
Software Verification for Fun and Profit

DavidMonniaux

VERIMAG

May 6, 2015

DavidMonniaux (VERIMAG) Software Verification for Fun and Profit May 6, 2015 1 / 66



Outline

...1 Introduction
Real problems
Critical systems
Solutions
Why it is hard

...2 Programswithout loops
From program to formula
WCET

...3 Loopy programs

...4 Conclusion

DavidMonniaux (VERIMAG) Software Verification for Fun and Profit May 6, 2015 2 / 66



This talk in 20 seconds

Executive summary:

bugs are a real problem

proving their absence is hard

one should not despair because of undecidability or
NP-completeness

sometimes simple solutionsworkwell!
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Ariane 5

Maiden flight (501) of Ariane 5 (1996)
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Ariane 5, explanation

Reason:

some software designed for Ariane 4was reused in Ariane 5,
a larger rocket: physical value ranges were different

a conversion from 64-bit floating-point into 16-bit signed
integer value overflowed

this conversion was not protected, resulting in an exception

it was in a part of the software not even needed for Ariane 5
at this point of the flight sequence!

the SRI computer shut down

the rocket had to be destroyed
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WhyAriane’s engineering failed

Redundancy: there were two identical computer systems... but

“The reason behind this drastic action lies in the culture within
the Ariane programme of only addressing random hardware
failures. From this point of view exception— or error — handling
mechanisms are designed for a random hardware failure which
can quite rationally be handled by a backup system.”

Two identical systemswith buggy softwaremay both fail for the
same reason!

DavidMonniaux (VERIMAG) Software Verification for Fun and Profit May 6, 2015 7 / 66



WhyAriane’s engineering failed

Redundancy: there were two identical computer systems... but

“The reason behind this drastic action lies in the culture within
the Ariane programme of only addressing random hardware
failures. From this point of view exception— or error — handling
mechanisms are designed for a random hardware failure which
can quite rationally be handled by a backup system.”

Two identical systemswith buggy softwaremay both fail for the
same reason!

DavidMonniaux (VERIMAG) Software Verification for Fun and Profit May 6, 2015 7 / 66



Boeing 787

May 1st, 2015, US Federal Aviation Authority airworthiness
directive:

“This AD was prompted by the determination that a
Model 787 airplane that has been powered continuously
for 248 days can lose all alternating current (AC) electri-
cal power due to the generator control units (GCUs) si-
multaneously going into failsafe mode. This condition is
caused by a software counter internal to the GCUs that
will overflow after 248 days of continuous power. We
are issuing this AD to prevent loss of all AC electrical
power, which could result in loss of control of the air-
plane.”

Note: 248 days ≃ 231 × 10−2 s, suppose 100Hz clock overflowing
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Boeing 787, solution

“Repeat the electrical power deactivation thereafter at intervals
not to exceed 120 days.”

Also known as “reboot themachine often enough”.
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Heartbleed

2014 bug in OpenSSL in the implementation in Heartbeat
extension to SSL (“secure connections”)

No proper array bound checks on a buffer
→ attacker can read chunks of memory secret data
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Other examples

Therac-25 (1985–1987) A faulty radiation therapy series of
machines kills 3 and harms 3 at least.

Cause:

race condition

Patriot missile (1991) A Patriot anti-missile missile fails to
destroy an Iraqi Scudmissile. 28 soldiers die.

Cause: clock drift after being turned on for an
unusual length of time (solution: reboot the
computers)
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Bugs do occur

Stupid, basic bugs still occur!
…but they are hidden inmassive amounts of code!

How aboutmore clever bugs? E.g. wrong algorithms?
(some algorithms are sometimes proved incorrect years after
publication)
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High-tech, high-assurance solution

Canwe search for bugs?

