
Software security, secure programming

Lecture 4: How to look at the binary level

Master M2 Cybersecurity & MoSiG

Academic Year 2019 - 2020



Reminder

So far, we saw that:

I Unsecure softwares are (almost) everywhere . . .

I Programming languages (often) contribute to produce unsecure software

I Looking at the source-level may not be enough
→ the binary level of the code matters, e.g.:

I undefined behaviors + optimisations
I memory layout
I cache accesses
I etc.

⇒ analysing the code level semantics is not sufficient for vulnerability
detection and analysis . . .

⇒ need tool and technique to understand the executable code

2 / 12



Outline

Reverse Engineering

Inspecting the binary code

Some demos . . .



Software = several knowledge/information levels

I specifications, algorithms, data structures
I source code structure

objects, variables, types, functions, control and data flows (CFGs and
DFGs)

I assembly and
I binary code (executable)

stack layout, optimizations,

Rk: ∃ sometimes a bytecode level (Java, LLVM, etc.)

Reverse-engineering in practice:
I disassembling: binary → assembly level
I de-compiling: binary → source level
I source level → model level . . .

3 / 12



Reverse engineering a software - When ? (2)

I when the source code not/no longer available
I updating, maintaining legacy code
I analyzing COST, extern libraries
I security (vulnerability, malware)

I when source code not sufficient enough
what you see is not what you execute [T. Reps]

optimization, memory layout, undefined behavior, protections, etc.

Rks
I source and/or binary code may be obfuscated ...
I in some situations need to consider only memory dumps

4 / 12



Memory layout at runtime (simplified)

Executable code = (binary) file produced by the compiler
→ need to be loaded in memory to be executed (using a loader)

However:
I no abolute addresses are stored in the executable code

→ decided at “load time”
I not all the executable code is stored in the executable file

(e.g., dynamic libraries)
I data memory can be dynamically allocated
I data can become code (and conversely . . . )
I etc.

The executable file should contain all the information . . .

∃ standards executable formats: ELF (Linux), PE (Windows), etc.
I header
I sections: text, initialized/unitialized data, symbol tables, relocation

tables, etc.

Rks: stripped (no symbol table) vs verbose (debug info) executables . . .

5 / 12



x86 (32) assembly language in one slide

Registers:
I stack pointer (ESP), frame pointer (EBP), program counter (EIP)
I general purpose: EAX, EBX, ECX, EDX, ESI, EDI
I flags

Instructions:
I data transfer (MOV), arithmetic (ADD, etc.)
I logic (AND, TEST, etc.)
I control transfer (JUMP, CALL, RET, etc)

Adressing modes:
I register: mov eax, ebx
I immediate: mov eax, 1
I direct memory: mov eax, [esp+12]

6 / 12



Stack layout for the x86 32-bits architecture

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html
7 / 12

http://www.cs.virginia.edu/~evans/cs216/guides/x86.html


ABI (Application Binary Interface)

to “standardize” how processor resources should be used
⇒ required to ensure compatibilities at binary level

I sizes, layouts, and alignments of basic data types
I calling conventions

argument & return value passing, saved registers, etc.
I system calls to the operating system
I the binary format of object files, program libraries, etc.

Figure: some calling conventions

8 / 12



Outline

Reverse Engineering

Inspecting the binary code

Some demos . . .



Understanding and analysing binary code ?

Disassembling !

statically:
disassemble the whole file content without executing it . . .

dynamically: disassemble the current instruction path under
execution/emulation . . .

9 / 12



Static disassembly

Recovering assembly-level code

I a non trivial task → static disassembling of x86 code undecidable
(dynamic jumps, variable-length instructions, etc.)
main issue: distinguishing code vs data . . .

I several existing strategies (linear sweep, recursive disassembly, etc.)
I produce assembly-level IR instead of native assembly code

→ simpler language (a few instruction opcodes), explicit semantics (no
side-effects), share analysis back-ends

Some existing tools

I IDA Pro
a well-known commercial disassembler, # useful features

I On Linux plateforms (for ELF formats):
I objdump (-S for code disassembling)
I readelf

10 / 12



Static disassembly (cont’d)

See other slides available on the web page . . .

11 / 12



Dynamic disassembly

Main advantage: disassembling process guided by the execution

I ensures that instructions only are disassembled
I the whole execution context is available (registers, flags, addresses, etc.)
I dynamic jump destinations are resolved
I dymanic libraries are handled
I etc.

However:
I only a (small) part of the executable is disassembled
I need some suitable execution plateform, e.g.:

I emulation environment
I binary level code instrumentation
I (scriptable) debugger
I etc.

12 / 12



Outline

Reverse Engineering

Inspecting the binary code

Some demos . . .


	Reverse Engineering
	Inspecting the binary code
	Some demos …

