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Code Optimization
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Objective (of this chapter)

• give some indications on general optimization techniques:
• data-flow analysis
• register allocation
• software pipelining
• etc.

• describe the main data structures used:
• control flow graph
• intermediate code (e.g., 3-address code)
• Static Single Assignment form (SSA)
• etc.

• see some concrete examples

But not a complete panorama of the whole optimization process

(e.g.: a real compiler, for a modern processor)
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Objective of the optimization phase

Improve the efficiency of the target code, while preserving the
source semantics.
efficiency → several (antagonist) criteria

• execution time
• size
• memory used
• energy consumption
• etc.

⇒ no optimal solution, no general algorithm
⇒ a bunch of optimization techniques:

• inter-dependant each others
• sometimes heuristic based
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Two kinds of optimizations

Independant from the target machine
“source level” or “assembly level” pgm transformations:
• dead code elimination
• constant propagation, constant folding
• code motion
• common subexpressions elimination
• etc.

Dependant from the target machine
optimize the use of the hardware resources:
• machine instruction
• memory hierarchy (registers, cache, pipeline, etc.)
• etc.
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Overview

1. Introduction

2. Some optimizations independant from the target machine

3. Some optimizations dependant from the target machine
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Some optimizations independant from the target machine
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Main principle

Input: initial intermediate code

Output: optimized intermediate code

Several steps:

1. generation of a control flow graph (CFG)

2. analysis of the CFG

3. transformation of the CFG

4. generation of the output code
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Intraprocedural 3-address code (TAC)

“high-level” assembly code:
• binary logic and arithmetic operators
• use of temporary memory location ti

• assignments to variables, temporary locations
• a label is assigned to each instruction
• conditional jumps goto

Examples:
• l: x := y op x

• l: x := op y

• l: x := y

• l: goto l’

• l: if x oprel y goto l’
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Basic block (BB)

A maximal instruction sequence S = i1. · · · in such that:

• S execution is never “broken” by a jump
⇒ no goto instruction in i1. · · · in−1

• S execution cannot start somewhere in the middle
⇒ no label in i2. · · · in

⇒ execution of a basic bloc is atomic

Partition of a 3-address code BBs:

1. computation of Basic Block heads:
1st inst., inst. target of a jump, inst. following a jump

2. computation of Basic Block tails:
last inst, inst. before a Basic Block head

⇒ a single traversal of the TAC
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Control Flow Graph (CFG)

A representation of how the execution may progress inside the
TAC

→ a graph (V,E) such that:

V = {Bi | Bi is a basic block}

E = {(Bi, Bj) |

“last inst. of Bi is a jump to 1st inst of Bj” ∨

“1st inst of Bj follows last inst of Bi in the TAC”}
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Example

Give the Basic Blocks and CFG associated to the following TAC
sequence:

0. x := 1 6. z := 5
1. y := 2 7. if d goto 0
2. if c goto 6 8. z := z+2
3. x := x+1 9. r := 1
4. z := 4 10 y := y-1
5. goto 8
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Optimizations performed on the CFG

Two levels:

Local optimizations:

• computed inside each BB
• BBs are transformed independent each others

Global optimizations:

• computed on the CFG
• transformation of the CFG:

• code motion between BBs
• transformation of BBs
• modification of the CFG edges
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Local optimizations

• algebraic simplification, strength reduction
→ replace costly computations by less expensive ones

• copy propagation
→ suppress useless variables
(i.e., equal to another one, or equal to a constant)

• constant folding
→ perform operations between constants

• common subexpressions
→ suppress duplicate computations
(already computed before)

• dead code elimination → suppress useless instructions
(which do not influence pgm execution)
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Example of local optimizations

Initial code:

a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
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Example of local optimizations

Algebraic simplification:

a := x ** 2 a := x * x
b := 3 b := 3
c := x c := x
d := c * c d := c * c
e := b * 2 e := b << 1
f := a + d f := a + d
g := e * f g := e * f
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Example of local optimizations

