
Some complexity questions regarding the lazy

generation of extremal constraints

David Monniaux

February 18, 2015

Let S ⊆ Qn. We wish to compute x such that ∀s ∈ S 〈x, s〉 ≥ 0.
The set of suitable x is a closed convex cone, the orthogonal of the cone

generated by S. In our applications we actually wish x to be in the interior
of that cone or, if the interior is empty, in the relative interior. For the
sake of discussion, assume now that the cone is full-dimensional, that is, has
nonempty interior.

In our application [1] the set S can be expressed so that it is finite, but in
general exponentially large and thus we do not wish to ever give it explicitly.
We wish to investigate the complexity of finding such an x.

Consider now temporarily our problem as purely a decision problem: is
there or not such an x? By Carathéodory’s theorem (or is it called a variant
of Farkas’ lemma?), the solution set is empty if and only if there exists a
subset C ⊆ S of size n such that {x | ∀s ∈ C 〈x, s〉 ≥ 0} is empty. Thus
there exists a “small”, polynomially-sized witness of that emptiness. This
is how in our application we prove coNP membership.

Assume we describe S using a separation oracle: given x0 ∈ Qn the
oracle answers whether ∀s ∈ S 〈x0, s〉 ≥ 0 and, if not, provides s0 such that
〈x0, s0〉 < 0. This is sufficient to run the ellipsoid algorithm and obtain a
solution x in polynomial time in n and in the bitstring complexity of the
elements of S picked by the oracle. (Would we gain anything by going to a
weak separation oracle? [2, ch. 3])

Thus our intuition is that finding a solution x should not require too
many calls to the oracle. In fact, in our applications, the number of iterations
is surprisingly small (we have yet to analyze experimental results to see
precisely how this grows with the dimension).

Because the practical complexity of the ellipsoid method is very bad,
we do not use it and instead use a refinement loop from extremal coun-
terexamples. Our algorithm is made a bit complex by the need to account
for degenerate cones so here is a simplified version that should work in
the case where the solution cone has nonempty interior. Start from an
empty set C0 constraints. At each iteration i, find xi in the interior of

1



the cone {x | ∀s ∈ Ci 〈x, s〉 ≥ 0}. Query the oracle whether xi satisfies
∀s ∈ S 〈xi, s〉 ≥ 0; if so, terminate with xi as solution. If not the oracle pro-
vides si such that 〈xi, si〉 is minimal (and < 0), and we set Ci+1 = Ci∪{si}
for the next iteration.

Note the difference with a classical oracle approach: instead of just re-
quiring the oracle to supply any separating hyperplane, we require this hy-
perplane constraint to be saturated by at least one solution x. Thus, we do
not iterate over wholly redundant constraints. (Could we still get redundant
constraints that all saturate the same extremal x ?)

Is there any known complexity result for such an approach?
(We can make the “in the interior” part more precise by specifying how we
find it by maximizing some kind of linear barrier function, e.g. the sum of
distances to the current constraints.)

References

[1] Laure Gonnord, David Monniaux, and Gabriel Radanne. “Synthesis of
ranking functions using extremal counterexamples”. In: Programming
Language Design and Implementation (PLDI). ACM. 2015.

[2] Levent Tunçel. Polyhedral and Semidefinite Programming Methods in
Combinatorial Optimization. Fields Institute Monographs. AMS & Fields
Institute, 2010. isbn: 0-8218-3352-9.

2

http://worldcat.org/isbn/0-8218-3352-9

