Programming Languages and Compiler Design

Programming Language Semantics
Compiler Design Techniques

Yassine Lakhnech & Laurent Mounier

{lakhnech,mounier}@imag.fr
http://www-verimag.imag.fr/~lakhnech
http://www-verimag.imag.fr/~mounier.

Master of Sciences in Informatics at Grenoble (MoSIG)
Grenoble Universités
(Université Joseph Fourier, Grenoble INP)
Code Optimization
Objective (of this chapter)

- give some indications on general optimization techniques:
 - data-flow analysis
 - register allocation
 - software pipelining
 - etc.
- describe the main data structures used:
 - control flow graph
 - intermediate code (e.g., 3-address code)
 - Static Single Assignment form (SSA)
 - etc.
- see some concrete examples

But not a complete panorama of the whole optimization process
(e.g.: a real compiler, for a modern processor)
Objective of the optimization phase

Improve the *efficiency* of the target code, while preserving the source semantics.

efficiency \rightarrow several (antagonist) criteria

- execution time
- size
- memory used
- energy consumption
- etc.

\Rightarrow no optimal solution, no general algorithm

\Rightarrow a bunch of optimization techniques:

- inter-dependant each others
- sometimes heuristic based
Two kinds of optimizations

Independant from the target machine
“source level” or “assembly level” pgm transformations:
• dead code elimination
• constant propagation, constant folding
• code motion
• common subexpressions elimination
• etc.

Dependant from the target machine
optimize the use of the hardware resources:
• machine instruction
• memory hierarchy (registers, cache, pipeline, etc.)
• etc.
Overview

1. Introduction
2. Some optimizations independant from the target machine
3. Some optimizations dependant from the target machine
Some optimizations independant from the target machine
Main principle

Input: initial intermediate code
Output: optimized intermediate code

Several steps:
1. generation of a control flow graph (CFG)
2. analysis of the CFG
3. transformation of the CFG
4. generation of the output code
Intraprocedural 3-address code (TAC)

“high-level” assembly code:

- binary logic and arithmetic operators
- use of temporary memory location ti
- assignments to variables, temporary locations
- a label is assigned to each instruction
- conditional jumps $goto$

Examples:

- l: $x := y \text{ op } x$
- l: $x := \text{ op } y$
- l: $x := y$
- l: $goto \ l'$
- l: if $x \text{ oprel } y$ $goto \ l'$
Basic block (BB)

A maximal instruction sequence $S = i_1 \cdots i_n$ such that:

- S execution is never “broken” by a jump
 \Rightarrow no `goto` instruction in $i_1 \cdots i_{n-1}$
- S execution cannot start somewhere in the middle
 \Rightarrow no `label` in $i_2 \cdots i_n$

\Rightarrow execution of a basic block is **atomic**

Partition of a 3-address code BBs:

1. computation of Basic Block heads:
 1st inst., inst. target of a jump, inst. following a jump
2. computation of Basic Block tails:
 last inst, inst. before a Basic Block head

\Rightarrow a **single traversal** of the TAC
Control Flow Graph (CFG)

A representation of how the execution may progress inside the TAC

→ a graph \((V, E)\) such that:

\[
V = \{ B_i \mid B_i \text{ is a basic block} \}
\]

\[
E = \{ (B_i, B_j) \mid \text{“last inst. of } B_i \text{ is a jump to 1st inst of } B_j \text{”} \ \vee \\
\text{“1st inst of } B_j \text{ follows last inst of } B_i \text{ in the TAC”} \}
\]
Example

Give the Basic Blocks and CFG associated to the following TAC sequence:

0. \(x := 1 \)
1. \(y := 2 \)
2. \(\text{if } c \text{ goto 6} \)
3. \(x := x+1 \)
4. \(z := 4 \)
5. \(\text{goto 8} \)
6. \(z := 5 \)
7. \(\text{if } d \text{ goto 0} \)
8. \(z := z+2 \)
9. \(r := 1 \)
10. \(y := y-1 \)
Optimizations performed on the CFG

Two levels:

Local optimizations:

• computed inside each BB
• BBs are transformed independent each others

Global optimizations:

• computed on the CFG
• transformation of the CFG:
 • code motion between BBs
 • transformation of BBs
 • modification of the CFG edges
Local optimizations

• algebraic simplification, strength reduction
 → replace costly computations by less expensive ones