Copies propagation:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := c * c d := x * x
e := b << 1 e := 3 << 1
f := a + d f := a + d
g := e * f g := e * f
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Example of local optimizations

Constant folding:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := x * x d := x * x
e := 3 << 1 e := 6
f := a + d f := a + d
g := e * f g := e * f
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Example of local optimizations

Elimination of common subexpressions:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := x * x d := a
e := 6 e := 6
f := a + d f := a + d
g := e * f g := e * f
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Example of local optimizations

Copies propagation:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := a d := a
e := 6 e := 6
f := a + d f := a + a
g := e * f g := 6 * f
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Example of local optimizations

Dead code elimination (+ strength reduction):

a := x * x a := x * x a:= x * x
b := 3
c := x
d := a
e := 6
f := a + a f := a + a f := a << 1
g := 6 * f g := 6 * f g := 6 * f
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Local optimization: a more concrete example

Inital source program: addition of matrices
for (i=0 ; i < 10 ; i ++)

for (j=0 ; j < 10 ; j++)
S[i,j] := A[i,j] + B[i,j]

Basic blocks:
B1: i := 0
B2: if i > 10 goto B7
B3: j := 0
B4: if j > 10 goto B6

B5
B6: i := i + 1

goto B2
B7: end
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Control Flow Graph

B1

B2

B3

B4 B5

B7

B6
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Inital Block B5

B5: t1 := 4 * i
t2 := 40 * j
t3 := t1 + t2
t4 := A[t3]
t5 := 4 * i
t6 := 40 * j
t7 := t5 + t6

t8 := B[t7]
t9 := t4 + t8
t10:= 4 * i
t11:= 40 * j
t12:= t10 + t11
S[t12] := t9
j := j + 1
goto B4
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Optimization of B5 (1/4)

B5: t1 := 4 * i
t2 := 40 * j
t3 := t1 + t2
t4 := A[t3]

t5 := 4 * i
t6 := 40 * j
t7 := t5 + t6

t8 := B[t7]
t9 := t4 + t8

t10:= 4 * i
t11:= 40 * j
t12:= t10 + t11
S[t12] := t9
j := j + 1
goto B4

A same value is assigned to temporary locations t1, t5, t10
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Optimization of B5 (2/4)

B5: t1 := 4 * i

t2 := 40 * j

t3 := t1 + t2
t4 := A[t3]

t6 := 40 * j

t7 := t1 + t6

t8 := B[t7]
t9 := t4 + t8

t11:= 40 * j

t12:= t1 + t11
S[t12] := t9
j := j + 1
goto B4

A same value is assigned to temporary locations t2, t6, t11
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Optimization of B5 (3/4)

B5: t1 := 4 * i
t2 := 40 * j

t3 := t1 + t2
t4 := A[t3]

t7 := t1 + t2

t8 := B[t7]
t9 := t4 + t8

t12:= t1 + t2
S[t12] := t9
j := j + 1
goto B4

A same value is assigned to temporary locations t3, t7, t12
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Optimization of B5 (4/4): the final code obtained

B5: t1 := 4 * i
t2 := 40 * j
t3 := t1 + t2
t4 := A[t3]
t8 := B[t3]
t9 := t4 + t8
S[t3] := t9
j := j + 1
goto B4
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Global optimizations
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Global optimization: the principle

Typical examples of global optimizations:
• constant propagation trough several basic blocks

• elimination of global redundancies

• code motion: move invariant computations outside loops

• dead code elimination

How to “extrapolate” local optimizations to the whole CFG ?
1. associate (local) properties to entry/exit points of BBs

(set of active variables, set of available expressions, etc.)

2. propagate them along CFG paths
→ enforce consistency w.r.t. the CFG structure

3. update each BB (and CFG edges) according to these global properties

⇒ a possible technique: data-flow analysis
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Data-flow analysis

Static computation of data related properties of programs

• (local) properties ϕi associated to some pgm locations i

• set of data-flow equations:
→ how ϕi are transformed along pgm execution

Rks:
• forward vs backward propagation (depending on ϕi)
• cycles inside the control flow ⇒ fix-point equations !

