
UFR-IMAG
Université Joseph Fourier

Programming Language and Compiler Design,
2009/2010

Marion Daubignard
Yassine Lakhnech
Laurent Mounier

Series 1

Exercise 1

We add two new statements to the while language (introduced in the lecture session):

• A “repeat” statement: repeat S until b
• A “for” statement: for x in e1 . . . e2 do S

Give the typying rules associated to each of this statement. For the “for” statement
you will distinguish between two cases:

• the “for” statement declares variable x (like in Ada or Java), the scope of this new
variable is S ;

• the “for” statement does not declare variable x (like in C or Java), and therefore
x has to be present in the current environment.

Exercise 2

Show that, with the type system defined so far for the while language, the following
program is incorrect:

begin
proc p1 is

call p2 ;
proc p2 is

call p1 ;
call p1 ;

end

Modify this type system to take into account such mutually recursive procedures. Verify
that this program is now correct with the new type system.
Clue. Each sequence of procedure declaration should be analyzed twice: a first time
to build its associated local environment, and a second time to ckeck its correctness
with respect to this local environment.

Exercise 3

A variable is said correctly initialized if it is never used before having being assigned
with an expression containing only correctly initialized variables. Let us consider for
instance the following program:

x := 0 ; y := 2 + x ; z := y + t ; u := 1 ; u := w ; v := v+1 ;

In this program:

• x and y are correctly initialized ;

1

• z is not correctly initialized (because t is not correctly initalized) ; u is not correctly
initialized (because w is not correctly initalized) ; and v is not correctly initialized
(because v is not correctly initalized).

Some compilers, like javacc reject programs that contain non correctly initialized
variables. We want to define in this exercice a type system which formalizes this check.
To do so, we consider the folloging judgments:

• an environment is simply a set V of correctly initialized variables ;
• V ` e means that “in the environment V , expression e is correct (it does not

contain non correctly initalized variables)” ;
• V ` S | V ′ means that “in the environment V , statement S is correct and produces

the new environment V’′′.

Give the corresponding type system for the while language (without blocks nor pro-
cedures).
Show (on an example) that, like javac, your type system may reject programs that
would be correct at run-time.

Exercise 4

Extend the while language to add parameters to the procedures. You will proceed in
several steps:

1. Consider only in parameters ;
2. Consider both in and out parameters ;
3. Take into account the extra rule (inspired from the Ada language), saying that:
• out parameters cannot appear in right-hand side of an assignment ;
• in parameters cannot appear in left-hand side of an assignment.

Show that for this last case your type system may reject correct programs with respect
to this rule. How could you solve this problem ?

Exercise 5

We extend the while language by introducing notion of subtyping through the follow-
ing syntax for blocks, where t is a type indentifier and extends means “is a subtype
of” (like in Java):

S ::= · · · | begin DT ; DV ; DP ; S end

DT ::= type t extends BT | ε
BT ::= Top | Int | Bool | t

We would like to define a type system for this language which reflects the usual notion
of subtyping, namely:

• The subtyping relation is a partial order v those greatest element is Top. It can
be formalized by a type hirerarchy (X,v), where X is a set of declared types
(including the predefined types Top, Int and Bool).
• A value of type t2 can be assigned to a variable of type t1 whenever t2 v t1. The

converse is false.

2

1. Propose a type system which takes these rules into account. Judgments could be
of the form:
• (X,v),Γ ` S, meaning that “in the environment Γ and with the type hierarchy

(X,v), statement S is well-typed” ;
• (X,v),Γ ` e : t, meaning that “in the environment Γ and with the type

hierarchy (X,v), statement e is well-typed and of type t” ;
• (X,v) ` DT | (X ′,v′), meaning that “type declaration DT is correct within

the type hierarchy (X,v) and produces the type hierarchy (X ′,v′)” ;
• (X,v),Γ ` DV | Γl, meaning that “in the environment Γ and with the type

hierarchy (X,v), variable declaration DV is correct and produces the environ-
ment Γl”.

2. Show that the following program is rejected by your type system:
begin

type t extends Int ;
var x1 : Int ;
var x2 : t ;
var x3 : Int ;
x1 := x2 ;
x3 := x1 ;
x2 := x3

end

3. Although rejected by your type system, the previous program is perfectly safe
(it does not violate the informal subtyping rules). However, its correctness can
only be ensured at run-time, by introducing a notion of dynamic type to each
identifier. This dynamic type corresponds to the actual value type hold by this
identifier at each program step (contrarily to the static type, the one declared for
this variable).

Rewrite the (natural) operationnal semantics of the while language to take into
account this notion of dynamic type and perform the type-checking at run-
time. You can extend the configurations with a (dynamic) environment ρ which
associates its dynamic type to each identifier.

Exercise 6

To define the type system of the while language (with possible nested blocks, but
without procedures) we propose a notion of global environment in which each identifier
is uniquely defined. More precisely, we assume a hierarchal numbering of blocks:

3

1 1.1

1.2 1.2.1

1.3 1.3.1

1.3.2

An environment now associates a type to a pair (Name, IN∗), and a statement is type-
checked within a given block. Define the corresponding judgments and type system.

Exercise 7

We consider the small functional language introduced during the lecture course. Discuss
the correctness of the following terms both in the F system and in the Hindley-Milner
system:

1. let f = fun x.(x , x) in (f (1 , true))
2. let f = fun x.x in ((f 1) , (f true))

4

