ability of a SW to function correctly under malicious attacks

“function correctly” ?

» no crash (!), no disclosure/erasure of confidential data
» no bypass of security policy rules
» no deviation from intended behavior (arbitrary code execution)

— what the SW should not do ...

“malicious attacks” ?
Well-crafted attack vectors, based on knowledge about:

» execution platform: libraries, OS/HW protections

» target software: code, patches

» up-to-date vulnerabilities and exploit techniques
— much beyond unexpected input/execution conditions

secure software # robust/safe/fault-tolerant software

Root causes of insecure softwares

“A software flaw that may become a security threat ...”
kinds of bugs w.r.t security:
» harmless: only leads to incorrect results or “simple” crash
» exploitable: can lead to unsecure behaviors ...

10

Root causes of insecure softwares

“A software flaw that may become a security threat ...”
kinds of bugs w.r.t security:

>

>

harmless: only leads to incorrect results or “simple” crash
exploitable: can lead to unsecure behaviors ...

Examples of exploitable vulnerabilities
(combinations of:)

>

>

>

>

>

Rk:

invalid memory accesses: buffer overflow, dangling pointers
arithmetic overflows

race conditions

unsecure coding patterns (lack of input sanitization, etc.)
etc.

influence of programming language, compilation tool,
execution environment (plateform, OS, users ...)

Vulnerability detection and analysis

A major security concern ...

» 5000 vulns in 2011, 5200 in 2012, 6700 in 2013 ... [Symantec]

» applications and OS editors, security agencies, defense departments, IT
companies, ...

10

Vulnerability detection and analysis

A major security concern ...

» 5000 vulns in 2011, 5200 in 2012, 6700 in 2013 ... [Symantec]

» applications and OS editors, security agencies, defense departments, IT
companies, ...

...and a business !
Some 0-day selling prices: see Zerodium web site ...

Two distinct problems

1. detection: identify (security related) bugs

2. analysis: evaluate their dangerousness
Are they exploitable? How difficult is it? Which consequences?

10

The current “industrial” practice

A 2-phase approach

1. (pseudo-random) fuzzing, fuzzing, and fuzzing ...
— to produce a huge number of program crashes

2. in-depth manual crash analysis
< to identify exploitable bugs and obtain PoC exploits
(ignoring protections)

10

The current “industrial” practice

A 2-phase approach
1. (pseudo-random) fuzzing, fuzzing, and fuzzing ...
— to produce a huge number of program crashes

2. in-depth manual crash analysis
< to identify exploitable bugs and obtain PoC exploits
(ignoring protections)

Drawbacks

» A time consuming activity
(very small ratio “exploitable flaws/simple bugs” !)
100,000 open bugs for Linux Ubuntu ; 8000 for Firefox

» Would require a better tool assistance ...
(e.g., “smart” disassembiler, trace analysis, debuggers ?)

example: crash of /bin/make on Linux...

10

The “academic” research trends

Re-use and adapt validation oriented code analysis techniques

» static analysis, bounded model-checking
» test generation:

symbolic/concolic execution, genetic algos, etc.
» dynamic (trace based) analysis

10

The “academic” research trends

Re-use and adapt validation oriented code analysis techniques

» static analysis, bounded model-checking

» test generation:
symbolic/concolic execution, genetic algos, etc.

» dynamic (trace based) analysis

security analysis # safety analysis !

» should be carried on the executable code

» exploit analysis = beyond source-level semantics
(understand what can happen after an undefined behavior)

Main issue: scalability ! ...

DARPA CGC: software security tool competition (st prize: $2,000.000)

10

Outline

Outline of the next part of the course on this topic

Some security-oriented code analysis techniques

» Fuzzing
how to make a program crash ?

» Dynamic Analysis
collect (more) useful information at runtime

» (Dynamic) Symbolic Execution (DSE)
explore a (comprehensive) subset of the execution sequences

» Static Analysis and Abstract Interpretation
analyse an approximation of the code behaviour without executing it

And, in addition, an overview of:
» stronger fault models (e.g., fault injection)
» some specific language/plateform issues (e.g., Java, Android, .. .)

Course organization

lectures

\4

> paper exercises

\{

lab sessions (on tools)

static analysis, DSE, fuzzing, ...

» oral presentations

10

Outline

Oral presentations

Suggested topics (a non limitative list !)

» Programming languages and/or execution plateforms
— focus on specific features, explain the strenght/weaknesses, and the
associated protections . ..

» Java JVM/ Android / ...
> Golang, ...

> JavaScript/ PhP ...

> ..

» Protections

» Control-Flow Integrity (CFI)
» Windows 10 protections

» Malwares
principles, detection and identification techniques

» Code (de)-obfuscation techniques

» Vulnerability exploitation techniques
Return-Oriented-Programming (ROP), defeating ASLR, etc.

» Side-channel attacks

10

Organisation

One oral presentation per “binéme” (team of 2 students)

schedule:

» before Dec. the 7th
choose your subject (and binéme)
— sent it to me by e-mail !

» [11th of January]
oral presentations

> 15 mn. presentation per bindmes (with slides)
> a written report (3-5 pages)

10/10

	Checking Software Security ?
	Outline of the next part of the course on this topic
	Oral presentations

