
Programming Languages and Compiler
Design

Programming Language Semantics
Compiler Design Techniques

Yassine Lakhnech & Laurent Mounier

{lakhnech,mounier}@imag.fr

http://www-verimag.imag.fr/̃ lakhnech

http://www-verimag.imag.fr/̃ mounier.

Master of Sciences in Informatics at Grenoble (MoSIG)

Grenoble Universités

(Université Joseph Fourier, Grenoble INP)

Yassine Lakhnech, Sémantique Start C3 C4 – p.1/66

Code Optimization

Yassine Lakhnech, Sémantique Start C3 C4 – p.2/66

Objective (of this chapter)

• give some indications on general optimization techniques:
• data-flow analysis
• register allocation
• software pipelining
• etc.

• describe the main data structures used:
• control flow graph
• intermediate code (e.g., 3-address code)
• Static Single Assignment form (SSA)
• etc.

• see some concrete examples

But not a complete panorama of the whole optimization process

(e.g.: a real compiler, for a modern processor)

Yassine Lakhnech, Sémantique Start C3 C4 – p.3/66

Objective of the optimization phase

Improve the efficiency of the target code, while preserving the
source semantics.
efficiency → several (antagonist) criteria

• execution time
• size
• memory used
• energy consumption
• etc.

⇒ no optimal solution, no general algorithm
⇒ a bunch of optimization techniques:

• inter-dependant each others
• sometimes heuristic based

Yassine Lakhnech, Sémantique Start C3 C4 – p.4/66

Two kinds of optimizations

Independant from the target machine
“source level” or “assembly level” pgm transformations:
• dead code elimination
• constant propagation, constant folding
• code motion
• common subexpressions elimination
• etc.

Dependant from the target machine
optimize the use of the hardware resources:
• machine instruction
• memory hierarchy (registers, cache, pipeline, etc.)
• etc.

Yassine Lakhnech, Sémantique Start C3 C4 – p.5/66

Overview

1. Introduction

2. Some optimizations independant from the target machine

3. Some optimizations dependant from the target machine

Yassine Lakhnech, Sémantique Start C3 C4 – p.6/66

Some optimizations independant from the target machine

Yassine Lakhnech, Sémantique Start C3 C4 – p.7/66

Main principle

Input: initial intermediate code

Output: optimized intermediate code

Several steps:

1. generation of a control flow graph (CFG)

2. analysis of the CFG

3. transformation of the CFG

4. generation of the output code

Yassine Lakhnech, Sémantique Start C3 C4 – p.8/66

Intraprocedural 3-address code (TAC)

“high-level” assembly code:
• binary logic and arithmetic operators
• use of temporary memory location ti

• assignments to variables, temporary locations
• a label is assigned to each instruction
• conditional jumps goto

Examples:
• l: x := y op x

• l: x := op y

• l: x := y

• l: goto l’

• l: if x oprel y goto l’
Yassine Lakhnech, Sémantique Start C3 C4 – p.9/66

Basic block (BB)

A maximal instruction sequence S = i1. · · · in such that:

• S execution is never “broken” by a jump
⇒ no goto instruction in i1. · · · in−1

• S execution cannot start somewhere in the middle
⇒ no label in i2. · · · in

⇒ execution of a basic bloc is atomic

Partition of a 3-address code BBs:

1. computation of Basic Block heads:
1st inst., inst. target of a jump, inst. following a jump

2. computation of Basic Block tails:
last inst, inst. before a Basic Block head

⇒ a single traversal of the TAC

Yassine Lakhnech, Sémantique Start C3 C4 – p.10/66

Control Flow Graph (CFG)

A representation of how the execution may progress inside the
TAC

→ a graph (V,E) such that:

V = {Bi | Bi is a basic block}

E = {(Bi, Bj) |

“last inst. of Bi is a jump to 1st inst of Bj” ∨

“1st inst of Bj follows last inst of Bi in the TAC”}

Yassine Lakhnech, Sémantique Start C3 C4 – p.11/66

Example

Give the Basic Blocks and CFG associated to the following TAC
sequence:

0. x := 1 6. z := 5
1. y := 2 7. if d goto 0
2. if c goto 6 8. z := z+2
3. x := x+1 9. r := 1
4. z := 4 10 y := y-1
5. goto 8