• a solution of this equation system:
→ assigns “globaly consistent” values to each ϕi

Rk: such a solution may not exist . . .

• decidability may require abstractions and/or approximations
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Example: elimination of redundant computations

An expression e is redundant at location i iff
• it is computed at location i

• this expression is computed on every path going from the
initial location to location i

Rk: we consider here syntactic equality
• on each of these paths: operands of e are not modified

between the last computation of e and location i

Optimization is performed as follows:

1. computation of available expressions (data-flow analysis)

2. x := e is redundant at loc i if e is available at i

3. x := e is replaced by x := t

(where t is a temp. memory containing the value of e)
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Elimination of redundant computation: an example

x := ...
a := ...
b := ...

y := y+1

x := a+b
y := c

z := x+1
v := a+b

r := a+b
end

x := ...
a := ...
b := ...

y := y+1

y := c

r := t
end

x := a+b ; t := x z := x+1

v := a+b ; t := v
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Data-flow equations for available expressions (1/2)

For a basic block b, we note:
• In(b) : available expressions when entering b

• Kill(b): expressions made non available by b

(because an operand of e is modified by b)
• Gen(b): expressions made available by block b

(computed in b, operands not modified afterwards)
• Out(b) : available expressions when exiting b

Out(b) = (In(b) \ Kill(b)) ∪ Gen(b) = Fb(In(b))

Fb = transfer function of block b
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Data-flow equations for available expressions (2/2)

How to compute In(b) ?

• if b is the initial block:

In(b) = ∅

• if b is not the initial block:
An expression e is available at its entry point iff it is available
at the exit point of each predecessor of b in the CFG

In(b) = ∩
b′∈Pre(b)

Out(b′)

⇒ forward data-flow analysis along the CFG paths

Q: cycles inside the CFG ⇒ fix-points computations
greatest vd least solutions ?
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Solving the data-flow equations (1/2)

Let (E,≤) a partial order.
• For X ⊆ E, a ∈ E:

• a is an upper bound of X if ∀x ∈ X. x ≤ a

• a is a lower bound of X if ∀x ∈ X. a ≤ x

• The least upper bound (lub, ⊔) is the smallest upper bound
• The great lower bound (glb, ⊓) is the largest lower bound
• (E,≤) is a lattice if every subset of E admits a lub and a glb.

• A function f : 2E → 2E is monotonic if:

∀X,Y ⊆ E X ≤ Y ⇒ f(X) ≤ f(Y )

• X = {x0, x1, . . . xn, . . . } ⊆ E is an (increasing) chain if
x0 ≤ x1 ≤ . . . xn ≤ . . .

• A function f : 2E → 2E is (⊔-)continuous if ∀ increasing
chain X, f(⊔X) = ⊔f(X)
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Solving the data-flow equations (2/2)

Fix-point equation: solution ?

• properties are finite sets of expressions E

• (2E ,⊆) is a complete lattice
⊥: least element, ⊤: greatest element
⊓: greatest lower bound, ⊔: least upper bound

• data-flow equations are defined on monotonic and
continuous operators (∪, ∩) on (2E ,⊆)

• Kleene and Tarski theorems:
• the set of solution is a complete lattice
• the greatest (resp. least) solution can be obtained by

successive iterations w.r.t. the greatest (resp. least)
element of 2E

lfp(f) = ⊔{f i(⊥)|i ∈ IN} gfp(f) = ⊓{f i(⊤)|i ∈ IN}
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Back to the example

x := ...
a := ...
b := ...

y := y+1

x := a+b
y := c

z := x+1
v := a+b

r := a+b
end

In = {a+b}

Out = {a+b}

Out = {a+b}Out = {a+b}

In = 0

In = 0

In = 0

Out = 0

Out = {a+b}

In = {a+b}
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Generalization

• Data-flow properties are expressed as finite sets associated
to entry/exit points of basic blocs: In(b), Out(b)