• copy propagation
 → suppress useless variables
 (i.e., equal to another one, or equal to a constant)

• constant folding
 → perform operations between constants

• common subexpressions
 → suppress duplicate computations
 (already computed before)

• dead code elimination → suppress useless instructions
 (which do not influence pgm execution)
Example of local optimizations

Initial code:

\[
\begin{align*}
a & := x \ast\ast 2 \\
b & := 3 \\
c & := x \\
d & := c \ast c \\
e & := b \ast 2 \\
f & := a + d \\
g & := e \ast f
\end{align*}
\]
Example of local optimizations

Algebraic simplification:

\[
\begin{align*}
a &= x \times 2 & a &= x \times x \\
b &= 3 & b &= 3 \\
c &= x & c &= x \\
d &= c \times c & d &= c \times c \\
e &= b \times 2 & e &= b \ll 1 \\
f &= a + d & f &= a + d \\
g &= e \times f & g &= e \times f
\end{align*}
\]
Example of local optimizations

Copies propagation:

\[
\begin{align*}
a & := x \times x \\
b & := 3 \\
c & := x \\
d & := c \times c \\
e & := b \ll 1 \\
f & := a + d \\
g & := e \times f
\end{align*}
\]
Example of local optimizations

Constant folding:

\[
\begin{align*}
a & := x \ast x \\
b & := 3 \\
c & := x \\
d & := x \ast x \\
e & := 3 \ll 1 \\
f & := a + d \\
g & := e \ast f
\end{align*}
\]
Example of local optimizations

Elimination of common subexpressions:

```
a := x * x  a := x * x
b := 3      b := 3
```
```c
:= x      c := x
d := x * x  d := a
e := 6      e := 6
f := a + d  f := a + d
g := e * f  g := e * f
```
Example of local optimizations

Copies propagation:

\[
\begin{align*}
 a & := x \times x & a & := x \times x \\
 b & := 3 & b & := 3 \\
 c & := x & c & := x \\
 d & := a & d & := a \\
 e & := 6 & e & := 6 \\
 f & := a + d & f & := a + a \\
 g & := e \times f & g & := 6 \times f
\end{align*}
\]
Example of local optimizations

Dead code elimination (+ strength reduction):

\[
a := x \times x \quad a := x \times x \quad a := x \times x
\]
\[
b := 3
\]
\[
c := x
\]
\[
d := a
\]
\[
e := 6
\]
\[
f := a + a \quad f := a + a \quad f := a \ll 1
\]
\[
g := 6 \times f \quad g := 6 \times f \quad g := 6 \times f
\]
Local optimization: a more concrete example

Initial source program: addition of matrices

```
for (i=0 ; i < 10 ; i++)
    for (j=0 ; j < 10 ; j++)
```

Basic blocks:

- **B1**: i := 0
- **B2**: if i > 10 goto B7
- **B3**: j := 0
- **B4**: if j > 10 goto B6
- **B5**
- **B6**: i := i + 1

 goto B2
- **B7**: end
Control Flow Graph

B1

B2

B6

B3

B4

B5

B7
Initial Block B5

B5:

\[t1 := 4 \times i \]
\[t2 := 40 \times j \]
\[t3 := t1 + t2 \]
\[t4 := A[t3] \]
\[t5 := 4 \times i \]
\[t6 := 40 \times j \]
\[t7 := t5 + t6 \]

\[t8 := B[t7] \]
\[t9 := t4 + t8 \]
\[t10 := 4 \times i \]
\[t11 := 40 \times j \]
\[t12 := t10 + t11 \]

\[S[t12] := t9 \]
\[j := j + 1 \]

goto B4
Optimization of B5 (1/4)

B5:
\[
\begin{align*}
 t1 & := 4 \times i \\
 t2 & := 40 \times j \\
 t3 & := t1 + t2 \\
 t4 & := A[t3] \\
 t5 & := 4 \times i \\
 t6 & := 40 \times j \\
 t7 & := t5 + t6
\end{align*}
\]

\[
\begin{align*}
 t8 & := B[t7] \\
 t9 & := t4 + t8 \\
 t10 & := 4 \times i \\
 t11 & := 40 \times j \\
 t12 & := t10 + t11 \\
 S[t12] & := t9 \\
 j & := j + 1 \\
 \text{goto B4}
\end{align*}
\]

A same value is assigned to temporary locations t1, t5, t10
Optimization of B5 (2/4)