Yassine Lakhnech, Sémantique Start C3 C4 – p.12/66

Optimizations performed on the CFG

Two levels:

Local optimizations:

• computed inside each BB
• BBs are transformed independent each others

Global optimizations:

• computed on the CFG
• transformation of the CFG:

• code motion between BBs
• transformation of BBs
• modification of the CFG edges

Yassine Lakhnech, Sémantique Start C3 C4 – p.13/66

Local optimizations

• algebraic simplification, strength reduction
→ replace costly computations by less expensive ones

• copy propagation
→ suppress useless variables
(i.e., equal to another one, or equal to a constant)

• constant folding
→ perform operations between constants

• common subexpressions
→ suppress duplicate computations
(already computed before)

• dead code elimination → suppress useless instructions
(which do not influence pgm execution)

Yassine Lakhnech, Sémantique Start C3 C4 – p.14/66

Example of local optimizations

Initial code:

a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f

Yassine Lakhnech, Sémantique Start C3 C4 – p.15/66

Example of local optimizations

Algebraic simplification:

a := x ** 2 a := x * x
b := 3 b := 3
c := x c := x
d := c * c d := c * c
e := b * 2 e := b << 1
f := a + d f := a + d
g := e * f g := e * f

Yassine Lakhnech, Sémantique Start C3 C4 – p.16/66

Example of local optimizations

Copies propagation:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := c * c d := x * x
e := b << 1 e := 3 << 1
f := a + d f := a + d
g := e * f g := e * f

Yassine Lakhnech, Sémantique Start C3 C4 – p.17/66

Example of local optimizations

Constant folding:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := x * x d := x * x
e := 3 << 1 e := 6
f := a + d f := a + d
g := e * f g := e * f

Yassine Lakhnech, Sémantique Start C3 C4 – p.18/66

Example of local optimizations

Elimination of common subexpressions:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := x * x d := a
e := 6 e := 6
f := a + d f := a + d
g := e * f g := e * f

Yassine Lakhnech, Sémantique Start C3 C4 – p.19/66

Example of local optimizations

Copies propagation:

a := x * x a := x * x
b := 3 b := 3
c := x c := x
d := a d := a
e := 6 e := 6
f := a + d f := a + a
g := e * f g := 6 * f

Yassine Lakhnech, Sémantique Start C3 C4 – p.20/66

Example of local optimizations

Dead code elimination (+ strength reduction):

a := x * x a := x * x a:= x * x
b := 3
c := x
d := a
e := 6
f := a + a f := a + a f := a << 1
g := 6 * f g := 6 * f g := 6 * f

Yassine Lakhnech, Sémantique Start C3 C4 – p.21/66

Local optimization: a more concrete example

Inital source program: addition of matrices
for (i=0 ; i < 10 ; i ++)

for (j=0 ; j < 10 ; j++)
S[i,j] := A[i,j] + B[i,j]

Basic blocks:
B1: i := 0
B2: if i > 10 goto B7
B3: j := 0
B4: if j > 10 goto B6

B5
B6: i := i + 1

goto B2
B7: end

Yassine Lakhnech, Sémantique Start C3 C4 – p.22/66

Control Flow Graph

B1

B2

B3

B4 B5

B7

B6

Yassine Lakhnech, Sémantique Start C3 C4 – p.23/66

Inital Block B5

B5: t1 := 4 * i
t2 := 40 * j
t3 := t1 + t2
t4 := A[t3]
t5 := 4 * i
t6 := 40 * j
t7 := t5 + t6

t8 := B[t7]
t9 := t4 + t8
t10:= 4 * i
t11:= 40 * j
t12:= t10 + t11
S[t12] := t9
j := j + 1
goto B4

Yassine Lakhnech, Sémantique Start C3 C4 – p.24/66

Optimization of B5 (1/4)

B5: t1 := 4 * i
t2 := 40 * j
t3 := t1 + t2
t4 := A[t3]

t5 := 4 * i
t6 := 40 * j
t7 := t5 + t6

t8 := B[t7]
t9 := t4 + t8

t10:= 4 * i
t11:= 40 * j
t12:= t10 + t11
S[t12] := t9
j := j + 1
goto B4

A same value is assigned to temporary locations t1, t5, t10

Yassine Lakhnech, Sémantique Start C3 C4 – p.25/66

Optimization of B5 (2/4)

