
Software security, secure programming
(and computer forensics)

Lecture 10: Dynamic Analysis and Fuzzing

Master M2 on Cybersecurity

Academic Year 2016 - 2017



Program proof

Prove some logical assertion over the pgm variables at given control
locations (e.g. , using weakest precondition computations)

A sound and complete technique, but a non decidable problem . . .
I a semi-automated approach:

→ user inputs required to give loop invariants and prove logical
implications

I tools can be used to assist the proof cosntruction and/or to check the
correctness of a manual proof . . .

Which usage in vulnerability detection ?
I for small or “highly critical” pieces of code
I as a (long term effort) technique to prove the correctness/security of a

whole software or device Ex:
I the CompCert C compiler
I XXX

2 / 15



Abstract Interpretation

A static analysis technique

I allow to (automatically) reason about a whole program without executing
it . . .

I but at the price of approximations due to undecidability problems:
I over-approximations false positives
I under-approximations false negatives

I example: value-set analysis (VSA)
abstract representation = trade-off between accuracy and efficiency
(e.g., intervals vs polyhedra vs . . . )

I can be leveraged with use-provided asertions . . .
(to deal with library calls, “complex” code patterns, etc.)

Long (success) story in program verification ⇒ numerous tools available!

But:
I not so effective on binary code, simple memory model
I not go “beyond the bug” (6= exploitability analysis)
I may provide too many false postives ?

3 / 15



What help for “security analysis” ?
“security analysis” = vulnerability detection

A pragmatic approach:

1. annotate the code with “vulnerability checks” (e.g., frama-c -rte)
i.e., assertions to detect integer overflows, invalid memory accesses
(arrays, pointers), etc

2. run a VSA
→ reveals a lot of hot spots (= unchecked assertions)

3. add user-defined assertions when possible . . .
e.g., function pre/post conditions, loop invariants, extra information . . .
→ consider proving (some of) these assertions ?

4. run the VSA again . . .

⇒ a set of potential vulnerabilities remains, to be discharged by other means,
possibly on a program slice
(false positive ? real bug but harmless w.r.t security ? real vulnerability ?)

Rk: some static analysis tools also provide bug finding facilities
(i.e., no false postives, . . . but false negatives instead)

4 / 15



(Dynamic) Symbolic Execution (DSE)

Run a subset of finite program executions . . .

I a test generation technique
I can be coverage-oriented or goal-oriented

Principle:
Associate a path predicate ϕσ to each path σ of the CFG:

(∃ a variable valuation v s.t v |= ϕσ) ⇔ (v covers σ)

(ϕσ is the conjunction of all boolean conditions associated to σ in the CFG)
I solving ϕσ indicates if σ is feasible
I iteration over a finite subset of the CFG paths . . .

In practice:
I express ϕσ in a decidable logic fragment (e.g., SMT).
I may need to concretize some symbolic variables

(loosing completness of the path predicate)

5 / 15



DSE for vunlnerability analysis

I an effective and flexible test generation & execution technique

I can be used on “arbitrary” code
dynamic allocation, complex math. functions, binary code

I trade-off between correctness, completeness and efficiency
(ratio between symbolic and concrete values)

I can be used in a coverage-oriented (bug finding) or goal-oriented
(vulnerability confirmation) way
Ex: out-of-bound array access, arithmetic overflow, etc.

⇒ widely used in vuln. detection and exploitability analysis)

I numerous existing tools . . .

I however, not all problems solved (yet ?), e.g.:
I “path explosion” problem on large codes
I can be rather slow (compared with fuzzing)

6 / 15



Back to (pure) Dynamic Analysis

run an instrumented version of the target program to collect runtime
information on the program behavior

Some very appealing features

I can be used on (almost) every kind of applications1: binary code,
complex functions, large applications, virtual execution environment, etc.

I several execution-level applications:
I detect assertion violations
I profiling
I data-flow analysis (e.g., taint analysis)
I source-level engineering

⇒ rather well adapted for security analysis / vulnerability detection

Main requirements

I code instrumentation facilities + instrumented code execution
I find good program inputs !

