Satisfiability modulo theory

David Monniaux

CNRS / VERIMAG

October 2017

Schedule

Introduction

Propositional logic

First-order logic

Applications

Quantifier elimination

Interpolants

Who I am

David Monniaux
Senior researcher (directeur de recherche) at CNRS (National center for scientific research)

Working at VERIMAG in Grenoble

Who we are

VERIMAG = joint research unit of

- CNRS (9 permanent researchers)
- Université Grenoble Alpes (15 faculty)
- Grenoble-INP (8 faculty)

What we do

(Widely speaking)
Methods for designing and verifying safety-critical embedded systems

- formal methods
- static analysis
- proof assistants
- decision procedures
- exact analysis
- modeling of hardware/software system platforms (caches, networks on chip etc.)
- hybrid systems

Program verification

Program = instructions in

- "toy" programming language or formalism (Turing machines, λ-calculus, "while language")
- real programming language

Program has a set of behaviors (semantics)
Prove these behaviors included in acceptable behaviors (specification)

Difficulties

Defining the semantics of a real language ($\mathrm{C}, \mathrm{C}++\ldots$) is very difficult.
Add parallelism etc. to make it nearly impossible.
Specifications are written by humans, may be themselves buggy.

I will concentrate on the proving phase.

Objectives

Increasing ambition:
Advanced testing find execution traces leading to violations More efficiently than by hand or randomly

Assisted proof help the user prove the program

Automated proof prove the program automatically

Schedule

Introduction

Propositional logic

First-order logic

Applications

Beyond DPLL(T)

Quantifier elimination

Interpolants

Schedule

Introduction

Propositional logic
Generalities
Binary decision diagrams
Satisfiability checking
Applications

First-order logic

Applications

Beyond DPLL(T)

Quantifier-free propositional logic

$\wedge($ and $), \vee($ or $), ~ \neg($ not $)($ also noted $\bar{x})$
Possibly add \oplus (exclusive-or)
$\mathbf{t}=$ "true", $\mathbf{f}=$ "false"

Formula with variables: $(a \vee b) \wedge(c \vee \bar{a})$
An assignment gives a value to all variables.
A satisfying assignment or model makes the formula evaluate to \mathbf{t}.

Disjunctive normal form

Disjunction of conjunction of literals (= variable or negation of variable)

Obtained by distributivity
$(a \vee b) \wedge c \longrightarrow(a \wedge c) \vee(b \wedge c)$
Inconvenience?

Disjunctive normal form

Disjunction of conjunction of literals (= variable or negation of variable)

Obtained by distributivity
$(a \vee b) \wedge c \longrightarrow(a \wedge c) \vee(b \wedge c)$
Inconvenience?
Exponential size in the input.

Conjunctive normal form

Disjunction of literals = clause
CNF = conjunction of clauses
Obtained by distributivity

$$
(a \wedge b) \vee c \longrightarrow(a \vee c) \wedge(b \vee c)
$$

Negation normal form

Push negations to the leaves of the syntax tree using De Morgan's laws

$$
\begin{aligned}
& \neg(a \vee b) \longrightarrow(\neg a) \wedge(\neg b) \\
& \neg(a \wedge b) \longrightarrow(\neg a) \vee(\neg b)
\end{aligned}
$$

Makes formula "monotone" with respect to $\mathbf{f}<\mathbf{t}$ ordering.

Applications

Verification of combinatorial circuits
Equivalence of two circuits

Schedule

Introduction

Propositional logic
Generalities
Binary decision diagrams
Satisfiability checking
Applications

First-order logic

Applications

Beyond DPLL(T)

The problem

Representing compactly set of Boolean states
A set of vector n Booleans $=$ a function from $\{0,1\}^{n}$ into $\{0,1\}$.

Example: $\{(0,0,0),(1,1,0)\}$ represented by $(0,0,0) \mapsto 1$, $(1,1,0) \mapsto 1$ and 0 elsewhere.