B5: t1 := 4 * i

t2 := 40 * j

t3 := t1 + t2
t4 := A[t3]

t6 := 40 * j

t7 := t1 + t6

t8 := B[t7]
t9 := t4 + t8

t11:= 40 * j

t12:= t1 + t11
S[t12] := t9
j := j + 1
goto B4

A same value is assigned to temporary locations t2, t6, t11

Yassine Lakhnech, Sémantique Start C3 C4 – p.26/66

Optimization of B5 (3/4)

B5: t1 := 4 * i
t2 := 40 * j

t3 := t1 + t2
t4 := A[t3]

t7 := t1 + t2

t8 := B[t7]
t9 := t4 + t8

t12:= t1 + t2
S[t12] := t9
j := j + 1
goto B4

A same value is assigned to temporary locations t3, t7, t12

Yassine Lakhnech, Sémantique Start C3 C4 – p.27/66

Optimization of B5 (4/4): the final code obtained

B5: t1 := 4 * i
t2 := 40 * j
t3 := t1 + t2
t4 := A[t3]
t8 := B[t3]
t9 := t4 + t8
S[t3] := t9
j := j + 1
goto B4

Yassine Lakhnech, Sémantique Start C3 C4 – p.28/66

Global optimizations

Yassine Lakhnech, Sémantique Start C3 C4 – p.29/66

Global optimization: the principle

Typical examples of global optimizations:
• constant propagation trough several basic blocks

• elimination of global redundancies

• code motion: move invariant computations outside loops

• dead code elimination

How to “extrapolate” local optimizations to the whole CFG ?
1. associate (local) properties to entry/exit points of BBs

(set of active variables, set of available expressions, etc.)

2. propagate them along CFG paths
→ enforce consistency w.r.t. the CFG structure

3. update each BB (and CFG edges) according to these global properties

⇒ a possible technique: data-flow analysis

Yassine Lakhnech, Sémantique Start C3 C4 – p.30/66

Data-flow analysis

Static computation of data related properties of programs

• (local) properties ϕi associated to some pgm locations i

• set of data-flow equations:
→ how ϕi are transformed along pgm execution

Rks:
• forward vs backward propagation (depending on ϕi)
• cycles inside the control flow ⇒ fix-point equations !

• a solution of this equation system:
→ assigns “globaly consistent” values to each ϕi

Rk: such a solution may not exist . . .

• decidability may require abstractions and/or approximations

Yassine Lakhnech, Sémantique Start C3 C4 – p.31/66

Example: elimination of redundant computations

An expression e is redundant at location i iff
• it is computed at location i

• this expression is computed on every path going from the
initial location to location i

Rk: we consider here syntactic equality
• on each of these paths: operands of e are not modified

between the last computation of e and location i

Optimization is performed as follows:

1. computation of available expressions (data-flow analysis)

2. x := e is redundant at loc i if e is available at i

3. x := e is replaced by x := t

(where t is a temp. memory containing the value of e)

Yassine Lakhnech, Sémantique Start C3 C4 – p.32/66

Elimination of redundant computation: an example

x := ...
a := ...
b := ...

y := y+1

x := a+b
y := c

z := x+1
v := a+b

r := a+b
end

x := ...
a := ...
b := ...

y := y+1

y := c

r := t
end

x := a+b ; t := x z := x+1

v := a+b ; t := v

Yassine Lakhnech, Sémantique Start C3 C4 – p.33/66

Data-flow equations for available expressions (1/2)

For a basic block b, we note:
• In(b) : available expressions when entering b

• Kill(b): expressions made non available by b

(because an operand of e is modified by b)
• Gen(b): expressions made available by block b

(computed in b, operands not modified afterwards)
• Out(b) : available expressions when exiting b

Out(b) = (In(b) \ Kill(b)) ∪ Gen(b) = Fb(In(b))

Fb = transfer function of block b

Yassine Lakhnech, Sémantique Start C3 C4 – p.34/66

Data-flow equations for available expressions (2/2)

How to compute In(b) ?

• if b is the initial block:

In(b) = ∅

• if b is not the initial block:
An expression e is available at its entry point iff it is available
at the exit point of each predecessor of b in the CFG

In(b) = ∩
b′∈Pre(b)

Out(b′)

⇒ forward data-flow analysis along the CFG paths

Q: cycles inside the CFG ⇒ fix-points computations
greatest vd least solutions ?