<table>
<thead>
<tr>
<th>B5</th>
<th>(t_1 := 4 \times i)</th>
<th>(t_2 := 40 \times j)</th>
<th>(t_3 := t_1 + t_2)</th>
<th>(t_4 := A[t_3])</th>
<th>(t_6 := 40 \times j)</th>
<th>(t_7 := t_1 + t_6)</th>
<th>(t_8 := B[t_7])</th>
<th>(t_9 := t_4 + t_8)</th>
<th>(t_{11} := 40 \times j)</th>
<th>(t_{12} := t_1 + t_{11})</th>
<th>(S[t_{12}] := t_9)</th>
<th>(j := j + 1)</th>
<th>goto B4</th>
</tr>
</thead>
</table>

A same value is assigned to temporary locations \(t_2, t_6, t_{11} \)
Optimization of B5 (3/4)

B5:
\[
\begin{align*}
 t1 & := 4 \times i \\
 t2 & := 40 \times j \\
 t3 & := t1 + t2 \\
 t4 & := A[t3] \\
 t7 & := t1 + t2
\end{align*}
\]

\[
\begin{align*}
 t8 & := B[t7] \\
 t9 & := t4 + t8 \\
 t12 & := t1 + t2 \\
 S[t12] & := t9 \\
 j & := j + 1 \\
 \text{goto B4}
\end{align*}
\]

A same value is assigned to temporary locations t3, t7, t12
Optimization of B5 (4/4): the final code obtained

B5:
\[t_1 := 4 \times i \]
\[t_2 := 40 \times j \]
\[t_3 := t_1 + t_2 \]
\[t_4 := A[t_3] \]
\[t_8 := B[t_3] \]
\[t_9 := t_4 + t_8 \]
\[S[t_3] := t_9 \]
\[j := j + 1 \]
goto B4
Global optimizations
Global optimization: the principle

Typical examples of global optimizations:
- constant propagation through several basic blocks
- elimination of global redundancies
- code motion: move invariant computations outside loops
- dead code elimination

How to “extrapolate” local optimizations to the whole CFG?

1. associate (local) properties to entry/exit points of BBs
 (set of active variables, set of available expressions, etc.)

2. propagate them along CFG paths
 → enforce consistency w.r.t. the CFG structure

3. update each BB (and CFG edges) according to these global properties

⇒ a possible technique: data-flow analysis
Data-flow analysis

Static computation of data related properties of programs

• (local) properties \(\varphi_i \) associated to some pgm locations \(i \)

• set of data-flow equations:
 \(\rightarrow \) how \(\varphi_i \) are transformed along pgm execution

Rks:
• forward vs backward propagation (depending on \(\varphi_i \))
• cycles inside the control flow \(\Rightarrow \) fix-point equations!

• a solution of this equation system:
 \(\rightarrow \) assigns “globaly consistent” values to each \(\varphi_i \)

Rk: such a solution may not exist . . .

• decidability may require abstractions and/or approximations
Example: elimination of redundant computations

An expression e is redundant at location i iff

• it is computed at location i
• this expression is computed on every path going from the initial location to location i
 \[\text{Rk: we consider here syntactic equality} \]
• on each of these paths: operands of e are not modified between the last computation of e and location i

Optimization is performed as follows:

1. computation of available expressions (data-flow analysis)
2. $x := e$ is redundant at loc i if e is available at i
3. $x := e$ is replaced by $x := t$
 (where t is a temp. memory containing the value of e)
Elimination of redundant computation: an example
Data-flow equations for available expressions (1/2)

For a basic block b, we note:

- $In(b)$: available expressions when entering b
- $Kill(b)$: expressions made non available by b (because an operand of e is modified by b)
- $Gen(b)$: expressions made available by block b (computed in b, operands not modified afterwards)
- $Out(b)$: available expressions when exiting b

\[
Out(b) = (In(b) \setminus Kill(b)) \cup Gen(b) = F_b(In(b))
\]

F_b = transfer function of block b
Data-flow equations for available expressions (2/2)

How to compute $In(b)$?

- if b is the initial block:
 \[
 In(b) = \emptyset
 \]

- if b is not the initial block:
 An expression e is available at its entry point iff it is available at the exit point of each predecessor of b in the CFG
 \[
 In(b) = \bigcap_{b' \in Pre(b)} Out(b')
 \]

⇒ forward data-flow analysis along the CFG paths

Q: cycles inside the CFG ⇒ fix-points computations greatest \textit{vd} least solutions?
Solving the data-flow equations (1/2)

Let \((E, \leq)\) a partial order.