Canwe prove the absence of bugs?
I’ll cover both

search for bugs in finite depth
(focus: worst-case execution time)

proof of absence of bugs: invariant inference
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Traditional safety-critical systems
Airplanes Fly-by-wire controls, inertial guidance, FADEC

Trains Signaling systems, automated driving

Cars Fuel injection & ignition, brake-by-wire,
steering-by-wire

Infusion pumps Software control

US improvement initiative

“Infusion pumps have been associated with per-
sistent safety problems that can result in over- or
under-infusion, and missed or delayed therapy.”
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Security problems

Previously, browser or server bugs could result in loss of
personal information, loss of credit card numbers (money)

How about a Heartbleed-like bug in a browser or application
used by a dissident in an authoritarian country?
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What Is to BeDone?

Better languages? For some “stupid” bugs (buffer overflows,
arithmetic overflows…), perhaps.

Coding practices Coding standards, code reviews, etc.

Testing Did not catch Heartbleed etc. On airplanes etc.,
mostly successful but very costly.

Program proofs and “formal methods”
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Formal methods?

...1 Attach amathematical meaning to the program (“semantics”)
e.g. “+ heremeans + over 32-bit unsigned integers”
(very tricky for real-life languages, e.g. C)

...2 Prove properties over it.

...3 (optional) Validate the proof with a small trusted computing
base
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Successes of formal methods

A very partial list of semi-automated tools:

BMethod “Meteor” project for line 14 of the Paris metro

HOL Light Proofs on Intel hardware (floating point)
Flyspeck project (proof of Kepler’s conjecture)

ACL2 Proofs on AMDhardware

Isabelle Flyspeck project (proof of Kepler’s conjecture)

Coq Proof of the four-colour theorem (graph colouring)
Proof of the Feit-Thompson theorem (every finite
group of odd order is solvable)

CompCert, certified C compiler (proof that it either
fails or compiles C into correct object code)
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Successes of formal methods
A very partial list of automated tools:
Polyspace Start-up formed after the Ariane explosion. Located

near INRIA-Montbonnot. Later bought by The
Mathworks.
Automated proofs of absence of runtime errors for
embedded Ada, C, C++ programs.

Astrée Automated proofs of absence of runtime errors for C
programs.
Developed at CNRS / ENS-Paris.
Marketed by Absint GmbH.
Used by e.g. Airbus A340, A380 and following

Frama-C Semi-automated and fully automated proofs of
absence of runtime errors and respect of
specifications
Developed at CEA LIST, INRIA Saclay,
LRI (CNRS / Université Paris Sud)
Marketed by TrustInSoft

KeY Semi-automated proofs for Java
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Recent success: bug in Python & Java
standard libraries

Timsort (2002 sorting algorithm) implemented in Python,
OpenJDK, Android contains a bug.

Bug foundwhen attempting to prove its correctness in KeY.
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Undecidability

For any nontrivial class of programs, deciding halting or any final
property of the execution is undecidable.
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Rice’s theorem

In layman’s terms: no algorithm for deciding properties
...1 that are nontrivial (trivial = “all programs accepted”, “no
program accepted”)

...2 on the final result of programs (unbounded execution time)

...3 over programswith unboundedmemory

...4 with no false positives

...5 with no false negatives

...6 and always terminating.

These conditions leave research directions open!
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Butmemory is finite!
Turing and Rice’s results apply to unboundedmemory.
Physical systems have boundedmemory.

Implicit-state or explicit-statemodel-checking deal with finite
state systems.

If program represented as “transition relation” over a vector of
bits, the reachability problem is PSPACE-complete.

PSPACE-complete conjectured to be harder than NP-complete.

All “practical” algorithms for reachability useΘ(2n) time and
memory in the worst case.

n ≃ 235 on this machine.

Almost all software systems should be treated as infinite-state for
practical purposes.
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But all programs have loops!

Search for bugs at bounded depth (boundedmodel checking).