Yassine Lakhnech, Sémantique Start C3 C4 – p.35/66

Solving the data-flow equations (1/2)

Let (E,≤) a partial order.
• For X ⊆ E, a ∈ E:

• a is an upper bound of X if ∀x ∈ X. x ≤ a

• a is a lower bound of X if ∀x ∈ X. a ≤ x

• The least upper bound (lub, ⊔) is the smallest upper bound
• The great lower bound (glb, ⊓) is the largest lower bound
• (E,≤) is a lattice if every subset of E admits a lub and a glb.

• A function f : 2E → 2E is monotonic if:

∀X,Y ⊆ E X ≤ Y ⇒ f(X) ≤ f(Y)

• X = {x0, x1, . . . xn, . . . } ⊆ E is an (increasing) chain if
x0 ≤ x1 ≤ . . . xn ≤ . . .

• A function f : 2E → 2E is (⊔-)continuous if ∀ increasing
chain X, f(⊔X) = ⊔f(X)

Yassine Lakhnech, Sémantique Start C3 C4 – p.36/66

Solving the data-flow equations (2/2)

Fix-point equation: solution ?

• properties are finite sets of expressions E

• (2E ,⊆) is a complete lattice
⊥: least element, ⊤: greatest element
⊓: greatest lower bound, ⊔: least upper bound

• data-flow equations are defined on monotonic and
continuous operators (∪, ∩) on (2E ,⊆)

• Kleene and Tarski theorems:
• the set of solution is a complete lattice
• the greatest (resp. least) solution can be obtained by

successive iterations w.r.t. the greatest (resp. least)
element of 2E

lfp(f) = ⊔{f i(⊥)|i ∈ IN} gfp(f) = ⊓{f i(⊤)|i ∈ IN}

Yassine Lakhnech, Sémantique Start C3 C4 – p.37/66

Back to the example

x := ...
a := ...
b := ...

y := y+1

x := a+b
y := c

z := x+1
v := a+b

r := a+b
end

In = {a+b}

Out = {a+b}

Out = {a+b}Out = {a+b}

In = 0

In = 0

In = 0

Out = 0

Out = {a+b}

In = {a+b}

Yassine Lakhnech, Sémantique Start C3 C4 – p.38/66

Generalization

• Data-flow properties are expressed as finite sets associated
to entry/exit points of basic blocs: In(b), Out(b)

• For a forward analysis:
• property is “false” (⊥) at entry of initial block
• Out(b) = Fb(In(b))

• In(b) depends on Out(b’), where b′ ∈ Pred(b)
(⊓ for “∀ paths”, ⊔ for “∃ path”)

• For a backward analysis:
• property is “false” (⊥) at exit of final block
• In(b) = Fb(Out(b))

• Out(b) depends on In(b’), where b′ ∈ Succ(b)

Yassine Lakhnech, Sémantique Start C3 C4 – p.39/66

Data-flow equations: forward analysis

Forward
analysis,
least fix-point

In(b) =







⊥ if b is initial

⊔
b′∈Pre(b)

Out(b′)otherwise.

Out(b) = Fb(In(b))

Forward
analysis,
greatest fix-point

In(b) =







⊥ if b is initial

⊓
b′∈Pre(b)

Out(b′)otherwise.

Out(b) = Fb(In(b))

Yassine Lakhnech, Sémantique Start C3 C4 – p.40/66

Data-flow equations: backward analysis

Backward
analysis,
least fix-point

Out(b) =







⊥ if b is final

⊔
b′∈Succ(b′)

In(b′)otherwise.

In(b) = Fb(Out(b))

Backward
analysis,
greatest fix-point

Out(b) =







⊥ if b is final

⊓
b′∈Succ(b)

In(b′)otherwise.

In(b) = Fb(Out(b))

Yassine Lakhnech, Sémantique Start C3 C4 – p.41/66

Active Variable

• A variable x is inactive at location i if it is not used in every
CFG-path going from i to j, where j is:
• either a final instruction
• or an assignement to x.

• An instruction x := e at location i is useless if x is inactive
at location i.

⇒ useless instuctions can be removed . . .

Rk: used means

“in a right-hand side assignment or in a branch condition”.

Yassine Lakhnech, Sémantique Start C3 C4 – p.42/66

Data-flow analysis for inactive variables

We compute the set of active variables . . .