- For \(X \subseteq E, a \in E\):
 - \(a\) is an upper bound of \(X\) if \(\forall x \in X. x \leq a\)
 - \(a\) is a lower bound of \(X\) if \(\forall x \in X. a \leq x\)
- The least upper bound \((\text{lub}, \sqcup)\) is the smallest upper bound
- The great lower bound \((\text{glb}, \sqcap)\) is the largest lower bound
- \((E, \leq)\) is a lattice if every subset of \(E\) admits a lub and a glb.
- A function \(f : 2^E \rightarrow 2^E\) is monotonic if:
 \[
 \forall X, Y \subseteq E \quad X \leq Y \Rightarrow f(X) \leq f(Y)
 \]
- \(X = \{x_0, x_1, \ldots x_n, \ldots\} \subseteq E\) is an (increasing) chain if \(x_0 \leq x_1 \leq \ldots x_n \leq \ldots\)
- A function \(f : 2^E \rightarrow 2^E\) is (\(\sqcup\)-)continuous if \(\forall\) increasing chain \(X, f(\sqcup X) = \sqcup f(X)\)
Solving the data-flow equations (2/2)

Fix-point equation: solution?

- properties are finite sets of expressions \(\mathcal{E} \)
- \((\mathcal{2}^\mathcal{E}, \subseteq)\) is a complete lattice
 - \(\bot\): least element, \(\top\): greatest element
 - \(\sqcap\): greatest lower bound, \(\sqcup\): least upper bound
- data-flow equations are defined on monotonic and continuous operators \((\cup, \cap)\) on \((\mathcal{2}^\mathcal{E}, \subseteq)\)
- Kleene and Tarski theorems:
 - the set of solution is a complete lattice
 - the greatest (resp. least) solution can be obtained by successive iterations w.r.t. the greatest (resp. least) element of \(\mathcal{2}^\mathcal{E}\)

\[
\text{Ifp}(f) = \cup\{f^i(\bot) | i \in \mathbb{N}\} \quad \text{gfp}(f) = \cap\{f^i(\top) | i \in \mathbb{N}\}
\]
Back to the example

```
x := ...
a := ...
b := ...
y := y + 1
x := a + b
y := c
z := x + 1
v := a + b
r := a + b
end
```

In = \{a + b\}
Out = \{a + b\}

In = 0
Out = 0
Generalization

- Data-flow properties are expressed as finite sets associated to entry/exit points of basic blocks: \(\text{In}(b) \), \(\text{Out}(b) \)

- For a **forward** analysis:
 - property is “false” (\(\perp \)) at entry of initial block
 - \(\text{Out}(b) = F_b(\text{In}(b)) \)
 - \(\text{In}(b) \) depends on \(\text{Out}(b') \), where \(b' \in \text{Pred}(b) \)
 (\(\sqcap \) for “\(\forall \) paths”, \(\sqcup \) for “\(\exists \) path”)

- For a **backward** analysis:
 - property is “false” (\(\perp \)) at exit of final block
 - \(\text{In}(b) = F_b(\text{Out}(b)) \)
 - \(\text{Out}(b) \) depends on \(\text{In}(b') \), where \(b' \in \text{Succ}(b) \)
Data-flow equations: forward analysis

| Forward analysis, least fix-point | $\text{In}(b) = \begin{cases} \bot & \text{if } b \text{ is initial} \\ \bigsqcup_{b' \in \text{Pre}(b)} \text{Out}(b') & \text{otherwise.} \end{cases}$ \\
<table>
<thead>
<tr>
<th></th>
<th>$\text{Out}(b) = F_b(\text{In}(b))$</th>
</tr>
</thead>
</table>
| Forward analysis, greatest fix-point | $\text{In}(b) = \begin{cases} \bot & \text{if } b \text{ is initial} \\ \bigsqcap_{b' \in \text{Pre}(b)} \text{Out}(b') & \text{otherwise.} \end{cases}$ \\
| | $\text{Out}(b) = F_b(\text{In}(b))$ |
Data-flow equations: backward analysis