Expanded BDD

$\mathrm{BDD}=$ Binary decision diagram
Given ordered Boolean variables (a, b, c), represent $(a \wedge c) \vee(b \wedge c):$

Removing useless nodes

Silly to keep two identical subtrees:

Compression

Reduced BDD

Idea: turn the original tree into a DAG with maximal sharing.
Two different but isomorphic subtrees are never created.
Canonicity: a given example is always encoded by thesanges DAG.

Implementation: hash-consing

Important: implementation technique that you may use in other contexts
"Consing" from "constructor" (cf Lisp : cons). In computer science, particularly in functional programming, hash consing is a technique used to share values that are structurally equal. [...] An interesting property of hash consing is that two structures can be tested for equality in constant time, which in turn can improve efficiency of divide and conquer algorithms when data sets contain overlapping blocks.

Implementation: hash-consing 2

Keep a hash table of all nodes created, with hashcode $H(x)$ computed quickly.
If node $=\left(v, b_{0}, b_{1}\right)$ compute H from v and unique identifiers of b_{0} and b_{1}
Unique identifier $=$ address (if unmovable) or serial number If an object matching $\left(v, b_{0}, b_{1}\right)$ already exists in the table, return it

How to collect garbage nodes? (unreachable)

Garbage collection in hash consing

Needs weak pointers: the pointer from the hash table should be ignored by the GC when it computes reachable objects

- Java WeakHashMap
- OCaml Weak

Garbage collection in hash consing

Needs weak pointers: the pointer from the hash table should be ignored by the GC when it computes reachable objects

- Java WeakHashMap
- OCaml Weak
(Other use of weak pointers: caching recent computations.)

Hash-consing is magical

Ensures:

- maximal sharing: never two identical objects in two \neq locations in memory
- ultra-fast equality test: sufficient to compare pointers (or unique identifiers)

And once we have it, BDDs are easy.

BDD operations

Once a variable ordering is chosen:

- Create BDD f, \mathbf{t} (1-node constants).
- Create BDD for v, for v any variable.
- Operations \wedge, \vee, etc.

Binary BDD operations

Operations \wedge, \vee : recursive descent on both subtrees, with memoizing:

- store values of $f(a, b)$ already computed in a hash table
- index the table by the unique identifiers of a and b

Complexity with and without dynamic programming?

Binary BDD operations

Operations \wedge, \vee : recursive descent on both subtrees, with memoizing:

- store values of $f(a, b)$ already computed in a hash table
- index the table by the unique identifiers of a and b

Complexity with and without dynamic programming?

- without dynamic programming: unfolds DAG into tree \Rightarrow exponential
- with dynamic programming $O(|a| \cdot|b|)$ where $|x|$ the size of DAG x

Fixed point solving

```
B}= initial state
B}=\mp@subsup{B}{0}{}+\mathrm{ reachable in 1 step from B }\mp@subsup{B}{0}{
B2}=\mp@subsup{B}{1}{}+\mathrm{ reachable in 1 step from B
B3}=\mp@subsup{B}{2}{}+\mathrm{ reachable in 1 step from B2
```

\vdots
converges in finite time to $R=$ reachable states

Iteration sequence

$$
\begin{aligned}
& B_{k+1}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)= \\
& \exists x_{1} \ldots x_{n} B_{k}\left(x_{1}, \ldots, x_{n}\right) \wedge \tau\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)
\end{aligned}
$$

Needs

- variable renaming (easy)
- constructing the BDD for τ
- \exists-elimination for n variables
- conjunction

Tools

e.g. NuSMV, NuXMV in BDD mode

Schedule

Introduction

Propositional logic
Generalities
Binary decision diagrams
Satisfiability checking
Applications

First-order logic

Applications

SAT problem

Given a propositional formula say whether it is satisfiable or not (give a model if so)./
Satisfiable = "it has a model" = "it has a satisfying assignment".

- "SAT" with arbitrary formula
- "CNF-SAT" with formula in CNF
- "3CNF-SAT" with formula in CNF, 3 literals per clause

Exercise

Show that one can convert SAT into 3CNF-SAT with time and output linear in size of input.