Local analysis

Gen(b) is the set of variables x s.t. x is used in block b, and,
in this block, any assignement to x happens after the
(first) use of x.

Kill(i) is the set of variables x assigned in block b.

Global analysis : backward analysis, ∃ a CFG-path (least
solution)
•

Out(b) = ∪
b′∈Succ(b)

In(b′)

In(b) = (Out(b) \ Kill(b)) ∪ Gen(b)

• Out(b) = ∅ if b is final.

Yassine Lakhnech, Sémantique Start C3 C4 – p.43/66

Computation of functionsGen andKill

Recursively defined on the syntax of a basic bloc B:
B ::= ε | B ; x := a | B ; if b goto l | B ; goto l

Gen(B) = Genl(B, ∅)

Kill(B) = Killl(B, ∅)

Genl(B ; x := a,X) = Genl(B,X \ {x} ∪ Used(a))

Genl(B ; if b goto l,X) = Genl(B,X ∪ Used(b))

Genl(B ; goto l,X) = Genl(B,X)

Genl(ε,X) = X

Killl(B ; x := a,X) = Killl(B,X ∪ {x})

Killl(B ; if b goto l,X) = Killl(B,X)

Killl(B ; goto l,X) = Killl(B,X)

Killl(ε,X) = X

Used(e): set of variables appearing in expression e

Yassine Lakhnech, Sémantique Start C3 C4 – p.44/66

Removal of useless instructions

1. Compute the sets In(B) and Out(B) of active variables at
entry and exit points of each blocks.

2. Let F : Code × 2V ar → Code
F (b, X) is the code obtained when removing useless assignments inside b,
assuming that variables of X are active at the end of b execution.

F (B ; x := a, X) =

8

<

:

F (B, X) if x 6∈ X

F (B, (X \ {x}) ∪ Used(a)); x := a if x ∈ X

F (B ; if b goto l, X) = F (B, X ∪ Used(b)); if b goto l

F (B ; goto l, X) = F (B, X); goto l

F (ǫ, X) = ǫ

3. Replace each block B by F (B,Out(B)).

Rk: this transformation may produce new inactive variables . . .

Yassine Lakhnech, Sémantique Start C3 C4 – p.45/66

Constant propagation

Example:

i :=2
j :=i+1

i := 3
j :=i

z :=j +j

B1 B2 i :=2 i := 3

t := i+j
t:= i+j

B3

• A variable is constant at location l if its value at this location
can be computed at compilation time.

• At exit point of B1 and B2, i and j are constants
• At entry point of B3, i is not constant, j is constant.

Yassine Lakhnech, Sémantique Start C3 C4 – p.46/66

Constant propagation: the lattice

• Each variable takes its value in D = IN ∪ {⊤,⊥}, where:
• ⊤ means “non constant value”
• ⊥ means “no information”

• Partial order relation ≤:
if v ∈ D then ⊥ ≤ v and v ≤ ⊤.

• The least upper bound ⊔:
for x ∈ D and v1, v2 ∈ IN

x ⊔ ⊤ = ⊤ x ⊔ ⊥ = x v1 ⊔ v2 = ⊤if v1 6= v2 v1 ⊔ v1 = v1

Rk: relations ≤ is extended to functions V ar → D

f1 ≤ f2 iff ∀x.f1(x) ≤ f2(x)

Yassine Lakhnech, Sémantique Start C3 C4 – p.47/66

Constant propagation: data-flow equations

• property at location l is a function V ar → D.
• Forward analysis:

In(b) =







λx.⊥ if b is initial,

⊔
b′∈Pred(b)

Out(b′) otherwise

Out(b) = Fb(In(b))

Transfer function Fb ?
a basic block = sequence of assignements

b ::= ǫ | x:=e ; b

Fb defined by syntactic induction:

Fx:=e ; b(f) = Fb(f [x 7→ f(e)]) (assuming variable initialization)

Fǫ(f) = f

Pgm transformation:
∀ block b, f ∈ In(b), f(e) = v ⇒ x:=e replaced by x:=v

Yassine Lakhnech, Sémantique Start C3 C4 – p.48/66

Exercise

Constant propagation can be viewed as abstraction of the
standard semantics where expressions values are interpreted
other domain D