<table>
<thead>
<tr>
<th>Backward analysis, least fix-point</th>
<th>$\text{Out}(b) = \begin{cases} \bot & \text{if } b \text{ is final} \ \bigsqcup_{b' \in \text{Succ}(b')} \text{In}(b') & \text{otherwise.} \end{cases}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{In}(b) = F_b(\text{Out}(b))$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Backward analysis, greatest fix-point</th>
<th>$\text{Out}(b) = \begin{cases} \bot & \text{if } b \text{ is final} \ \bigsqcup_{b' \in \text{Succ}(b')} \text{In}(b') & \text{otherwise.} \end{cases}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\text{In}(b) = F_b(\text{Out}(b))$</td>
</tr>
</tbody>
</table>
Active Variable

- A variable x is inactive at location i if it is not used in every CFG-path going from i to j, where j is:
 - either a final instruction
 - or an assignment to x.

- An instruction $x := e$ at location i is useless if x is inactive at location i.

\Rightarrow useless instructions can be removed . . .

Rk: used means

“in a right-hand side assignment or in a branch condition”.
Data-flow analysis for inactive variables

We compute the set of **active** variables . . .

Local analysis

\(\text{Gen}(b) \) is the set of variables \(x \) s.t. \(x \) is used in block \(b \), and, in this block, any assignment to \(x \) happens after the (first) use of \(x \).

\(\text{Kill}(i) \) is the set of variables \(x \) assigned in block \(b \).

Global analysis : backward analysis, \(\exists \) a CFG-path (least solution)

\[
\text{Out}(b) = \bigcup_{b' \in \text{Succ}(b)} \text{In}(b')
\]

\[
\text{In}(b) = (\text{Out}(b) \setminus \text{Kill}(b)) \cup \text{Gen}(b)
\]

\(\text{Out}(b) = \emptyset \) if \(b \) is final.
Computation of functions Gen and $Kill$

Recursively defined on the syntax of a basic bloc B:

$$B ::= \varepsilon \mid B ; x := a \mid B ; \text{if } b \text{ goto } l \mid B ; \text{goto } l$$

<table>
<thead>
<tr>
<th>Expression</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Gen(B)$</td>
<td>$Gen_l(B, \emptyset)$</td>
</tr>
<tr>
<td>$Kill(B)$</td>
<td>$Kill_l(B, \emptyset)$</td>
</tr>
<tr>
<td>$Gen_l(B ; x := a, X)$</td>
<td>$Gen_l(B, X \setminus {x} \cup \text{Used}(a))$</td>
</tr>
<tr>
<td>$Gen_l(B ; \text{if } b \text{ goto } l, X)$</td>
<td>$Gen_l(B, X \cup \text{Used}(b))$</td>
</tr>
<tr>
<td>$Gen_l(B ; \text{goto } l, X)$</td>
<td>$Gen_l(B, X)$</td>
</tr>
<tr>
<td>$Gen_l(\varepsilon, X)$</td>
<td>X</td>
</tr>
<tr>
<td>$Kill_l(B ; x := a, X)$</td>
<td>$Kill_l(B, X \cup {x})$</td>
</tr>
<tr>
<td>$Kill_l(B ; \text{if } b \text{ goto } l, X)$</td>
<td>$Kill_l(B, X)$</td>
</tr>
<tr>
<td>$Kill_l(B ; \text{goto } l, X)$</td>
<td>$Kill_l(B, X)$</td>
</tr>
<tr>
<td>$Kill_l(\varepsilon, X)$</td>
<td>X</td>
</tr>
</tbody>
</table>

$\text{Used}(\varepsilon)$: set of variables appearing in expression ε
Removal of useless instructions

1. Compute the sets \(In(B) \) and \(Out(B) \) of active variables at entry and exit points of each blocks.

2. Let \(F : Code \times 2^{Var} \rightarrow Code \)
 \(F(b, X) \) is the code obtained when removing useless assignments inside \(b \), assuming that variables of \(X \) are active at the end of \(b \) execution.

 \[
 F(B; x := a, X) = \begin{cases}
 F(B, X) & \text{if } x \not\in X \\
 F(B, (X \setminus \{x\}) \cup \text{Used}(a)); x := a & \text{if } x \in X
 \end{cases}
 \]

 \[
 F(B; \text{if } b \text{ goto } l, X) = F(B, X \cup \text{Used}(b)); \text{if } b \text{ goto } l
 \]

 \[
 F(B; \text{goto } l, X) = F(B, X); \text{goto } l
 \]

 \[
 F(\epsilon, X) = \epsilon
 \]

