Series 1

Exercise 1

Let consider the following statement \((z := x; x := y); y := z \), and the environment \(\sigma_0 \) which maps every variables but \(x \) and \(y \) to 0, maps \(x \) to 5, and \(y \) to 7. Give a derivation tree of this statement.

Exercise 2

We consider the arithmetical expressions defined in the lecture course. Let \(a, a' \in \text{Aexp} \), and \(\sigma, \sigma' \) two states. Let \(X \) be the set of variables appearing in \(a \).

1. Prove that if \(\forall x \in X \cdot \sigma(x) = \sigma'(x) \), then \(A[a] \sigma = A[a] \sigma' \).
2. Prove that \(A[a[a'/x]] \sigma = A[a] \sigma[x \mapsto A[a'] \sigma] \).

Exercise 3

We consider the following statements:

- while \(\neg(x = 1) \) do \((y := y \times x; x := x - 1) \) od
- while \(1 \leq x \) do \((y := y \times x; x := x - 1) \) od
- while true do skip od

where \(x \) designates a variable of type \(\mathbb{Z} \).

For each of the preceding statement, determine whether:

1. its execution loops in every state
2. its execution stops in every state

Prove your answers.

Exercise 4

We wish to add the following statement to the While language:

\[
\text{repeat } S \text{ until } b
\]

1. Provide the semantics rules in order to define \(\text{repeat } S \text{ until } b \) without using the \(\text{while } b \text{ do } \cdots \text{od} \) construction.
2. Prove that
 (a) \(\text{repeat } S \text{ until } b \)
 (b) \(S \text{ if } b \text{ then skip else } (\text{repeat } S \text{ until } b) \)
 are semantically equivalent.
3. We want to prove that the statement \texttt{repeat} \(S \) \texttt{until} \(b \) does not add any expressive power to the \textbf{While} language. To do so, give a function which transforms every program with the statement \texttt{repeat} \(S \) \texttt{until} \(b \) into a program in the \textbf{While} language. Is the given transformation computable? Compare the size of a program and the size of its image by this transformation.

\textbf{Exercise 5}

Prove that, for all statements \(S_1, S_2, S_3 \), the following statements are semantically equivalent:

1. \(S_1; (S_2; S_3) \)
2. \((S_1; S_2); S_3\)

Prove that, in general, \(S_1; S_2 \) is not semantically equivalent to \(S_2; S_1 \).

\textbf{Exercise 6}

Prove that the natural operational semantics of the \textbf{While} language is deterministic.

\textbf{Exercise 7}

Give a natural operational semantics for arithmetical and boolean expressions which is equivalent to the inductive semantics given in the lecture course.