1. Write this abstract semantics for the while language in an
operational style (relation −→#)

2. Define a program transformation which removes useless
computations (i.e., computations between constant
operands)

3. Give the equations which express the correctness of this
transformation

Yassine Lakhnech, Sémantique Start C3 C4 – p.49/66

Another example of data-flow analysis

A computation of an expression e can be anticipated at loc. p iff:
• all paths from p contains a location pi s.t. e is computed at pi

• e operands are not modified between p and pi

Example:
if (x>0)

x = i + j;

else

repeat y = (i + j) * 2; x := x+1 ; until x>10

can be changed to
tmp = i + j;

if (x>0)

x = tmp;

else

repeat y = tmp * 2; x := x+ 1 ; until x>10

Application: moving invariants outside loops
Yassine Lakhnech, Sémantique Start C3 C4 – p.50/66

Interprocedural analysis

main()

{

int i,j ;

void f(){

int x,y ;

y = i+j ; x = y ;

}

i = 0 ;

f() ;

j = 1;

}

• a dedicated basic block Bcall for the call instruction

• In(Bcall) = In(Bfin
), Out(Bcall) = Out(Bfout

)

Rks:

• static binding is be assumed

• parameters ?

Exercice: Computation of active variables
Yassine Lakhnech, Sémantique Start C3 C4 – p.51/66

Control-flow analysis

→ retrieve program control structures from the CFG ?
Application: loop identification

⇒ use of graph-theoretic notions:
• dominator, dominance relation
• strongly connected components

Rk1: most loops are easier to identify at syntactic level, but:
• use of goto instruction still allowed in high-level languages
• optimization performed on intermediate representations

(e.g., CFG)

Rk2: other approaches can be used to identify loops . . .

Yassine Lakhnech, Sémantique Start C3 C4 – p.52/66

Loop identification

Node B1 is a dominator of B2 (B2 ≤ B1) iff every path from the
entry block to B2 goes through B1. Dom(B) = {Bi|Bi ≤ B}.

An edge (B1, B2) is a loop back edge iff B2 ≤ B1

To find “natural loops”:

1. find a back edge (B1, B2)

2. find Dom(B2)

3. find blocks Bi ∈ Dom(B2) s.t. there is a path from Bi to B2

not containing B1.

B1B2B0 Bi

Yassine Lakhnech, Sémantique Start C3 C4 – p.53/66

Some machine level optimization techniques

Yassine Lakhnech, Sémantique Start C3 C4 – p.54/66

Register Allocation

Pb:
• expression operands are much efficiently accessed when

liying in registers (instead of RAM)
• the “real” number of registers is finite (and usually small)

⇒ register allocation techniques:
• assigns a register to each operand (variable, temporary

location)
• performs the memory exchange (LD, ST) when necessary
• optimality ?

Several existing techniques:
• optimal code generation for arithmetic expressions
• graph-coloring techniques (more general case)
• etc. Yassine Lakhnech, Sémantique Start C3 C4 – p.55/66

Code generation for arithmetic expressions: example

code generation for (a+b) - (c - (d+e))

with 2 registers, and instruction format = OP Ri, Ri, X (where X=Ri or X=M[x])

Solution 1: one register needs to be saved

LD R0, M[a]

ADD R0, R0, M[b]

LD R1, M[d]

ADD R1, R1, M[e]

ST R1, M[t1] ! register R1 needs to be saved ...

LD R1, M[c]

SUB R1, R1, M[t1]

SUB R0, R0, R1

Solution 2: no register to save

LD R0, M[c]

LD R1, M[d]

ADD R1, R1, M[e]

SUB R0, R0, R1

LD R1, M[a]

ADD, R1, R1, M[b]

SUB, R1, R1, R0
Yassine Lakhnech, Sémantique Start C3 C4 – p.56/66

Code generation for arithmetic expressions: principle

Evaluation of e1 op e2 , assuming:

• r registers are available, evaluation of ei requires ri registers

• intsruction format is “op reg, reg, ad” where “ad” is a register or a memory location

Several cases:

• r1 > r2:

• after evaluation of e1, r1 − 1 registers available
• r1 − 1 ≥ r2 ⇒ r1 − 1 registers are enough for e2
• ⇒ r1 − r register allocations are required

• r1 = r2:

• after evaluation of e1, r1 − 1 registers available
• r1 − 1 < r2, ⇒ r2 (=r1) registers required for e2
• ⇒ r1 + 1 − r register allocations are required

• r1 < r2:

• after evaluation of e1, r1 − 1 registers available
• r1 − 1 < r2, ⇒ r2 (> r1) registers required for e2
• ⇒ r2 + 1 − r register allocations are required

• r2 − r allocations are enough if e2 is evaluated first !