3. Replace each block \(B \) by \(F(B, Out(B)) \).

Rk: this transformation may produce new inactive variables . . .
Constant propagation

Example:

- A variable is **constant** at location l if its value at this location can be computed at compilation time.
- At exit point of B1 and B2, i and j are constants
- At entry point of B3, i is not constant, j is constant.
Constant propagation: the lattice

• Each variable takes its value in $D = \mathbb{N} \cup \{\top, \bot\}$, where:
 • \top means “non constant value”
 • \bot means “no information”

• Partial order relation \leq:
 if $v \in D$ then $\bot \leq v$ and $v \leq \top$.

• The least upper bound \sqcup:
 for $x \in D$ and $v_1, v_2 \in \mathbb{N}$
 \[
 \begin{align*}
 x \sqcup \top &= \top \\
 x \sqcup \bot &= x \\
 v_1 \sqcup v_2 &= \top \text{ if } v_1 \neq v_2 \\
 v_1 \sqcup v_1 &= v_1
 \end{align*}
 \]

Rk: relations \leq is extended to functions $Var \rightarrow D$

$$f_1 \leq f_2 \text{ iff } \forall x. f_1(x) \leq f_2(x)$$
Constant propagation: data-flow equations

• property at location 1 is a function $Var \rightarrow D$.
• Forward analysis:

$$\begin{align*}
In(b) &= \begin{cases}
\lambda x. \bot & \text{if } b \text{ is initial}, \\
\bigsqcup \limits_{b' \in \text{Pred}(b)} Out(b') & \text{otherwise}
\end{cases} \\
Out(b) &= F_b(In(b))
\end{align*}$$

Transfer function F_b?
a basic block $= \text{sequence of assignements}$

$$b ::= \epsilon | x := e ; b$$

F_b defined by syntactic induction:

$$F_{x := e} ; b(f) = F_b(f[x \mapsto f(e)]) \quad \text{(assuming variable initialization)}$$

$F_\epsilon(f) = f$

Pgm transformation:

$$\forall \text{ block } b, f \in In(b), f(e) = v \Rightarrow x := e \text{ replaced by } x := v$$
Exercise

Constant propagation can be viewed as abstraction of the standard semantics where expressions values are interpreted in another domain \(D \).

1. Write this abstract semantics for the while language in an operational style (relation \(\rightarrow \# \)).

2. Define a program transformation which removes useless computations (i.e., computations between constant operands).

3. Give the equations which express the correctness of this transformation.
Another example of data-flow analysis

A computation of an expression e can be anticipated at loc. p iff:

- all paths from p contains a location p_i s.t. e is computed at p_i
- e operands are not modified between p and p_i

Example:

```
if (x>0)
    x = i + j;
else
    repeat y = (i + j) * 2; x := x+1 ; until x>10
```

can be changed to

```
tmp = i + j;
if (x>0)
    x = tmp;
else
    repeat y = tmp * 2; x := x+ 1 ; until x>10
```
Interprocedural analysis

```c
main()
{
    int i, j;
    void f()
    {
        int x, y;
        y = i+j; x = y;
    }
    i = 0;
    f();
    j = 1;
}
```

- a dedicated basic block B_{call} for the call instruction
- $In(B_{call}) = In(B_{fin})$, $Out(B_{call}) = Out(B_{fout})$

Rks:

- static binding is be assumed
- parameters?

Exercice: Computation of active variables
Control-flow analysis

→ retrieve program control structures from the CFG?

Application: loop identification

⇒ use of graph-theoretic notions:
 • dominator, dominance relation
 • strongly connected components

Rk1: most loops are easier to identify at syntactic level, but:
 • use of goto instruction still allowed in high-level languages
 • optimization performed on intermediate representations (e.g., CFG)

Rk2: other approaches can be used to identify loops . . .
Loop identification

Node B_1 is a **dominator** of B_2 ($B_2 \leq B_1$) iff every path from the entry block to B_2 goes through B_1. $Dom(B) = \{B_i | B_i \leq B\}$.

