0 1O Ui Wi =

Grenoble INP UGA
Master CybserSecurity & Master MoSiG Year 2017-18

Software Security & Secure Programming

Written Assignment - Tuesday November the 14th, 2017

Duration : 60 minutes — Authorized documents : one A4 sheet of paper

Exercise 1. (~ 10 pts) We consider the following C code :

#include <stdio.h>
#include <string.h>
#include <stdlib .h>

char xalloc_and_copy (char xdst, char src[], unsigned int nbcells) {
unsigned char size;
size = nbcells;
dst = (int %) malloc(size);
strepy (dst, src); // copy src into dst
return dst ;

}

int main () {
char t1[256];
char *t2;
scanf ("%s”, tl); // read the content of t1 from the keyboard
t2=alloc_and_copy (t2, t1, 256);
sprintf ("%s”, t2); // print the content of t2 on the screen
free (t2);
return 0;

Q1. Find the vulnerabilities in this code (you should find at least 3 vulnerabilities, may be more!)

Q2. For each of them explain why it is a vulnerability, and if (and how) this vulnerability could be exploited
by a malicious user (indicating which gain this attacker would get).

Q3. Update this code to make it secure (while preserving the same “nominal behavior”).

Q4. Would each of these vulnerabilities occur in a “secure” programming language like RUsT ! ? Explain
why, or why not ...

(to be continued on the next page)

1. or JAVA or ADA, etc.



00 IO UL i Wi

25

Exercise 2. (~ 5 pts)

According to the CERT, in a C program, “a simple yet effective way to eliminate dangling pointers and
avoid many memory-related vulnerabilities is to set pointers to NULL after they are freed” (rule MEMO1-C).
Explain, by giving a suitable example for each cases,

1. why this recommandation may help to make some use-after-free non exploitable, preventing an
attacker to break confidentiality or integrity properties;

2. why it is not a sufficient condition in general (some exploitable use-after-free may still occur).

Exercise 3. (~ 5 pts)

The following C code initializes a secret key and prints later on a public directory name. Running these
code (several times) an observer is able to get some information on the key.

#include <stdio.h>
#include <string.h>

void foo (char k[], int size) {
int i;
for (i=0; i<size; i++)
k[i] = k[i] + 1 ;

}

void main () {
char key[1024]; // secret key
int size; // secret key size
char buff[1024];
char dir[1024]; // public dirname

init (&key, &size); // initialize the secret key and its size
strncpy (buff , key, size); // copy size bytes of key into buff
if (buff[0]== O0xFF) {

strepy (dir, 7./tmp”);
} else {

foo(key, size);

strepy (dir, 7.7);

I
printf ("%s\n”, dir);

Indicate :
1. which are the instructions leaking some secret informations on the key ?

2. which precise information on the key can be actually retrieved ?