Yassine Lakhnech, Sémantique Start C3 C4 – p.57/66

A two-phase algorithm

Step 1: each AST node is labeled with the number of registers required for its evaluation

rNb : Aexp → IN (rNb(e) is the number of registers required to evaluate e)

rNb(e) =

8

<

:

1 if e is a left leaf

0 if e is a right leaf

rNb(e1 op e2) =

8

<

:

max(rNb(e1), rNb(e2)) if rNb(e1) 6= rNb(e2)

rNb(e1) + 1 if rNb(e1) = rNb(e2)

Step 2: “optimal” code generation using these labels (exercice)
→ for a binary node e1 op e2:

• evaluate the more register demanding sub-expression first

• write the result in a register Ri (save one if necessary)

• evaluate the other sub-expression, write the result in a register Rj

• generate OP, Ri, Ri, Rj

Yassine Lakhnech, Sémantique Start C3 C4 – p.58/66

A more general technique

1. Intermediate code is generated assuming ∞ numbers of “symbolic” registers Si

2. Assign a real register Ri to each symbolic register s.t.
• if Ri is assigned to Si, Rj is assigned to Sj

• then Lifetime(Si) ∩ lifetime(Sj) 6= ∅ ⇒ Ri 6= Rj

where Lifetime(Si): sequences of pgm location where Si is active

How to ensure this condition ?

Collision graph GC :

• Nodes denote lifetime symbolic registers: Ni = (Si, Lifetime(Si))

• Edges are the set {((S1, L1), (S2, L2) | L1 and L2 overlap}

⇒ register allocation with k real register = k-coloring problem of GC

(i.e., assign a distinct colour to each pair of adjacent nodes)

Yassine Lakhnech, Sémantique Start C3 C4 – p.59/66

Example 1

S1 := e1

S2 := e2

...

... S2 ... S2 used

S3 := S1+S2 S1 and S2 used

...

S4 := S1*5 S1 used

... S4 ... S4 used

... S3 ... S3 used

Collision Graph:

S1 S2

S3 S4

Can be colored with 2 colors ⇒ 2 real registers are enough . . .Yassine Lakhnech, Sémantique Start C3 C4 – p.60/66

k-coloring in practice ? (1)

When k > 2, this problem is NP-complete . . .

An efficient heuristic:

Repeat:

if exists a node N of GC such that degree(N) < k

(N can receive a distinct colour from all its neighbours)

remove N (and corresponding edges) from GC and push it on a stack S

else (GC is assumed to be non k-colourable)

choose a node N (1)

remove N from GC (2)

until GC is empty
While S is not empty

pop a node from S

add it to G, give it a colour not used by one of its neighbours

Rk: this algo may sometimes miss k-colorable graphs . . .

Yassine Lakhnech, Sémantique Start C3 C4 – p.61/66

k-coloring in practice ? (2)

What happens when there is no node of degree < k ?

(1) choose a node N to remove:
→ high degree in GC , not corresponding to an inner loop, etc.

(2) remove node N :
→ save a register into memory before (register spilling)

Several attempts to improve this algorithm:

node coalescing:
S1 := S2, Lifetime(S1) ∩ Lifetime(S2) = ∅
⇒ nodes associated to S1 and S2 could be merged
pb: it increases the graph degree . . .

lifetime splitting:
long lifetime increases the graph degree
⇒ split it into several parts . . .
pb: where to split ?

Yassine Lakhnech, Sémantique Start C3 C4 – p.62/66

Instruction scheduling

Motivation: exploit the instruction parallelism provided in many target architectures
(e.g., VLIW processors, instruction pipeline, etc.)

Pbs:

• possible data dependancies between consecutive instructions
(e.g., x := 3 ; y := x+1)

• possible resource conflicts between consecutive instructions
(ALU, co-processors, bus, etc.)

• consecutive instructions may require various execution cycles

• etc.

