Grenoble INP

Master CybserSecurity & Master MoSiG

UGA
Year 2019-20

Software Security & Secure Programming

Written Assignment - Wednesday November the 13th, 2019

Duration : 60 minutes — Authorized documents : one A4 sheet of paper — answers in English or French

Exercise 1. (~ 8 pts).

We consider the C program given on Figure 1. It contains a vulnerability at lines 29 and 30.

Q1. Explain why it is a vulnerability, how an attacker may exploit it, and which gain he/she could get.

Q2. Do you think that compiling this program with the -fstack-protector option (to tell the compiler
to include canaries in the stack) is a sufficient protection to avoid this attack ? Which (other ?) kind of
protection could be used 7 Explain your answers.

Q3. In 2010 a U.S. patent was deposed by C. Cowan and its co-authors for a protection called PointGuard.
This protection consists in ciphering each pointer p used in a C program with a random key (generated
at load-time) using a lightweight cryptographic algorithm (e.g., XOR’ing the pointer value with the key).
Then, before each pointer dereference operation (i.e., before each access to *p) the pointer value is decrypted
at run-time and the resulting address is used (see figure below) :

PointGuard Pointer Dereference

1. Fetch Pointer Value

CPU

Ax123£1

Pointer Decryption

2. Access data referenced by pointer

Encrypt
Memory 0x7239

d Pointer

Data

0x1234

Explain why this protection avoids the attack found in question Q1.

Q4. Can you see some limitations/drawbacks of this protection mechanism, namely :
examples of vulnerabilities it does not cover, possible ways to overcome this protection by an attacker ?

Exercise 2. (N 8 pts). We consider the function BuildKey of the Java class Key given on Figure 2,
where :
— the array key is supposed to be a sensible data, which should not be corrupted by any unauthorized
user (integrity property);
— the permission P grants write access to key ;
— other variables are considered as public (their content can be corrupted).

Q1. Explain the purpose of the enablePermission() and disablePermission() primitives : why are they
useful in this context, since user trustworthiness is checked explicitly at line 127

Q2. Function BuildKey does not correctly protect the integrity of buffer key, i.e., it may happen that a
non-trusted user is able to modify it. Explain why.

Q3. Assuming variable passphrase is a confidential (secret) data, indicate which information may leak
from this data when an authorized user executes function BuildKey.

Exercise 3. (~ 4 pts).

We consider three variants of the C code given on Figure 3 :

— variantl : XXX is replaced by i<=N

— variant2 : XXX is replaced by i<=2xN

— variant3 : XXX is replaced by i<=N+10
We compile these 3 variants with the -fstack-protector option (i.e., telling the compiler to add canaries
inside the stack) and we observe the following results when running them :

— variant1 produces no error (and no output)
— variant2 produces a segmentation fault error message (without any other information)
— variant3 produces a *** stack smashing detected *** error message

Explain each of these results (you can draw the execution stack to justify your answer).

0 O Ui Wi -

FIGURE 1 — A vulnerable C code ...

#include <stdlib .h>
#include <stdio.h>

int foo () { printf(”foo\n”) ; return 1 ; }
int bar () { printf(”bar\n”) ; return 1 ; }

// declaration of a type called 7Object” as a 2—fields structure
typedef struct {

char buf[20] ; // field buf = buffer of 20 chars
int (xfunc)() ; // field func = function pointer
} Object ;

int main() {
Object x0l, *02 ;

ol = (Object *) malloc (sizeof(Object)) ; // allocates an Object ol
02 = (Object %) malloc (sizeof(Object)) ; // allocates an Object 02
if (ol=NULL || o02==NULL)

return —1 ; // terminates if one of the allocations failed

// initializes fields func of ol and 02 with function addresses
ol—>func = &foo ;
02—>func = &bar ;

// initializes fields buf of ol and 02 with user inputs
scanf ("%s”, ol—>buf) ;
scanf ("%s” , 02—>buf) ;

// calls the function pointed to by fields func of ol and 02

(x(ol—=>func)) () ; // supposed to call foo
(x(02—>func)) () ; // supposed to call bar
return 0 ;

FIGURE 2 — A critical Java class ...

class Key {

int nbSpecials = 0 ;
int key|[] ;

int BuildKey (String user, String passphrase) {

int size=passphrase.length();
int j=0;

for (int i=0; i<size ; i++) {
if (isTrusted(user)) { // if the user is trusted

enablePermission (P) ; // give write access to buffer key

try |
if (isAscii(passphrase.atChar(i)) {

// check if current char is an Ascii char

key[j] = fl(passphrase[i]) ;
J=J+1;

1 else {
key[j] = f2(passphrase[i]) ;

nbSpecials = nbSpecials +1 ;
)3
disablePermission (P) ; // remove write access
} catch (ArrayIndexOutofBoundsException e) {
... // handle buffer overflow error}

}
}
return nbSpecials ;

}

FIGURE 3 — An example of C code ...

#include <stdio.h>

#define N 128

int main() {
int buff[N] ; // defines an array of int with indezes

int i ;

for (i=0 ; XXX ; i++)
buff[i] = 42 ;

return 0 ;

}

to buffer key

ranging from 0 to N—1