• For a forward analysis:
• property is “false” (⊥) at entry of initial block
• Out(b) = Fb(In(b))

• In(b) depends on Out(b’), where b′ ∈ Pred(b)
(⊓ for “∀ paths”, ⊔ for “∃ path”)

• For a backward analysis:
• property is “false” (⊥) at exit of final block
• In(b) = Fb(Out(b))

• Out(b) depends on In(b’), where b′ ∈ Succ(b)
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Data-flow equations: forward analysis

Forward
analysis,
least fix-point

In(b) =







⊥ if b is initial

⊔
b′∈Pre(b)

Out(b′)otherwise.

Out(b) = Fb(In(b))

Forward
analysis,
greatest fix-point

In(b) =







⊥ if b is initial

⊓
b′∈Pre(b)

Out(b′)otherwise.

Out(b) = Fb(In(b))

Yassine Lakhnech, Sémantique Start C3 C4 – p.40/66



Data-flow equations: backward analysis

Backward
analysis,
least fix-point

Out(b) =







⊥ if b is final

⊔
b′∈Succ(b′)

In(b′)otherwise.

In(b) = Fb(Out(b))

Backward
analysis,
greatest fix-point

Out(b) =







⊥ if b is final

⊓
b′∈Succ(b)

In(b′)otherwise.

In(b) = Fb(Out(b))

Yassine Lakhnech, Sémantique Start C3 C4 – p.41/66



Active Variable

• A variable x is inactive at location i if it is not used in every
CFG-path going from i to j, where j is:
• either a final instruction
• or an assignement to x.

• An instruction x := e at location i is useless if x is inactive
at location i.

⇒ useless instuctions can be removed . . .

Rk: used means

“in a right-hand side assignment or in a branch condition”.
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Data-flow analysis for inactive variables

We compute the set of active variables . . .

Local analysis

Gen(b) is the set of variables x s.t. x is used in block b, and,
in this block, any assignement to x happens after the
(first) use of x.

Kill(i) is the set of variables x assigned in block b.

Global analysis : backward analysis, ∃ a CFG-path (least
solution)
•

Out(b) = ∪
b′∈Succ(b)

In(b′)

In(b) = (Out(b) \ Kill(b)) ∪ Gen(b)

• Out(b) = ∅ if b is final.
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Computation of functionsGen andKill

Recursively defined on the syntax of a basic bloc B:
B ::= ε | B ; x := a | B ; if b goto l | B ; goto l

Gen(B) = Genl(B, ∅)

Kill(B) = Killl(B, ∅)

Genl(B ; x := a,X) = Genl(B,X \ {x} ∪ Used(a))

Genl(B ; if b goto l,X) = Genl(B,X ∪ Used(b))

Genl(B ; goto l,X) = Genl(B,X)

Genl(ε,X) = X

Killl(B ; x := a,X) = Killl(B,X ∪ {x})

Killl(B ; if b goto l,X) = Killl(B,X)

Killl(B ; goto l,X) = Killl(B,X)

Killl(ε,X) = X

Used(e): set of variables appearing in expression e
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Removal of useless instructions

1. Compute the sets In(B) and Out(B) of active variables at
entry and exit points of each blocks.

2. Let F : Code × 2V ar → Code
F (b, X) is the code obtained when removing useless assignments inside b,
assuming that variables of X are active at the end of b execution.

F (B ; x := a, X) =

8

<

:

F (B, X) if x 6∈ X

F (B, (X \ {x}) ∪ Used(a)); x := a if x ∈ X

F ( B ; if b goto l, X) = F (B, X ∪ Used(b)); if b goto l

F (B ; goto l, X) = F (B, X); goto l

F (ǫ, X) = ǫ

3. Replace each block B by F (B,Out(B)).

Rk: this transformation may produce new inactive variables . . .

