
Software security, secure programming

Non Interference: a short summary

Master M2 Cybersecurity & MoSiG

Academic Year 2020 - 2021



Information-Flow

↪→ retrieve how information “flows” inside a program

I more precisely:
I use/def dependencies between variables
I 2 kinds of flows:

I data-flow (direct/explicit) through assigments
I control-flow (indirect/implicit) through if, while, . . . statements

I classical code analysis technique:
compilation/optimization, verification

I in practice
I static analysis:

type systems fix-point computations
→ not decidable, (over-)-approximation, not complete

I runtime instrumentation/monitoring techniques (tags, extra checks)
→ not sound (may miss existing flows)

2 / 6



Non Interference

↪→ check information flow partitions inside a program

I more precisely:
no influence of variable/statement of one class to another
influence = read and/or write and/or execute

I numerous applications in security:
I confidentiality/integrity (e.g., isolation, enclaves)
I taint analysis (e.g., vulnerability exploitability)
I side-channels through shared resources (execution time, cache, . . . )
I no use of unitialized variables
I etc.

I in practice:
I dedicated & refined information-flow analysis techniques

(static and/or dynamic)
⇒ # tools available . . .

I ∃ secure coding patterns
ex: constant-time programming paradigm 1 for timing/cache attacks

1see for instance https://www.chosenplaintext.ca/articles/
beginners-guide-constant-time-cryptography.html

3 / 6

https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html
https://www.chosenplaintext.ca/articles/beginners-guide-constant-time-cryptography.html


Non Interference: a general definition

No influence between data/statement of class L w.r.t. data of class H

Given:
I a variable partition in 2 classes H and L
I memory states M1=(L1, H1) and M2=(L2, H2) s.t. H1 ≡ H2 and L1 6= L2

Then, executions from M1 and M2 lead to
memory states M’1=(L’1, H’1) and M’2=(L’2, H’2) s.t. H’1 ≡ H’2

���
���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

L2 H2

L2’ H2’

L1 H1

L1’ H1’

execution 2execution 1

Rk: hyper property
(models are sets of execution sequences, not single ones . . . )

4 / 6



Access Control

A more coarse-grain property than non-interference
↪→ check for information access (only) at the thread level

(not consider how sensitive data is processed accross # threads . . . )

(see E. Poll’s slides)

5 / 6



As a (temporary) conclusion of part 1

I Mind your programming language
I type safety, memory safety
I wysinwyx

I A wide spectrum of intruder models
(from passive external observer to corrupted execution plateform)

I ∃ well-know code vulnerabilities . . .
but ∃ well-know secure coding patterns as well !

I Compilers and tools may help a lot !
⇒ towards certified secure code generation & execution ?

6 / 6