Tseitin encoding

Gregory S. Tseytin, On the complexity of derivation in propositional calculus,
http://www.decision-procedures.org/ handouts/Tseitin70.pdf

Can one transform a formula into another in CNF with linear size and preserve solutions?

$$
(a \vee b) \wedge(c \vee d) \longrightarrow(a \wedge c) \vee(a \wedge d) \vee(b \wedge c) \vee(b \wedge d)
$$

Tseitin encoding

Add extra variables

$$
((a \wedge \bar{b} \wedge \bar{c}) \vee(b \wedge c \wedge \bar{d})) \wedge(\bar{b} \vee \bar{c}) .
$$

Assign propositional variables to sub-formulas:

$$
\begin{array}{ccc}
e \equiv a \wedge \bar{b} \wedge \bar{c} & f \equiv b \wedge c \wedge \bar{d} & g \equiv e \vee f \\
h \equiv \bar{b} \vee \bar{c} & \phi \equiv g \wedge h &
\end{array}
$$

Tseitin encoding

$$
\begin{array}{ccc}
e \equiv a \wedge \bar{b} \wedge \bar{c} & f \equiv b \wedge c \wedge \bar{d} & g \equiv e \vee f \\
h \equiv \bar{b} \vee \bar{c} & \phi \equiv g \wedge h &
\end{array}
$$

turned into clauses

$\bar{e} \vee a$	$\bar{e} \vee \bar{b}$	$\bar{e} \vee \bar{c}$	$\bar{a} \vee b \vee c \vee e$
$\bar{f} \vee b$	$\bar{f} \vee c$	$\bar{f} \vee d$	$\bar{b} \vee \bar{c} \vee d \vee f$
$\bar{e} \vee g$	$\bar{f} \vee g$	$\bar{g} \vee e \vee f$	
$b \vee h$	$c \vee h$	$\bar{h} \vee \bar{b} \vee \bar{c}$	
$\bar{\phi} \vee g$	$\bar{\phi} \vee h$	$\bar{g} \vee \bar{h} \vee \phi$	ϕ

DIMACS format

c start with comments
p cnf 53
1 -5 40
-15340
$-3-40$

5 = number of variables
3 = number of clauses
each clause: -1 is variable 1 negated, 5 is variable 5,0 is end of clause

DPLL

Each clause acts as propagator e.g. assuming a and \bar{b}, clause $\bar{a} \vee b \vee c$ yields c

Boolean constraint propagation aka unit propagation: propagate as much as possible once the value of a variable is known, use it elsewhere

	7	2	3	8	5	4		
	3	9		1	6			
1			2	7		3		6
7	8					6	4	
5								7
	9	4					3	1
4		1		6	3			8
			9	2		1	6	
		8	5	4	1	2	7	

DPLL: Branching

If unit propagation insufficient to

- either find a satisfying assignment
- either find an unsatisfiable clause (all literals forced to false)

Then:

- pick a variable
- do a search subtree for both polarities of the variable

Example

$$
\begin{array}{llcc}
\bar{e} \vee a & \bar{e} \vee \bar{b} & \bar{e} \vee \bar{c} & \bar{a} \vee b \vee c \vee e \\
\bar{f} \vee b & \bar{f} \vee c & \bar{f} \vee d & \bar{b} \vee \bar{c} \vee d \vee f \\
\bar{e} \vee g & \bar{f} \vee g & \bar{g} \vee e \vee f & \\
b \vee h & c \vee h & \bar{h} \vee \bar{b} \vee \bar{c} & \\
\bar{\phi} \vee g & \bar{\phi} \vee h & \bar{g} \vee \bar{h} \vee \phi & \phi
\end{array}
$$

From unit clause ϕ

$$
\bar{\phi} \vee g \rightarrow g \quad \bar{\phi} \vee h \rightarrow h \quad \bar{g} \vee \bar{h} \vee \phi \text { removed }
$$

Now g and h are \mathbf{t},
$\bar{e} \vee$ gremoved $\quad \bar{f} \vee$ g removed
$b \vee h$ removed
$c \vee h$ removed $\quad \bar{g} \vee e \vee f \rightarrow e \vee f$
$\bar{h} \vee \bar{b} \vee \bar{c} \rightarrow \bar{b} \vee \bar{c}$

CDCL: clause learning

A DPLL branch gets closed by contradiction: a literal gets forced to both \mathbf{t} and \mathbf{f}.