Yassine Lakhnech, Sémantique Start C3 C4 – p.45/66



Constant propagation

Example:

i :=2
j :=i+1

i := 3
j :=i

z :=j +j

B1 B2 i :=2 i := 3

t := i+j
t:= i+j

B3

• A variable is constant at location l if its value at this location
can be computed at compilation time.

• At exit point of B1 and B2, i and j are constants
• At entry point of B3, i is not constant, j is constant.
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Constant propagation: the lattice

• Each variable takes its value in D = IN ∪ {⊤,⊥}, where:
• ⊤ means “non constant value”
• ⊥ means “no information”

• Partial order relation ≤:
if v ∈ D then ⊥ ≤ v and v ≤ ⊤.

• The least upper bound ⊔:
for x ∈ D and v1, v2 ∈ IN

x ⊔ ⊤ = ⊤ x ⊔ ⊥ = x v1 ⊔ v2 = ⊤if v1 6= v2 v1 ⊔ v1 = v1

Rk: relations ≤ is extended to functions V ar → D

f1 ≤ f2 iff ∀x.f1(x) ≤ f2(x)
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Constant propagation: data-flow equations

• property at location l is a function V ar → D.
• Forward analysis:

In(b) =







λx.⊥ if b is initial,

⊔
b′∈Pred(b)

Out(b′) otherwise

Out(b) = Fb(In(b))

Transfer function Fb ?
a basic block = sequence of assignements

b ::= ǫ | x:=e ; b

Fb defined by syntactic induction:

Fx:=e ; b(f) = Fb(f [x 7→ f(e)]) (assuming variable initialization)

Fǫ(f) = f

Pgm transformation:
∀ block b, f ∈ In(b), f(e) = v ⇒ x:=e replaced by x:=v
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Exercise

Constant propagation can be viewed as abstraction of the
standard semantics where expressions values are interpreted
other domain D

1. Write this abstract semantics for the while language in an
operational style (relation −→#)

2. Define a program transformation which removes useless
computations (i.e., computations between constant
operands)

3. Give the equations which express the correctness of this
transformation
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Another example of data-flow analysis

A computation of an expression e can be anticipated at loc. p iff:
• all paths from p contains a location pi s.t. e is computed at pi

• e operands are not modified between p and pi

Example:
if (x>0)

x = i + j;

else

repeat y = (i + j) * 2; x := x+1 ; until x>10

can be changed to
tmp = i + j;

if (x>0)

x = tmp;

else

repeat y = tmp * 2; x := x+ 1 ; until x>10

Application: moving invariants outside loops
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Interprocedural analysis

main()

{

int i,j ;

void f(){

int x,y ;

y = i+j ; x = y ;

}

i = 0 ;

f() ;

j = 1;

}

• a dedicated basic block Bcall for the call instruction

• In(Bcall) = In(Bfin
), Out(Bcall) = Out(Bfout

)

Rks:

• static binding is be assumed

• parameters ?

Exercice: Computation of active variables
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Control-flow analysis

→ retrieve program control structures from the CFG ?
Application: loop identification

⇒ use of graph-theoretic notions:
• dominator, dominance relation
• strongly connected components

Rk1: most loops are easier to identify at syntactic level, but:
• use of goto instruction still allowed in high-level languages
• optimization performed on intermediate representations

(e.g., CFG)

Rk2: other approaches can be used to identify loops . . .
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Loop identification

Node B1 is a dominator of B2 (B2 ≤ B1) iff every path from the
entry block to B2 goes through B1. Dom(B) = {Bi|Bi ≤ B}.

An edge (B1, B2) is a loop back edge iff B2 ≤ B1

To find “natural loops”:

1. find a back edge (B1, B2)

2. find Dom(B2)

3. find blocks Bi ∈ Dom(B2) s.t. there is a path from Bi to B2

not containing B1.