As building block for other analyses.
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A simplemodel
Scalar (Z,Q,R, bitvector) variables
Linear arithmetic
If-then-else

int x, y, z;
x = any_int();
y = any_int();
assume(x >= -5 && x <= 5);
assume(y >= -10 && y <= 10);
if (x <= y) {
z = x-y;

} else {
z = x+y;

}
assert(z >= -15 && z <= 15);
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Translation to satisfiability

assertion violated ⇐⇒ formula satisfiable

(x ≥ −5 ∧ x ≤ 5) ∧ (y ≥ −10 ∧ y ≤ 10)∧
((x ≤ y ∧ z = x − y) ∨ (¬(x ≤ y) ∧ z = x + y))∧

¬(z ≥ −15 ∧ z ≤ 15)

incorrect execution ≡ satisfying assignment
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Satisfiability testing
A quantifier-free formula with ∧, ∨, ¬
Booleans only Classical SAT problemNP-complete

Booleans + linear arithmetic onR orQ NP-complete
(Booleans +) Linear arithmetic onZ NP-complete (pure

satisfiability problem in integer linear programming)
(Booleans +) Polynomial arithmetic onR NP-hard, exponential

algorithms

Polynomial arithmetic onZ undecidable (Hilbert’s Tenth
Problem)
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In popular usage
“Satisfiability modulo theory” (SMT) solvers are tools that
...1 take as input a formula (often quantifier-free) over a theory
(e.g. linear real arithmetic)

...2 give amodel if satisfiable

...3 answer “unsatisfiable” otherwise

Examples include

Microsoft Z3 (now underMIT Free License)

Yices

MathSat

CVC4

Boolector

Alt-Ergo
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How SMT-solvers work

(x ≥ −5 ∧ x ≤ 5) ∧ (y ≥ −10 ∧ y ≤ 10)∧
((x ≤ y ∧ z = x − y) ∨ (¬(x ≤ y) ∧ z = x + y))∧

¬(z ≥ −15 ∧ z ≤ 15)

Backtracking search by assigning truth values to atomic
propositions syntactically present in formula.

Learning:

pure SAT “constraint-driven clause learning” (CDCL)

theory lemmas e.g. ¬(x ≤ y ∧ y ≤ z ∧ z < x)
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SMT-solvers in use

In proof assistants e.g. Isabelle “sledgehammer”

In semi-automated program provers e.g. Frama-C

In automated program analysis e.g. Pagai, UFO, CPAChecker

Boundedmodel checking CBMC

In fuzzing e.g. Microsoft SAGE
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Limitations

Computability Some classes of formulas are undecidable (e.g.
with quantifiers and uninterpreted functions)

Complexity NP-hardness or worse.

Hope that the backtracking strategy blocks out the
search space fast enough!

Sometimes…it just blows up!
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Worst-case execution time by SMT

Encode loop-free program into formula as before

Solutions are execution traces, special variable cost

Minimize bound by successive queries “is there a trace with
cost ≥ bound ”? (binary search)
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OurWorkflow
...C code.

LLVM CFG

.

ARM CFG

.

Otawa

.

costs (ARM)

.

Traceability:
ARM ↔ LLVM

.

costs (LLVM-IR)

.

Encode into
SMT

.

Maximise
cost

.

FinalWCET

.

frontend +
LLVMoptimizer

.

LLVM code
generator

DavidMonniaux (VERIMAG) Software Verification for Fun and Profit May 6, 2015 39 / 66



Proving optimality is costly
Last test in binary search:
proving that there is no trace longer than bound

Very simple examples, sequence of 2n if-then-else’s.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 10  12  14  16  18  20  22

ti
m

e
 (

s)

n

Z3 3.2
Z3 4.3.1

MathSAT 5.2.6
SMTInterpol

~ 2.22^n
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The simple example

bool b1 = any_bool(), . . ., bn = any_bool();
if (b1) { /* timing = 2 */ }

else { /* timing = 3*/ }
if (b1) { /* timing = 3 */ }

else { /* timing = 2*/ }
...
if (bn) { /* timing = 2 */ }

else { /* timing = 3*/ }
if (bn) { /* timing = 3 */ }

else { /* timing = 2*/ }
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Explanation

All current production-grade SMT solvers use DPLL(T) scheme:
search

over the atomic propositions syntactically present

with backtrack only when a conjunction of arithmetic
propositions is unsatisfiable

On this example, this leads to exponential proofs.
And thus exponential time.
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Moral and solution

Exponential time does occur on relevant examples, not just
academic concocted examples.