Both \mathbf{t} and \mathbf{f} inferred from hypotheses H by unit propagation. Trace back to a subset of hypotheses, sufficient for contradiction.
e.g. $a \wedge \bar{b} \wedge \bar{c} \wedge d \wedge H \Longrightarrow \mathbf{f}$

Learn clause = negation of bad hypotheses, implied by H :

$$
\bar{a} \vee b \vee c \vee \bar{d}
$$

Add this clause (maybe garbage-collected later) to H Used by unit propagation

Resolution

Proved C_{1} from H_{1}, \ldots, H_{n} and hypothesis $a+$ proved C_{2} from H_{1}, \ldots, H_{n} and hypothesis \bar{a}
三
Proved $C_{1} \vee \bar{a}$ from $H_{1}, \ldots, H_{n}+$ proved $C_{2} \vee a$ from H_{1}, \ldots, H_{n}

Propositional resolution rule:

Resolution proofs

a DPLL "unsat" run = a resolution tree proof obtain it by instrumenting the solver = logging the proof steps used for deriving clauses
a CDCL "unsat" run = a resolution DAG proof shared subtrees for learned lemmas

CDCL better than DPLL

Some problems:

- short DAG resolution proofs
- only exponential tree resolution proofs.

Resolution independent of search strategy!
Almost all current solvers do CDCL, not DPLL.

Insights

Difficult to prove results on solvers full of heuristics
Can sometimes prove properties of their proof systems

Pigeons

n pigeons, m pigeon holes
$a_{i, j}$ means pigeon i in hole j
Each pigeon in a hole: for all i,

$$
a_{i, 1} \vee \cdots \vee a_{1, m}
$$

Each hole has at most one pigeon: for all j, for all i, i^{\prime},

$$
\overline{a_{i, j}} \vee \cdots \vee \overline{a_{i^{\prime}, j}}
$$

If $n>m$ "trivially" unsatisfiable
...but any DAG resolution proof has exponential size in
$n=m+1$

Implementation wise

Clause simplification etc. implemented as two watched literals per clause

Pointers to clauses used for deduction
Highly optimized proof engines

- Minisat http://minisat.se/
- Glucose http:
//www.labri.fr/perso/lsimon/glucose/
- Armin Biere’s solvers http://fmv.jku.at/software/index.html

Preprocessing
$47 / 185$

Unit propagation

Textbook propagation

- look for a variable in each clause, "remove it"
- how do we backtrack?

Remark: a clause acts when 1 unassigned literal (and none assigned t)

$$
a \vee \bar{b} \vee c \vee \bar{d}
$$

in context $a=\mathbf{f}, b=\mathbf{t}, d=\mathbf{t}$, deduce $c=\mathbf{t}$.

Two watched literals per clause

- for each literal: a linked list of clauses
- each clause has two watched literals
- invariant: in each clause the two watched literals are not assigned to false

When $l:=\mathbf{f}$, scan associated list

- For each clause with one literal assigned \mathbf{t}, ignore the clause
- For each clause with >1 unassigned literal l^{\prime}, move clause to the list for l^{\prime}
- For each clause with 1 unassigned literal $l^{\prime}, l^{\prime}:=\mathbf{t}$
- 0 unassigned literal, CONFLICT (analyze and backtrack)

Variable and polarity selection

Heuristics for picking variable to branch on
Polarity (\mathbf{t} vs \mathbf{f})

- heuristics for picking first polarity choice
- keep last polarity used in next choices

Restart once in a while (keep polarities and learned clauses)

Schedule

Introduction

Propositional logic
Generalities
Binary decision diagrams
Satisfiability checking
Applications

First-order logic

Applications

Equivalence checking

Two combinatorial circuits How to check they compute the same?