An edge (B_1, B_2) is a loop **back edge** iff $B_2 \leq B_1$

To find “natural loops”:

1. find a **back edge** (B_1, B_2)
2. find $Dom(B_2)$
3. find blocks $B_i \in Dom(B_2)$ s.t. there is a path from B_i to B_2 not containing B_1.
Some machine level optimization techniques
Register Allocation

Pb:

- expression operands are much efficiently accessed when lying in registers (instead of RAM)
- the “real” number of registers is finite (and usually small)

⇒ register allocation techniques:

- assigns a register to each operand (variable, temporary location)
- performs the memory exchange (LD, ST) when necessary
- optimality?

Several existing techniques:

- optimal code generation for arithmetic expressions
- graph-coloring techniques (more general case)
- etc.
code generation for $(a+b) - (c - (d+e))$
with 2 registers, and instruction format = $\text{OP } Ri, Ri, X$ (where $X=Ri$ or $X=M[x]$)

Solution 1: one register needs to be saved

LD R0, M[a]
ADD R0, R0, M[b]
LD R1, M[d]
ADD R1, R1, M[e]
ST R1, M[t1] ! register R1 needs to be saved ...
LD R1, M[c]
SUB R1, R1, M[t1]
SUB R0, R0, R1

Solution 2: no register to save

LD R0, M[c]
LD R1, M[d]
ADD R1, R1, M[e]
SUB R0, R0, R1
LD R1, M[a]
ADD, R1, R1, M[b]
SUB, R1, R1, R0
Code generation for arithmetic expressions: principle

Evaluation of $e_1 \text{ op } e_2$, assuming:

- r registers are available, evaluation of e_i requires r_i registers
- Instruction format is “op reg, reg, ad” where “ad” is a register or a memory location

Several cases:

- $r_1 > r_2$:
 - After evaluation of e_1, $r_1 - 1$ registers available
 - $r_1 - 1 \geq r_2 \Rightarrow r_1 - 1$ registers are enough for e_2
 - $\Rightarrow r_1 - r$ register allocations are required

- $r_1 = r_2$:
 - After evaluation of e_1, $r_1 - 1$ registers available
 - $r_1 - 1 < r_2 \Rightarrow r_2 (= r_1)$ registers required for e_2
 - $\Rightarrow r_1 + 1 - r$ register allocations are required

- $r_1 < r_2$:
 - After evaluation of e_1, $r_1 - 1$ registers available
 - $r_1 - 1 < r_2 \Rightarrow r_2 (> r_1)$ registers required for e_2
 - $\Rightarrow r_2 + 1 - r$ register allocations are required
 - $r_2 - r$ allocations are enough if e_2 is evaluated first!
A two-phase algorithm

Step 1: each AST node is labeled with the number of registers required for its evaluation

\[rNb : Aexp \rightarrow \mathbb{N} \] (\(rNb(e) \) is the number of registers required to evaluate \(e \))

\[
\begin{align*}
\text{rNb}(e) & = \begin{cases}
1 & \text{if } e \text{ is a left leaf} \\
0 & \text{if } e \text{ is a right leaf}
\end{cases} \\
\text{rNb}(e_1 \text{ op } e_2) & = \begin{cases}
\max(\text{rNb}(e_1), \text{rNb}(e_2)) & \text{if } \text{rNb}(e_1) \neq \text{rNb}(e_2) \\
\text{rNb}(e_1) + 1 & \text{if } \text{rNb}(e_1) = \text{rNb}(e_2)
\end{cases}
\end{align*}
\]

Step 2: “optimal” code generation using these labels (exercice)

→ for a binary node \(e_1 \text{ op } e_2 \):

• evaluate the more register demanding sub-expression first
• write the result in a register \(R_i \) (save one if necessary)
• evaluate the other sub-expression, write the result in a register \(R_j \)
• generate \(\text{OP, } R_i, R_i, R_j \)
A more general technique

1. Intermediate code is generated assuming \(\infty \) numbers of “symbolic” registers \(S_i \)

2. Assign a real register \(R_i \) to each symbolic register s.t.
 - if \(R_i \) is assigned to \(S_i \), \(R_j \) is assigned to \(S_j \)
 - then \(\text{Lifetime}(S_i) \cap \text{lifetime}(S_j) \neq \emptyset \) \(\Rightarrow \) \(R_i \neq R_j \)

 where \(\text{Lifetime}(S_i) \): sequences of pgm location where \(S_i \) is active

How to ensure this condition?