B1B2B0 Bi
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Some machine level optimization techniques
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Register Allocation

Pb:
• expression operands are much efficiently accessed when

liying in registers (instead of RAM)
• the “real” number of registers is finite (and usually small)

⇒ register allocation techniques:
• assigns a register to each operand (variable, temporary

location)
• performs the memory exchange (LD, ST) when necessary
• optimality ?

Several existing techniques:
• optimal code generation for arithmetic expressions
• graph-coloring techniques (more general case)
• etc. Yassine Lakhnech, Sémantique Start C3 C4 – p.55/66



Code generation for arithmetic expressions: example

code generation for (a+b) - (c - (d+e))

with 2 registers, and instruction format = OP Ri, Ri, X (where X=Ri or X=M[x])

Solution 1: one register needs to be saved

LD R0, M[a]

ADD R0, R0, M[b]

LD R1, M[d]

ADD R1, R1, M[e]

ST R1, M[t1] ! register R1 needs to be saved ...

LD R1, M[c]

SUB R1, R1, M[t1]

SUB R0, R0, R1

Solution 2: no register to save

LD R0, M[c]

LD R1, M[d]

ADD R1, R1, M[e]

SUB R0, R0, R1

LD R1, M[a]

ADD, R1, R1, M[b]

SUB, R1, R1, R0
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Code generation for arithmetic expressions: principle

Evaluation of e1 op e2 , assuming:

• r registers are available, evaluation of ei requires ri registers

• intsruction format is “op reg, reg, ad” where “ad” is a register or a memory location

Several cases:

• r1 > r2:

• after evaluation of e1, r1 − 1 registers available
• r1 − 1 ≥ r2 ⇒ r1 − 1 registers are enough for e2
• ⇒ r1 − r register allocations are required

• r1 = r2:

• after evaluation of e1, r1 − 1 registers available
• r1 − 1 < r2, ⇒ r2 (=r1) registers required for e2
• ⇒ r1 + 1 − r register allocations are required

• r1 < r2:

• after evaluation of e1, r1 − 1 registers available
• r1 − 1 < r2, ⇒ r2 (> r1) registers required for e2
• ⇒ r2 + 1 − r register allocations are required

• r2 − r allocations are enough if e2 is evaluated first !
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A two-phase algorithm

Step 1: each AST node is labeled with the number of registers required for its evaluation

rNb : Aexp → IN (rNb(e) is the number of registers required to evaluate e)

rNb(e) =

8

<

:

1 if e is a left leaf

0 if e is a right leaf

rNb(e1 op e2 ) =

8

<

:

max(rNb(e1), rNb(e2)) if rNb(e1) 6= rNb(e2)

rNb(e1) + 1 if rNb(e1) = rNb(e2)

Step 2: “optimal” code generation using these labels (exercice)
→ for a binary node e1 op e2:

• evaluate the more register demanding sub-expression first

• write the result in a register Ri (save one if necessary)

• evaluate the other sub-expression, write the result in a register Rj

• generate OP, Ri, Ri, Rj
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A more general technique

1. Intermediate code is generated assuming ∞ numbers of “symbolic” registers Si

2. Assign a real register Ri to each symbolic register s.t.
• if Ri is assigned to Si, Rj is assigned to Sj

• then Lifetime(Si) ∩ lifetime(Sj) 6= ∅ ⇒ Ri 6= Rj

where Lifetime(Si): sequences of pgm location where Si is active

How to ensure this condition ?

Collision graph GC :

• Nodes denote lifetime symbolic registers: Ni = (Si, Lifetime(Si))

• Edges are the set {((S1, L1), (S2, L2) | L1 and L2 overlap}

⇒ register allocation with k real register = k-coloring problem of GC

(i.e., assign a distinct colour to each pair of adjacent nodes)
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Example 1

S1 := e1

S2 := e2

...

... S2 ... S2 used

S3 := S1+S2 S1 and S2 used

...

