UFR IM?AG

Grenoble INP
s UNIVERSITE EnsimAg l) l

oo Grenoble
74l Alpes

Software security, secure programming
(and computer forensics)

Lecture 10: Dynamic Analysis and Fuzzing

Master M2 on Cybersecurity

Academic Year 2016 - 2017



Program proof

Prove some logical assertion over the pgm variables at given control
locations (e.g. , using weakest precondition computations)

A sound and complete technique, but a non decidable problem ...
» a semi-automated approach:
— user inputs required to give loop invariants and prove logical
implications
» tools can be used to assist the proof cosntruction and/or to check the
correctness of a manual proof ...

Which usage in vulnerability detection ?

» for small or “highly critical” pieces of code

» as a (long term effort) technique to prove the correctness/security of a
whole software or device Ex:
> the CompCert C compiler
> XXX

15



Abstract Interpretation

A static analysis technique

» allow to (automatically) reason about a whole program without executing
it...
» but at the price of approximations due to undecidability problems:
> over-approximations ~ false positives
> under-approximations ~- false negatives
» example: value-set analysis (VSA)
abstract representation = trade-off between accuracy and efficiency
(e.g., intervals vs polyhedra vs ...)

» can be leveraged with use-provided asertions ...
(to deal with library calls, “complex” code patterns, etc.)

’ Long (success) story in program verification = numerous tools available!
But:

» not so effective on binary code, simple memory model

» not go “beyond the bug” (# exploitability analysis)

» may provide too many false postives ?

15



What help for “security analysis” ?

“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
— reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible ...
e.g., function pre/post conditions, loop invariants, extra information ...
— consider proving (some of) these assertions ?

4. run the VSA again . ..
= a set of potential vulnerabilities remains, to be discharged by other means,

possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, ... but false negatives instead)

15



(Dynamic) Symbolic Execution (DSE)
Run a subset of finite program executions . ..

» atest generation technique
» can be coverage-oriented or goal-oriented

Principle:
Associate a path predicate ¢, to each path o of the CFG:

(3 a variable valuation vs.tv = ¢,) < (v covers o)

(o is the conjunction of all boolean conditions associated to o in the CFG)
» solving ¢, indicates if o is feasible
» iteration over a finite subset of the CFG paths ...

In practice:
> express ¢, in a decidable logic fragment (e.g., SMT).

» may need to concretize some symbolic variables
(loosing completness of the path predicate)

15



DSE for vuninerability analysis

» an effective and flexible test generation & execution technique

> can be used on “arbitrary” code
dynamic allocation, complex math. functions, binary code

» trade-off between correctness, completeness and efficiency
(ratio between symbolic and concrete values)

> can be used in a coverage-oriented (bug finding) or goal-oriented
(vulnerability confirmation) way
Ex: out-of-bound array access, arithmetic overflow, etc.

= widely used in vuln. detection and exploitability analysis) ‘

» numerous existing tools ...

» however, not all problems solved (yet ?), e.g.:

» ‘“path explosion” problem on large codes
> can be rather slow (compared with fuzzing)

15



Back to (pure) Dynamic Analysis

run an instrumented version of the target program to collect runtime
information on the program behavior

Some very appealing features

» can be used on (almost) every kind of applications': binary code,

complex functions, large applications, virtual execution environment, etc.

» several execution-level applications:
> detect assertion violations
> profiling
» data-flow analysis (e.g., taint analysis)
> source-level engineering

= rather well adapted for security analysis / vulnerability detection

Main requirements

» code instrumentation facilities + instrumented code execution

» find good program inputs !
= makes sense within testing or fuzzing campaigns

'as long as instrumentation is feasable, see later



More details on intrumentation techniques and tools

see Nick Sumner’s slides ...

15



Fuzzing, or how to cheaply produce “interesting” program inputs ?

A major concern for dynamic analysis:
feed the target program with good input values . ..

Fuzzing = combination of several possible strategies

» human expertise, (non) typical use-cases
» dynamic symbolic execution

v

other code or input space coverage techniques
(pseudo)-random values, (pseudo)-random mutations of given inputs
> etc.

v

Key elements

» input generation should be fast enough to maximize the # of executions

» need a test oracle
— from crash detection to complex dynamic property checkers

=- one of the most effective vulnerability detection technique to date . .. !

15



A trendy and powerful fuzzer: AFL

American Fuzzy Loop

A general-purpose fuzzing tool
(not specific to a set of applications, protocols, etc.)

» C, C++, Objective C
» Python, Go, RUST, OCaml|, ...
» (any) binary code (with QEMU)

governing principles

» speed

» reliability

» ease-of-use

» availabililty and code sharing ...

lcamtuf.coredump.cx/afl/

10/15


lcamtuf.coredump.cx/afl/

Fuzzing algorithm
branch coverage-oriented mutation-based fuzzing

Repeat until a time budget is reached:
1. pick a input from a queue
2. mutate it
3. runit
4. if "coverage increases" put the new input in the queue

Detailed qlgo:
https://www.comp.nus.edu.sg/~mboehme/paper/CCS16.pdf

11/15


https://www.comp.nus.edu.sg/~mboehme/paper/CCS16.pdf

Code instrumentation

Lightweight instrumentation to capture:
» branch coverage
» coarse branch hits count

— Use a 64Kb shared memory to record (src,dest) branch hits
code injected at each branch point:

// identifies the current basic block
cur_location = <compile-time-random-value> ;

// mark (and count) a tuple hit
sh_mem[cur_location * prev_location]++ ;

// to preserve directionality
prev_location = cur_location >> 1;

trade-off in the size of this memory : #collision vs efficiency (L2 cache)
Detecting new behaviors:
» maintains a global map of tuple (= branch) seen so far

» only inputs creating new tuples are added to the input queue (others are
discarded)

Rk: branches are considered outside their context
— may ignore new pahs ...

12/15



Some further heuristics

» Tuple hits counted using buckets
(1,2, 3,4-7,8-15, ..., 128+)
inputs leading to a change of bucket are added to the input queue

» Strong time limits for each executed path
motivation: better to try more paths than slow paths ...

» Periodic queue minimization
— -> select a small subset covering the same tuples mix between

> execution latency + file size
> ability to cover new tuples

can be used as well by other external tools ...
» Trimmig input files

— reduce their size to speed-up fuzzing
e.g., remove the size of variable lengths blocks

= favorite seed = fastest and smallest input execersizing a tuple

13/15



Mutation strategy

no relationships between mutations and program states

» deterministic (sequentially):
» flip bits (<> lengths and stepovers)
> add/substract small integers
> insert known interestig integers (0, 1, INT_MAX, etc.)
» non deterministic:
insertion, deletion, arithmetics, etc.

Dictionaries
used to retrieve/build syntax of verbose input language
(e.g., JavaScript, SQL, etc.)

14/15



Crah unicity

» faulty address is to coarse (e.g., crash in strcmp)
» call stack checksum is too slow

AFL
a crach is new if

» crash trace include a new tuple wrt existing crashes
» crash trace miss some tuple wrt existing crashes
Also provide some support for crash investigation ...

15/15



	Vulnerability detection and analysis techniques (summary)
	More on Dynamic Analysis
	Fuzzing

