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Program proof

Prove some logical assertion over the pgm variables at given control
locations (e.g. , using weakest precondition computations)

A sound and complete technique, but a non decidable problem ...
» a semi-automated approach:
— user inputs required to give loop invariants and prove logical
implications
» tools can be used to assist the proof cosntruction and/or to check the
correctness of a manual proof ...

Which usage in vulnerability detection ?

» for small or “highly critical” pieces of code

» as a (long term effort) technique to prove the correctness/security of a
whole software or device Ex:
> the CompCert C compiler
> XXX
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Abstract Interpretation

A static analysis technique

» allow to (automatically) reason about a whole program without executing
it...
» but at the price of approximations due to undecidability problems:
> over-approximations ~ false positives
> under-approximations ~- false negatives
» example: value-set analysis (VSA)
abstract representation = trade-off between accuracy and efficiency
(e.g., intervals vs polyhedra vs ...)

» can be leveraged with use-provided asertions ...
(to deal with library calls, “complex” code patterns, etc.)

’ Long (success) story in program verification = numerous tools available!
But:

» not so effective on binary code, simple memory model

» not go “beyond the bug” (# exploitability analysis)

» may provide too many false postives ?
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What help for “security analysis” ?

“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
— reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible ...
e.g., function pre/post conditions, loop invariants, extra information ...
— consider proving (some of) these assertions ?

4. run the VSA again . ..
= a set of potential vulnerabilities remains, to be discharged by other means,

possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, ... but false negatives instead)
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(Dynamic) Symbolic Execution (DSE)
Run a subset of finite program executions . ..

» atest generation technique
» can be coverage-oriented or goal-oriented

Principle:
Associate a path predicate ¢, to each path o of the CFG:

(3 a variable valuation vs.tv = ¢,) < (v covers o)

(o is the conjunction of all boolean conditions associated to o in the CFG)
» solving ¢, indicates if o is feasible
» iteration over a finite subset of the CFG paths ...

In practice:
> express ¢, in a decidable logic fragment (e.g., SMT).

» may need to concretize some symbolic variables
(loosing completness of the path predicate)
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DSE for vuninerability analysis

» an effective and flexible test generation & execution technique

> can be used on “arbitrary” code
dynamic allocation, complex math. functions, binary code

» trade-off between correctness, completeness and efficiency
(ratio between symbolic and concrete values)

> can be used in a coverage-oriented (bug finding) or goal-oriented
(vulnerability confirmation) way
Ex: out-of-bound array access, arithmetic overflow, etc.

= widely used in vuln. detection and exploitability analysis) ‘

» numerous existing tools ...

» however, not all problems solved (yet ?), e.g.:

» ‘“path explosion” problem on large codes
> can be rather slow (compared with fuzzing)
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Back to (pure) Dynamic Analysis

run an instrumented version of the target program to collect runtime
information on the program behavior

Some very appealing features

» can be used on (almost) every kind of applications': binary code,

complex functions, large applications, virtual execution environment, etc.

» several execution-level applications:
> detect assertion violations
> profiling
» data-flow analysis (e.g., taint analysis)
> source-level engineering

= rather well adapted for security analysis / vulnerability detection

Main requirements

» code instrumentation facilities + instrumented code execution

» find good program inputs !
= makes sense within testing or fuzzing campaigns

'as long as instrumentation is feasable, see later



More details on intrumentation techniques and tools

see Nick Sumner’s slides ...
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Fuzzing, or how to cheaply produce “interesting” program inputs ?

A major concern for dynamic analysis:
feed the target program with good input values . ..

Fuzzing = combination of several possible strategies

» human expertise, (non) typical use-cases
» dynamic symbolic execution

v

other code or input space coverage techniques
(pseudo)-random values, (pseudo)-random mutations of given inputs
> etc.

v

Key elements

» input generation should be fast enough to maximize the # of executions

» need a test oracle
— from crash detection to complex dynamic property checkers

=- one of the most effective vulnerability detection technique to date . .. !
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A trendy and powerful fuzzer: AFL

American Fuzzy Loop

A general-purpose fuzzing tool
(not specific to a set of applications, protocols, etc.)

» C, C++, Objective C
» Python, Go, RUST, OCaml|, ...
» (any) binary code (with QEMU)

governing principles

» speed

» reliability

» ease-of-use

» availabililty and code sharing ...

lcamtuf.coredump.cx/afl/
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Fuzzing algorithm
branch coverage-oriented mutation-based fuzzing

Repeat until a time budget is reached:
1. pick a input from a queue
2. mutate it
3. runit
4. if "coverage increases" put the new input in the queue

Detailed qlgo:
https://www.comp.nus.edu.sg/~mboehme/paper/CCS16.pdf
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Code instrumentation

Lightweight instrumentation to capture:
» branch coverage
» coarse branch hits count

— Use a 64Kb shared memory to record (src,dest) branch hits
code injected at each branch point:

// identifies the current basic block
cur_location = <compile-time-random-value> ;

// mark (and count) a tuple hit
sh_mem[cur_location * prev_location]++ ;

// to preserve directionality
prev_location = cur_location >> 1;

trade-off in the size of this memory : #collision vs efficiency (L2 cache)
Detecting new behaviors:
» maintains a global map of tuple (= branch) seen so far

» only inputs creating new tuples are added to the input queue (others are
discarded)

Rk: branches are considered outside their context
— may ignore new pahs ...
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Some further heuristics

» Tuple hits counted using buckets
(1,2, 3,4-7,8-15, ..., 128+)
inputs leading to a change of bucket are added to the input queue

» Strong time limits for each executed path
motivation: better to try more paths than slow paths ...

» Periodic queue minimization
— -> select a small subset covering the same tuples mix between

> execution latency + file size
> ability to cover new tuples

can be used as well by other external tools ...
» Trimmig input files

— reduce their size to speed-up fuzzing
e.g., remove the size of variable lengths blocks

= favorite seed = fastest and smallest input execersizing a tuple
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Mutation strategy

no relationships between mutations and program states

» deterministic (sequentially):
» flip bits (<> lengths and stepovers)
> add/substract small integers
> insert known interestig integers (0, 1, INT_MAX, etc.)
» non deterministic:
insertion, deletion, arithmetics, etc.

Dictionaries
used to retrieve/build syntax of verbose input language
(e.g., JavaScript, SQL, etc.)

14/15



Crah unicity

» faulty address is to coarse (e.g., crash in strcmp)
» call stack checksum is too slow

AFL
a crach is new if

» crash trace include a new tuple wrt existing crashes
» crash trace miss some tuple wrt existing crashes
Also provide some support for crash investigation ...
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