S4 := S1*5 S1 used

... S4 ... S4 used

... S3 ... S3 used

Collision Graph:

S1 S2

S3 S4

Can be colored with 2 colors ⇒ 2 real registers are enough . . .Yassine Lakhnech, Sémantique Start C3 C4 – p.60/66



k-coloring in practice ? (1)

When k > 2, this problem is NP-complete . . .

An efficient heuristic:

Repeat:

if exists a node N of GC such that degree(N) < k

(N can receive a distinct colour from all its neighbours)

remove N (and corresponding edges) from GC and push it on a stack S

else (GC is assumed to be non k-colourable)

choose a node N (1)

remove N from GC (2)

until GC is empty
While S is not empty

pop a node from S

add it to G, give it a colour not used by one of its neighbours

Rk: this algo may sometimes miss k-colorable graphs . . .
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k-coloring in practice ? (2)

What happens when there is no node of degree < k ?

(1) choose a node N to remove:
→ high degree in GC , not corresponding to an inner loop, etc.

(2) remove node N :
→ save a register into memory before (register spilling)

Several attempts to improve this algorithm:

node coalescing:
S1 := S2, Lifetime(S1) ∩ Lifetime(S2) = ∅
⇒ nodes associated to S1 and S2 could be merged
pb: it increases the graph degree . . .

lifetime splitting:
long lifetime increases the graph degree
⇒ split it into several parts . . .
pb: where to split ?
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Instruction scheduling

Motivation: exploit the instruction parallelism provided in many target architectures
(e.g., VLIW processors, instruction pipeline, etc.)

Pbs:

• possible data dependancies between consecutive instructions
(e.g., x := 3 ; y := x+1)

• possible resource conflicts between consecutive instructions
(ALU, co-processors, bus, etc.)

• consecutive instructions may require various execution cycles

• etc.

⇒ Main technique: change the initial instruction sequence (instruction scheduling)

• preserve the initial pgm semantics

• better exploit the hardware resources

Rks: “loop unrolling” and “expression tree reduction” may help . . .
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Dependency Graph

Data dependencies:
→ execution order of 2 instructions should be preserved in the following situation:

Read After Write (RAW) : inst. 2 read a data written by inst. 1

Write After Read (WAR) : inst. 2 write a data read by inst. 1

Write After Write (WAW) : inst. 2 write a data written by inst. 1

Dependency graph GD

• nodes = { instructions }

• edges = {(i1, d, i2) | there is a dependency d from i1 to i2}

Rk: if we consider a basic block, GD is a directed acyclic graph.

Any topological sort of GD leads to a valid result (w.r.t. pgm semantics).
This sort can be influenced by several factors:

• the resources used by the instruction (∃ a static reservation table)

• the number of cycles it requires (latency)

• etc.
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Example

1. Draw the dependency graph GD associated to the following
program

2. Give a topological sort of GD

3. Rewrite this program with a “maximal” parallelism

1. a := x+1
2. x := 2+y
3. y := z+1
4. t := a*b
5. v := a*c
6. v := 3+t
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Software pipelining (overview . . . )

Idea: exploit the parallelism between instrutions of distinct loop iterations

for k in 1 .. N loop

r := T[k] ; - inst. A

x := x + r ; - inst. B

T[k] := x ; - inst. C

end loop

Assumptions: 3 cycles per instruction, 1 cycle delay when no dependencies

• Initial exec. sequence: A(1), B(1), C(1), A(2), B(2), C(2), . . . A(k), B(k), C(k)

⇒ 7 cycles / iteration

• “Pipelined exec. sequence”: A(1), A(2), A(3), B(1), B(2), B(3), C(1), C(2), C(3), . . .

⇒ 3 cycles / iteration !

(real life) pbs:

• N not always divisible by the number of instruction in the loop body
for k in 1 to N-2 step 3 loop A(k) ; A(k+1) ; A(k+2) ...

• high latency instruction in the loop body

• possible overhead when k is not “large enough”

• . . .
Yassine Lakhnech, Sémantique Start C3 C4 – p.66/66
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