Equivalence checking

Two combinatorial circuits
How to check they compute the same?
$\left(a_{1}, \ldots, a_{n}\right)$ output from A
$\left(b_{1}, \ldots, b_{n}\right)$ output from B (same inputs)
assert $\left(a_{1} \oplus b_{1}\right) \vee \cdots \vee\left(a_{n} \oplus b_{n}\right)$

Schedule

Introduction
 Propositional logic

First-order logic

Applications

Quantifier elimination

Interpolants

Schedule

Introduction

Propositional logic

First-order logic
Basics
Decision in fixed theories
DPLL(T)

Applications

Beyond DPLL(T)

Quantifier-free first order formulas

e.g. $(P(f(x, z), y) \wedge R(y) \wedge T) \vee S(y, g(z, x))$

Ordinary connectives $\wedge, \vee, \neg \ldots$
Predicate symbols P, Q, \ldots, each with an arity (number of arguments)

- 0 -ary predicates = propositional variables
- 1-ary predicates (monadic)
- other predicates

Function symbols f, g, \ldots, each with an arity
0 -ary function symbols are known as constants

Common notations

Predicate and function symbols form a signature
Some predicate symbols may be noted as infix: $<, \leq,>, \geq \ldots$ $=$ denotes equality (more on that later)

Some function symbols may be noted as infix:,+Some constants may be noted as 0,1 etc.
1 may a notation for $S(0), 2$ as $S(S(0))$ where S is successor
These so far implies nothing regarding the interpretation of these symbols.

Quantifiers

\forall, \exists
Can be moved to the front = prenex form.
Beware of variable capture!

$$
\forall x((\forall y P(x, y)) \vee(\exists y Q(x, y)))
$$

in prenex form

$$
\forall x \forall y_{1} \exists y_{2}\left(P\left(x, y_{1}\right) \vee Q\left(x, y_{2}\right)\right)
$$

Interpretation

Let \mathcal{M} be a set.
To any predicate symbol P of arity n associate $P^{\mathcal{M}} \subseteq \mathcal{M}^{n}$ Note: a 0 -ary predicate associates to \mathbf{t} or \mathbf{f}
To any function symbol f of arity n associate $P^{\mathcal{M}}: \mathcal{M}^{n} \rightarrow \mathcal{M}$
To any term $t($ e.g. $g(z, f(x, y)))$ associate an interpretation t^{M}.
To any formula F associate an interpretation $F^{\mathcal{M}}$.

Interpretation with equality

In most cases:
The predicate $=$ must be interpreted as equality.

Models of a set of formulas

Let \mathcal{F} be a set of formulas (or "system of axioms").
A model \mathcal{M} is an interpretation that makes true all formulas in \mathcal{F}.

Schedule

Introduction

Propositional logic

First-order logic
Basics
Decision in fixed theories
DPLL(T)

Applications

Beyond DPLL(T)

Models with fixed interpretation of certain predicates

$$
\forall x \exists y y>x \wedge y<x+z
$$

E.g. \mathcal{M} is the set $\mathbb{Z},+$ is addition, - subtraction, 0 is zero, S is "successor" $x \mapsto x+1$.
E.g. \mathcal{M} is the set $\mathbb{Q},+$ is addition, - subtraction, 0 is zero, S is $x \mapsto x+1$.

The remaining part of the model, to fix, is then z.

Example

(set-option : produce-models true)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (<= x y))
(assert (<= y z))
(check-sat)
(get-model)
(push 1)
(assert (< z x))
(check-sat)
(pop 1)
(assert (<= z x))
(check-sat)
(get-model)

Output

cvc4 --incremental example.smt2
sat
(model
(define-fun x () Int 0)
(define-fun y () Int 0)
(define-fun z () Int 0)
)
unsat
sat
(model
(define-fun x () Int 0)
(define-fun y () Int 0)
(define-fun z () Int 0)
)

Schedule

Introduction

Propositional logic

First-order logic
Basics
Decision in fixed theories
DPLL(T)

Applications

Beyond DPLL(T)
(Improper terminology, should be $\mathrm{CDCL}(\mathrm{T})$)
$(x \leq 0 \vee x+y \leq 0) \wedge y \geq 1 \wedge x \geq 1$
\downarrow dictionary of theory literals
$(a \vee b) \wedge c \wedge d$
Solve, get $(a, b, c, d)=(\mathbf{t}, \mathbf{f}, \mathbf{t}, \mathbf{t})$.
But $x \leq 0 \wedge x \geq 1$ is a contradiction!
Add theory lemma $\bar{a} \vee \bar{d}$
Solve, get $(a, b, c, d)=(\mathbf{f}, \mathbf{t}, \mathbf{t}, \mathbf{t})$.
But $x+y \leq 0 \wedge \geq 1 \wedge x \geq 1$ is a contradiction! Add theory lemma $\bar{b} \vee \bar{c} \vee \bar{d}$.

