UFR IM?AG

Grenoble IN
i UNIVERSITE ENsimAg)
oo Grenoble

74l Alpes

—"T

l

Software security, secure programming

Lecture 4: How to look at the binary level

Master M2 Cybersecurity & MoSiG

Academic Year 2019 - 2020

Reminder

So far, we saw that:

» Unsecure softwares are (almost) everywhere . ..

» Programming languages (often) contribute to produce unsecure software

» Looking at the source-level may not be enough
— the binary level of the code matters, e.g.:

>

>
>
>

undefined behaviors + optimisations
memory layout

cache accesses

etc.

= analysing the code level semantics is not sufficient for vulnerability
detection and analysis ...

= need tool and technique to understand the executable code

Outline

Reverse Engineering

Software = several knowledge/information levels

» specifications, algorithms, data structures

» source code structure
objects, variables, types, functions, control and data flows (CFGs and
DFGs)

» assembly and
» binary code (executable)
stack layout, optimizations,

Rk: 3 sometimes a bytecode level (Java, LLVM, etc.)

Reverse-engineering in practice:
» disassembling: binary — assembly level
» de-compiling: binary — source level
» source level — model level ...

12

Reverse engineering a software - When ? (2)

» when the source code not/no longer available
» updating, maintaining legacy code
> analyzing COST, extern libraries
> security (vulnerability, malware)

» when source code not sufficient enough
what you see is not what you execute [T. Reps]

optimization, memory layout, undefined behavior, protections, etc.

Rks
» source and/or binary code may be obfuscated ...
» in some situations need to consider only memory dumps

12

Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
— need to be loaded in memory to be executed (using a loader)

However:

>

>

>

>

no abolute addresses are stored in the executable code
— decided at “load time”

not all the executable code is stored in the executable file
(e.g., dynamic libraries)

data memory can be dynamically allocated
data can become code (and conversely ...)
etc.

The executable file should contain all the information . ..

3 standards executable formats: ELF (Linux), PE (Windows), etc.

>

>

Rks: stripped (no symbol table) vs verbose (debug info) executables . ..

header

sections: text, initialized/unitialized data, symbol tables, relocation
tables, etc.

12

x86 (32) assembly language in one slide

Registers:
» stack pointer (ESP), frame pointer (EBP), program counter (EIP)
» general purpose: EAX, EBX, ECX, EDX, ESI, EDI
» flags

Instructions:
» data transfer (MOV), arithmetic (ADD, etc.)
» logic (AND, TEST, etc.)
» control transfer (JUMP, CALL, RET, etc)

Adressing modes:
» register: mov eax, ebx
» immediate: mov eax, 1
» direct memory: mov eax, [esp+12]

Stack layout for the x86 32-bits architecture

saved ESI
E saved EDI
(%]
S local variable 3 ESF
o
2 local variable 2
o0

local variable 1 [ebp]-4

saved EBP
=L
% return address EBP
% parameter 1 [ebp]+8
gﬁ-; parameter 2 [ebp]+12
0n
o parameter 3 [ebp]+16

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html

ABI (Application Binary Interface)

to “standardize” how processor resources should be used
= required to ensure compatibilities at binary level

v

v

calling conventions

sizes, layouts, and alignments of basic data types

argument & return value passing, saved registers, etc.

\4

v

system calls to the operating system

the binary format of object files, program libraries, etc.

Cleans Stack| Arguments |Arg Ordering
cdecl Caller On the Stack | Right-to-left
fastcall Callee ECX,EDX, Left-to-Right
then stack
stdcall Callee On the Stack | Left-to-Right
VCe+ thiscall| callee | EPX(thish | ot toulett
then stack
On the Stack
GCC thiscall Caller (this pointer | Right-to-left
first)

Figure: some calling conventions

12

Outline

Inspecting the binary code

Understanding and analysing binary code ?

80006000 push ebp
aeaBenAa81 mov ebp, esp
006000003 movzx ecx, [ebprarg_0]
8000680807 pop ebp
Ll TsTs]e]et:y mouzx dx, cl
01010100 01101000 90000000 lea eax, [edx+edx]
01101001 01101110 a00a008F add eax, edx
aea8nae11 hl 2
01101011 00100000 LT b ;dd :::, edx
01100100 01101001 08080016 shr eax, 8
01100110 01100110 gggggm S:h Ei’ :1
01100101 01110010 2 S
01100101 01101110 RABEMOIF ol
01110100 00101110 00000022 novzx eax, al
soeeee25 retn

Disassembling !

statically:
disassemble the whole file content without executing it . ..

dynamically: disassemble the current instruction path under
execution/emulation . ..

Static disassembly

Recovering assembly-level code

» anon trivial task — static disassembling of x86 code undecidable
(dynamic jumps, variable-length instructions, etc.)
main issue: distinguishing code vs data ...

» several existing strategies (linear sweep, recursive disassembly, etc.)

» produce assembly-level IR instead of native assembly code
— simpler language (a few instruction opcodes), explicit semantics (no
side-effects), share analysis back-ends

Some existing tools

» |IDA Pro
a well-known commercial disassembler, # useful features
» On Linux plateforms (for ELF formats):

> objdump (-S for code disassembling)
> readelf

10/12

Static disassembly (cont'd)

See other slides available on the web page . ..

11/12

Dynamic disassembly

Main advantage: disassembling process guided by the execution

» ensures that instructions only are disassembled
» the whole execution context is available (registers, flags, addresses, etc.)

v

dynamic jump destinations are resolved

v

dymanic libraries are handled
> efc.

However:

» only a (small) part of the executable is disassembled
» need some suitable execution plateform, e.g.:

> emulation environment

> binary level code instrumentation

> (scriptable) debugger
> efc.

12/12

Outline

Some demos ...

	Reverse Engineering
	Inspecting the binary code
	Some demos …