What Is To BeDone?

Introduce “cuts” C1, . . . ,Cn that enrich the set of atomic
propositions present:

Replace formula F by F ∧ C1 ∧ ⋅ ⋅ ⋅ ∧ Cn where F⇒ C1 ∧ ⋅ ⋅ ⋅ ∧ Cn
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In our case

The “cuts” or “summaries”
Ci are

“The total time spent in
this part of the program is
always ≤ XXX”

..block 1
(start)

.

block 2

.

block 3

.

block 4

.

block 5

.

block 6

.

block 7
(end)

..

P2

.. P1
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Experiments with ARMv7

OTAWA for Basic Block timings
PAGAI for SMT, see pagai.forge.imag.fr, uses Z3 SMT
solver

WCET bounds (#cycles) Analysis time (s)
Benchmark name Otawa SMT diff with cuts no cuts #cuts
statemate 3297 3211 2.6% 943.5 +∞ 143
nsichneu (1 iteration) 17242 13298 22.7% 6hours +∞ 378
cruise-control 881 873 0.9% 0.1 0.2 13
digital-stopwatch 1012 954 5.7% 0.6 2104.2 53
autopilot 12663 5734 54.7% 1808.8 +∞ 498
fly-by-wire 6361 5848 8.0% 10.8 +∞ 163
miniflight 17980 14752 18.0% 40.9 +∞ 251
tdf 5789 5727 1.0% 13.0 +∞ 254
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Moral and future work

Weknow the structure of our optimisation problem.

A naive encoding into a NP-complete satisfiability problem leads
to exponential solving.

A redundant encoding helps the solver avoid exponential
behaviour.

Current work: detect this directly in the solver,without using the
structure of the original problem.

(Automatic cut generation, extended resolution)
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Summary

NP-complete

if exponential behaviour detected, understandwhy

find a class of nasty formulas

derive a workaround (clever encoding, detection inside the
solver)
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Programswith loops

Howdowe deal with loops?
(and “goto”, and recursion, etc.)

DavidMonniaux (VERIMAG) Software Verification for Fun and Profit May 6, 2015 49 / 66



Floyd-Hoare proofs

Require the user to supply inductive invariants:

which hold initially

assume it holds at the beginning of iteration n, still hold at
iteration n + 1

Hold by induction at every iteration.
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Frama-C
/*@ requires
@ n >= 0 && \valid(t+(0..n-1)) &&
@ \forall int k1, k2; 0 <= k1 <= k2 <= n-1 ==> t[k1] <= t[k2];
@ assigns \nothing;
@ ensures
@ (0 <= \result < n && t[\result] == v) ||
@ (\result == -1 && \forall int k; 0 <= k < n ==> t[k] != v);
@*/

int binary_search(int* t, int n, int v) {
int l = 0, u = n-1;
/*@ loop invariant
@ 0 <= l && u <= n-1
@ && (\forall int k; 0 <= k < n ==> t[k] == v ==> l <= k <= u) ;
@ loop assigns l,u ;
@ loop variant u-l ;
@*/

while (l <= u ) {
int m = l + (u-l) / 2;
//@ assert l <= m <= u;
if (t[m] < v) l = m + 1;
else if (t[m] > v) u = m - 1;
else return m;

}
return -1;

}
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Floyd-Hoare logic

Checking inductiveness ≡ checking

assume(invariant);
assume(loopcondition);
LOOP BODY
assert(invariant);

Reduces to loop-free programs!
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Difficulties

Annotating programswith invariants is cumbersome.

How to automatically infer the invariants?

Strong vs weak invariant

weakest “anything is possible” (useless)

strongest exact description of reachable states: complicated
(and in undecidable class)

Two kinds of approaches:
guided by a property to prove
unguided: try to find a “strong” invariant
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CEGAR: Guided by a property

“CounterExampleGuidedAbstractionRefinement” (CEGAR)

From proofs that error states are unreachable by longer and
longer counterexample traces…

generalize to an inductive argument!