The problem is unsatisfiable.

In practice, do not wait for the CDCL solver to provide a full assignment.
Check partial assignments for theory feasibility.
If during theory processing, a literal becomes known to be \mathbf{t} or f, propagate it to CDCL.
e.g. $x \geq 0, x \geq 1$ assigned, propagate $x+y \geq 0$

Boolean relaxation of the original problem. Lazy expansion of theory.

Linear real arithmetic

Usually decided by exact precision simplex.
Extract from the tableau the contradictory subset of assignments.

LRA Example

$$
\left\{\begin{align*}
2 & \leq 2 x+y \tag{1}\\
-6 & \leq 2 x-3 y \\
-1000 & \leq 2 x+3 y \\
-2 & \leq-2 x+5 y \\
20 & \leq x+y
\end{align*}\right.
$$

LRA Example

$$
\left\{\begin{array}{rrrl}
a= & 2 x+y & 2 & \leq a \tag{2}\\
b= & 2 x-3 y & -6 & \leq b \\
c= & 2 x-3 y & -1000 & \leq c \\
d= & -2 x+5 y & -2 & \leq d \\
e= & x+y & 20 & \leq e .
\end{array}\right.
$$

LRA Example

Gauss-like pivoting until:

$$
\left\{\begin{array}{l}
e=7 / 16 c-1 / 16 d \\
a=3 / 4 c-1 / 4 d \tag{3}\\
b=1 / 4 c-3 / 4 d \\
x=5 / 16 c-3 / 16 d \\
y=1 / 8 c+1 / 8 d
\end{array}\right.
$$

LRA Example

$e=7 / 16 c-1 / 16 d$
But: $c \leq 18$ and $d \geq-2$, so $-7 / 16 c-1 / 16 d \leq 8$. But we have $e \geq 20$, thus no solution.

Relevant original inequalities can be combined into an unsatisfiable one (thus the theory lemma)

$$
\begin{align*}
& 7 / 16(-2 x-3 y) \geq-7 / 16 \times 18 \\
& \begin{array}{rllrl}
1 / 16 & (-2 x & +5 y) & \geq & -1 / 16
\end{array} \times 2 \tag{4}
\end{align*}
$$

Linear integer arithmetic

Linear real arithmetic +

- branching: if LRA model $x=4.3$, then $x \leq 4 \vee x \geq 5$
- (sometimes) Gomory cuts

Uninterpreted functions

$$
\begin{aligned}
& f(x) \neq f(y) \wedge x=z+1 \wedge z=y-1 \\
& \downarrow \\
& f_{x} \neq f_{y} \wedge x=z+1 \wedge z=y-1
\end{aligned}
$$

Get $\left(x, y, z, f_{x}, f_{y}\right)=(1,1,0,0,1)$. But if $x=y$ then $f_{x}=f_{y}$! Add $x=y \Longrightarrow f_{x}=f_{y}$.

The problem over $\left(x, y, z, f_{x}, f_{y}\right)$ becomes unsatisfiable.

Arrays

update $\left(f, x_{0}, y_{0}\right)$ the function mapping

- $x \neq x_{0}$ to $f[x]$
- x_{0} to y_{0}.