⇒ makes sense within testing or fuzzing campaigns

1as long as instrumentation is feasable, see later
7 / 15



More details on intrumentation techniques and tools

see Nick Sumner’s slides . . .

8 / 15



Fuzzing, or how to cheaply produce ”interesting” program inputs ?

A major concern for dynamic analysis:

feed the target program with good input values . . .

Fuzzing = combination of several possible strategies

I human expertise, (non) typical use-cases
I dynamic symbolic execution
I other code or input space coverage techniques
I (pseudo)-random values, (pseudo)-random mutations of given inputs
I etc.

Key elements

I input generation should be fast enough to maximize the # of executions
I need a test oracle

→ from crash detection to complex dynamic property checkers

⇒ one of the most effective vulnerability detection technique to date . . . !

9 / 15



A trendy and powerful fuzzer: AFL

American Fuzzy Loop
A general-purpose fuzzing tool
(not specific to a set of applications, protocols, etc.)

I C, C++, Objective C
I Python, Go, RUST, OCaml, ...
I (any) binary code (with QEMU)

governing principles

I speed
I reliability
I ease-of-use
I availabililty and code sharing . . .

lcamtuf.coredump.cx/afl/

10 / 15

lcamtuf.coredump.cx/afl/


Fuzzing algorithm

branch coverage-oriented mutation-based fuzzing

Repeat until a time budget is reached:

1. pick a input from a queue

2. mutate it

3. run it

4. if "coverage increases" put the new input in the queue

Detailed qlgo:
https://www.comp.nus.edu.sg/~mboehme/paper/CCS16.pdf

11 / 15

https://www.comp.nus.edu.sg/~mboehme/paper/CCS16.pdf


Code instrumentation

Lightweight instrumentation to capture:
I branch coverage
I coarse branch hits count

→ Use a 64Kb shared memory to record (src,dest) branch hits
code injected at each branch point:

// identifies the current basic block
cur_location = <compile-time-random-value> ;

// mark (and count) a tuple hit
sh_mem[cur_location ^ prev_location]++ ;

// to preserve directionality
prev_location = cur_location >> 1;

trade-off in the size of this memory : #collision vs efficiency (L2 cache)
Detecting new behaviors:

I maintains a global map of tuple (= branch) seen so far
I only inputs creating new tuples are added to the input queue (others are

discarded)

Rk: branches are considered outside their context
→ may ignore new pahs ...

12 / 15



Some further heuristics

I Tuple hits counted using buckets
(1, 2, 3, 4-7, 8-15, ..., 128+)
inputs leading to a change of bucket are added to the input queue

I Strong time limits for each executed path
motivation: better to try more paths than slow paths ...

I Periodic queue minimization
→ -> select a small subset covering the same tuples mix between

I execution latency + file size
I ability to cover new tuples

can be used as well by other external tools ...

I Trimmig input files
→ reduce their size to speed-up fuzzing
e.g., remove the size of variable lengths blocks

⇒ favorite seed = fastest and smallest input execersizing a tuple

13 / 15



Mutation strategy

no relationships between mutations and program states

I deterministic (sequentially):
I flip bits (<> lengths and stepovers)
I add/substract small integers
I insert known interestig integers (0, 1, INT_MAX, etc.)

I non deterministic:
insertion, deletion, arithmetics, etc.

Dictionaries
used to retrieve/build syntax of verbose input language
(e.g., JavaScript, SQL, etc.)

14 / 15



Crah unicity

I faulty address is to coarse (e.g., crash in strcmp)
I call stack checksum is too slow

AFL
a crach is new if

I crash trace include a new tuple wrt existing crashes
I crash trace miss some tuple wrt existing crashes

Also provide some support for crash investigation . . .

15 / 15


	Vulnerability detection and analysis techniques (summary)
	More on Dynamic Analysis
	Fuzzing