⇒ Main technique: change the initial instruction sequence (instruction scheduling)

• preserve the initial pgm semantics

• better exploit the hardware resources

Rks: “loop unrolling” and “expression tree reduction” may help . . .

Yassine Lakhnech, Sémantique Start C3 C4 – p.63/66

Dependency Graph

Data dependencies:
→ execution order of 2 instructions should be preserved in the following situation:

Read After Write (RAW) : inst. 2 read a data written by inst. 1

Write After Read (WAR) : inst. 2 write a data read by inst. 1

Write After Write (WAW) : inst. 2 write a data written by inst. 1

Dependency graph GD

• nodes = { instructions }

• edges = {(i1, d, i2) | there is a dependency d from i1 to i2}

Rk: if we consider a basic block, GD is a directed acyclic graph.

Any topological sort of GD leads to a valid result (w.r.t. pgm semantics).
This sort can be influenced by several factors:

• the resources used by the instruction (∃ a static reservation table)

• the number of cycles it requires (latency)

• etc.

Yassine Lakhnech, Sémantique Start C3 C4 – p.64/66

Example

1. Draw the dependency graph GD associated to the following
program

2. Give a topological sort of GD

3. Rewrite this program with a “maximal” parallelism

1. a := x+1
2. x := 2+y
3. y := z+1
4. t := a*b
5. v := a*c
6. v := 3+t

Yassine Lakhnech, Sémantique Start C3 C4 – p.65/66

Software pipelining (overview . . .)

Idea: exploit the parallelism between instrutions of distinct loop iterations

for k in 1 .. N loop

r := T[k] ; - inst. A

x := x + r ; - inst. B

T[k] := x ; - inst. C

end loop

Assumptions: 3 cycles per instruction, 1 cycle delay when no dependencies

• Initial exec. sequence: A(1), B(1), C(1), A(2), B(2), C(2), . . . A(k), B(k), C(k)

⇒ 7 cycles / iteration

• “Pipelined exec. sequence”: A(1), A(2), A(3), B(1), B(2), B(3), C(1), C(2), C(3), . . .

⇒ 3 cycles / iteration !

(real life) pbs:

• N not always divisible by the number of instruction in the loop body
for k in 1 to N-2 step 3 loop A(k) ; A(k+1) ; A(k+2) ...

• high latency instruction in the loop body

• possible overhead when k is not “large enough”

• . . .
Yassine Lakhnech, Sémantique Start C3 C4 – p.66/66

	Code Optimization
	Objective (of this chapter)
	Objective of the optimization phase
	Two kinds of optimizations
	Overview
	Some optimizations independant from the target machine
	Main principle
	Intraprocedural 3-address code (TAC)
	Basic block (BB)
	Control Flow Graph (CFG)
	Example
	Optimizations performed on the CFG
	Local optimizations
	Example of local optimizations
	Example of local optimizations
	Example of local optimizations
	Example of local optimizations
	Example of local optimizations
	Example of local optimizations
	Example of local optimizations
	Local optimization: a more concrete example
	Control Flow Graph
	Inital Block B5
	Optimization of B5 (1/4)
	Optimization of B5 (2/4)
	Optimization of B5 (3/4)
	Optimization of B5 (4/4):
the final code obtained
	Global optimizations
	Global optimization: the principle
	Data-flow analysis
	Example: elimination of redundant computations
	Elimination of redundant computation: an example
	Data-flow equations for available expressions (1/2)
	Data-flow equations for available expressions (2/2)
	Solving the data-flow equations (1/2)
	Solving the data-flow equations (2/2)
	Back to the example
	Generalization
	Data-flow equations: forward analysis
	Data-flow equations: backward analysis
	Active Variable
	Data-flow analysis for inactive variables
	Computation of functions Gen and $Kill$
	Removal of useless instructions
	Constant propagation
	Constant propagation: the lattice
	Constant propagation: data-flow equations
	Exercise
	Another example of data-flow analysis
	Interprocedural analysis
	Control-flow analysis
	Loop identification
	Some machine level optimization techniques
	Register Allocation
	Code generation for arithmetic expressions: example
	Code generation for arithmetic expressions: principle
	A two-phase algorithm
	A more general technique
	Example 1
	k-coloring in practice ? (1)
	k-coloring in practice ? (2)
	Instruction scheduling
	Dependency Graph
	Example
	Software pipelining (overview dots)