Quantifiers

Show this formula is true:

$$
\begin{align*}
(\forall i 0 \leq i<j \Longrightarrow t[i]=42) \Longrightarrow & \\
& (\forall i 0 \leq i \leq j \Longrightarrow \operatorname{update}(t, j, 0)[i]=42) \tag{5}
\end{align*}
$$

Equivalently, unsatisfiable:

$$
0 \leq i_{0} \leq j \wedge \text { update }(t, j, 0)\left[i_{0}\right]=0 \wedge(\forall i 0 \leq i<j \Longrightarrow t[i]=0)
$$

Instantiation

Prove unsatisfiable:

$$
0 \leq i_{0} \leq j \wedge \text { update }(t, j, 0)\left[i_{0}\right]=0 \wedge(\forall i 0 \leq i<j \Longrightarrow t[i]=0)
$$

By instantiation $i=i_{0}$:

$$
0 \leq i_{0} \leq j \wedge \text { update }(t, j, 0)\left[i_{0}\right]=0 \wedge\left(0 \leq i_{0}<j \Longrightarrow t\left[i_{0}\right]=0\right)
$$

Unsatisfiable

Schedule

Introduction

Propositional logic

First-order logic

Applications

Quantifier elimination

Interpolants

Inductiveness checking

Floyd-Hoare proof methods
Prove a property holds at every loop iteration:

- prove it holds initially
- prove: if it holds then it holds at next iteration

Proving $A \Longrightarrow B$ universally \equiv proving $A \wedge \neg B$ unsatisfiable

Example: binary search

```
/*@ requires
    a n >= 0 && \valid(t+(0..n-1)) &&
    @ \forall int k1, k2; 0 <= k1 <= k2 <= n-1 ==> t[k1] <= t[k2];
    @ assigns \nothing;
    @ ensures
    @ (0 <= \result < n && t[\result] == v) ||
    @ (\result == -1 && \forall int k; 0 <= k < n ==> t[k] != v);
    @* /
int binary_search(int* t, int n, int v) {
    int l = 0, u = n-1;
    /*@ loop invariant
    @ 0 <= l && u <= n-1
    @ && (\forall int k; 0 <= k < n ==> t[k] == v ==> l <= k <= u)
    @ loop assigns l,u ;
    @ loop variant u-l ;
    @*/
```

 while (l <= u) \{
 int \(m=l+(u-l) / 2 ;\)
 //@ assert l <= \(\mathrm{m}<=\mathrm{u}\);
 if (\(\mathrm{t}[\mathrm{m}]<\mathrm{v}\)) \(\mathrm{l}=\mathrm{m}+1\);
 else if \((t[m]>v) u=m-1\);
 else return m;
 \}
 return -1;

Symbolic / concolic execution

Explore the program:

- Follow paths inside the program
- On each path collect constraints on variables (guards in tests)
- Check feasibility using SMT-solving
- If symbolic execution becomes impossible (calls to native code...), concretize (find actual values) for some variables

Example

\#include <klee/klee.h>
int get_sign(int x) \{
if ($x==0$) return 0;
if ($x<0$)
return -1;
else

return 1;

\}
int main() \{
int a;
klee_make_symbolic(\&a, sizeof(a), "a"); return get_sign(a);

Running Klee

\$ clang-3.4 -I \$KLEE/include -emit-llvm -c -g \$KLEE/bin/klee get_sign.bc

KLEE: output directory is "klee-out-0" KLEE: Using STP solver backend

KLEE: done: total instructions = 31
KLEE: done: completed paths = 3
KLEE: done: generated tests = 3

Examining one test input

\$ ktest-tool klee-last/test000002.ktest ktest file : 'klee-last/test000002.ktest'
args : ['get_sign.bc']
num objects: 1
object 0: name: 'a'
object 0: size: 4
object $0:$ data: '\x01\x01\x01\x01'

Checking an assertion failure

```
#include <klee/klee.h>
int main() {
    int t = 0, x;
    for(int i=0; i<3; i++) {
        klee_make_symbolic(&x, sizeof(x), "xboucle'
        klee_assume((x >= 0) & (x < 100));
        t += x;
    }
    klee_assert(t < 290);
    return 0;
}
```


Crash trace

ktest file : 'klee-last/test000001.ktest'
args : ['klee_boucle.bc']
num objects: 3
object 0: name: 'xboucle'
object 0: size: 4
object 0: data: 98
object 1: name: 'xboucle'
object 1: size: 4
object 1: data: 93
object 2: name: 'xboucle'
object 2: size: 4
object 2: data: 99

Bounded model checking

Convert a loop-free program into one big formula One Boolean per control location = "the execution went through it"

Close to SSA form in compilers. (Can be extended to arrays, structures, objects, pointers, pointer arithmetic. Becomes messy.)