(Complicated: uses Craig interpolants, refinements, etc.)

I do not do that!
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Abstract interpretation

Idea: look for inductive invariants in a restricted class of
properties (“abstract domain”)

Numerics
products of intervals e.g. (x, y) ∈ [0,2] × [3,5]
difference boundmatrices e.g. intervals +

constraints x − y ≤ 6
convex polyhedra , e.g. 2x + 3y ≤ 4 ∧ x ≥ 3 ∧ y ≥ 5

Data structures
tree automata, forests of trees
alias sets
array abstractions

andmuchmore!
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Polyhedra

Representations with vertices and/or constraints

At VERIMAG: project VERASCO, library VPL
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How about keeping it simple?

Polyhedra are expensive.

How aboutmere intervals?
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Example with intervals

int[] t = new int[140];
for(int i=0; i<t.length; i++) t[i]=42;

With explicit bound checks:

int[] t = new int[140];
for(int i=0; i<t.length; i++) {
if (i<0) throw new

ArrayIndexOutOfBoundsException();
if (i>=t.length) throw new

ArrayIndexOutOfBoundsException();
t[i]=42;

}
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Problem of inductiveness

int[] t = new int[140];
for(int i=0; i<t.length; i++) t[i]=42;

Find inductive invariant i ∈ [l,h]

Initiation l ≤ 0 ≤ h
Inductive step h ≥min(139,h) + 1
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Solving inductiveness

Approximate solving with “widening”

Run interval propagation: [0,0], [0,1], [0,2]
Extrapolate to [0,∞)
Check for inductiveness
Refine to [0,140]

Exact solving Several approaches
acceleration
policy iteration

DavidMonniaux (VERIMAG) Software Verification for Fun and Profit May 6, 2015 60 / 66



Astrée analyzer
http://www.astree.ens.fr/
http://www.absint.de/astree

Keep it simple: interval analysis, approximate solving with
widening and refinement
On top of it: trace partitioning (distinguish paths, sometimes)
etc.
And special abstractions for filters used in control
applications

Can prove the absence of runtime errors in large safety-critical
programs, e.g. fly-by-wire controls
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Invariant inference: executive summary

Scalability varies from high (e.g. interval analysis) to low (e.g.
certain acceleration approaches, some predicate
abstractions…)

Precision varies across applications:
lower ratio of “false positives”, or true properties that
the tool fails to prove.

Scalability and precision greatly improved by tuning for a class of
applications and properties, e.g

API compliance in device drivers (e.g. Microsoft Device
Driver Verifier)

absence of runtime errors in embedded control applications
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Fun
Key insights (scientific)

One should not blindly fear

undecidable problems
→ often simple arguments work

NP-hard problems
→ efficient pruning of the search space

Sometimes linear complexity is just toomuch (e.g. each operation
costsΘ(n)where n is the total number of variables in the
program)
→
Prune down the problems to reduce excessive complexity

Worst-case complexity is not necessarily meaningful
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Profit
Key insights (industrial use)
Generic tools can be expected to havemediocre performance

toomany alarms (properties that cannot be proved)

excessive complexity

Much better results if tools adapted to uses

identify key problems (e.g. bad invariants from certain
constructs, exponential behaviours)

generalise them

solve the generalisation (e.g. filter analysis, cuts)

But industry, too often

refuses to give examples

stops after first attempt with off-the-shelf generic tool.
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More information on:
http://www-verimag.imag.fr/~monniaux/
http://verasco.imag.fr/
http://stator.imag.fr/

Current research:

formal (Coq) proofs of analysis tools

extended resolution and “summaries” in satisfiability testing

alternative inductive invariant inference

combinations of abstraction and exact solving

combinations of numeric and “discrete” case analysis

analysis of properties array and data structures by
source-to-source abstractions
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