Collision graph \(G_C \):

- Nodes denote lifetime symbolic registers: \(N_i = (S_i, \text{Lifetime}(S_i)) \)
- Edges are the set \(\{(S_1, L_1), (S_2, L_2) \mid L_1 \text{ and } L_2 \text{ overlap}\} \)

\(\Rightarrow \) register allocation with \(k \) real register = \(k \)-coloring problem of \(G_C \)

(i.e., assign a distinct colour to each pair of adjacent nodes)
Example 1

S1 := e1
S2 := e2
...
... S2 ...
S3 := S1+S2
...
S4 := S1*5
...
...
...
... S3 ...
... S3 ...

Collision Graph:

Can be colored with 2 colors \(\Rightarrow \) 2 real registers are enough.
k-coloring in practice ? (1)

When $k > 2$, this problem is NP-complete ...

An efficient heuristic:

Repeat:

if exists a node N of G_C such that degree$(N) < k$

(N can receive a distinct colour from all its neighbours)

remove N (and corresponding edges) from G_C and push it on a stack S

else (G_C is assumed to be non k-colourable)

choose a node N \(^1\)

remove N from G_C \(^2\)

until G_C is empty

While S is not empty

pop a node from S

add it to G, give it a colour not used by one of its neighbours

Rk: this algo may sometimes miss k-colorable graphs ...
k-coloring in practice? (2)

What happens when there is no node of degree $< k$?

1. choose a node N to remove:
 → high degree in G_C, not corresponding to an inner loop, etc.

2. remove node N:
 → save a register into memory before (register spilling)

Several attempts to improve this algorithm:

node coalescing:

\[S_1 := S_2, \text{Lifetime}(S_1) \cap \text{Lifetime}(S_2) = \emptyset \]

⇒ nodes associated to S_1 and S_2 could be merged

pb: it increases the graph degree . . .

lifetime splitting:

long lifetime increases the graph degree

⇒ split it into several parts . . .

pb: where to split?
Instruction scheduling

Motivation: exploit the instruction parallelism provided in many target architectures (e.g., VLIW processors, instruction pipeline, etc.)

Pbs:

- possible *data dependancies* between consecutive instructions (e.g., \(x := 3 \); \(y := x+1 \))
- possible *resource conflicts* between consecutive instructions (ALU, co-processors, bus, etc.)
- consecutive instructions may require various *execution cycles*
- etc.

⇒ **Main technique:** change the initial instruction sequence (*instruction scheduling*)

- preserve the initial *pgm semantics*
- better exploit the hardware resources

Rks: “loop unrolling” and “expression tree reduction” may help . . .
Data dependencies:
→ execution order of 2 instructions should be preserved in the following situation:

Read After Write (RAW): inst. 2 read a data written by inst. 1

Write After Read (WAR): inst. 2 write a data read by inst. 1

Write After Write (WAW): inst. 2 write a data written by inst. 1

Dependency graph G_D

- nodes = \{ instructions \}
- edges = \{(i_1, d, i_2) \mid there is a dependency d from i_1 to i_2\}

Rk: if we consider a basic block, G_D is a directed acyclic graph.

Any topological sort of G_D leads to a valid result (w.r.t. pgm semantics).
This sort can be influenced by several factors:

- the resources used by the instruction (∃ a static reservation table)
- the number of cycles it requires (latency)
- etc.
Example

1. Draw the dependency graph G_D associated to the following program
2. Give a topological sort of G_D
3. Rewrite this program with a “maximal” parallelism

1. $a := x+1$
2. $x := 2+y$
3. $y := z+1$
4. $t := a*b$
5. $v := a*c$
6. $v := 3+t$
Software pipelining (overview . . .)

Idea: exploit the parallelism between instructions of distinct loop iterations

for k in 1 .. N loop
 r := T[k] ; - inst. A
 x := x + r ; - inst. B
 T[k] := x ; - inst. C
end loop

Assumptions: 3 cycles per instruction, 1 cycle delay when no dependencies

• Initial exec. sequence: A(1), B(1), C(1), A(2), B(2), C(2), . . . A(k), B(k), C(k)
 ⇒ 7 cycles / iteration

• “Pipelined exec. sequence”: A(1), A(2), A(3), B(1), B(2), B(3), C(1), C(2), C(3), . . .
 ⇒ 3 cycles / iteration !

(real life) pbs:

• N not always divisible by the number of instruction in the loop body
 for k in 1 to N-2 step 3 loop A(k) ; A(k+1) ; A(k+2) . . .

• high latency instruction in the loop body

• possible overhead when k is not “large enough”

• . . .