If loops, unroll them to finite depth

BMC example

extern int choice(void);
int main() \{
int $t=0, x$;
for (int $i=0 ; i<3 ; i++)$ \{
x = choice();
if (x > 100 || $x<0$) $x=0$;
t += x;
\}
assert(t < 290);
return 0;
\}
\checkmark cirs uvesie

BMC results

\$ cbmc --trace cbmc_boucle.c

```
State 18 file cbmc_boucle.c line 4 function main thread 0
    t=0 (00000000000000000000000000000000)
State 19 file cbmc_boucle.c line 4 function main thread 0
    t=0 (00000000000000000000000000000000)
State 20 file cbmc_boucle.c line 4 function main thread 0
    x=0 (00000000000000000000000000000000)
State 21 file cbmc_boucle.c line 5 function main thread 0
    i=0 (00000000000000000000000000000000)
State 22 file cbmc_boucle.c line 5 function main thread 0
        i=0 (00000000000000000000000000000000)
State 27 file cbmc_boucle.c line 6 function main thread 0
        x=95 (00000000000000000000000001011111)
State 29 file cbmc_boucle.c line 8 function main thread 0
        t=95 (00000000000000000000000001011111)
State 30 file cbmc_boucle.c line 5 function main thread 0
        i=1 (00000000000000000000000000000001)
State 36 file cbmc_boucle.c line 6 function main thread 0
        x=97 (00000000000000000000000001100001)
State 38 file cbmc_boucle.c line 8 function main thread 0
        t=192 (00000000000000000000000011000000)
State 39 file cbmc_boucle.c line 5 function main thread 0
        i=2 (00000000000000000000000000000010)
State 45 file cbmc_boucle.c line 6 function main thread 0
    x=98 (00000000000000000000000001100010)
State 47 file cbmc_boucle.c line 8 function main thread 0
        t=290 (00000000000000000000000100100010)
State 48 file cbmc_boucle.c line 5 function main thread 0
    i=3 (00000000000000000000000000000011)
Violated property:
    file cbmc_boucle.c line 10 function main
    assertion t < 290
```


Schedule

Introduction

Propositional logic

First-order logic

Applications

Beyond DPLL(T)

Quantifier elimination

Interpolants

Schedule

Introduction

Propositional logic

First-order logic

Applications

Beyond DPLL(T)
 WCET example
 CDCL explosion
 Abstract CDCL (ACDCL)

Motivating example

As in bounded model checking: Formula extracted from loop-free software (e.g. step function of a fly-by-wire controller):

- one Boolean per program basic block "the execution goes through that block"
- constraints expressing program operations and tests (e.g. instruction $\mathrm{x}=\mathrm{x}+1$; translated to $\mathrm{x}_{2}=\mathrm{x}_{1}+1$
Solution of the formula \equiv execution trace with all intermediate value

WCET

Worst-case execution time $=$ time for the longest execution of the program

Enrich the formula with timing information for basic blocks (In real life, this is more complicated)

Maximize the solution

SMT Encoding by Example

```
                                    entry:
                                    assume -10000 < x_old.0 <10000
                                    x.0 = input(-10000,10000)
                                    add = x_old.0 + 10
                                    cmp = x.0 > add
                                    cmp ?
        assume (x_old <= 10000);
        assume (x_old >= -10000);
        x = input(-10000,10000);
        if (x > x_old+10)
        x = x_old+10;
        if (x < x_old-10)
        x = x_old-10;
    x_old = x;
}
void main() {
    while (1)
        rate_limiter_step();
}

The SMT formula encodes the feasible program traces:
- 1 Boolean per block
- 1 Boolean per transition
\(b_{i}\) true \(\leftrightarrow\) trace goes through \(b_{i}\)

Cost for the trace:
\(\sum b_{i} * \cos _{i}\)
```

entry: ; b_0
assume -10000 < x_old.0 <10000
x.0 = input(-10000,10000)
add = x_old.0 + 10
cmp = x.0 > add
cmp ?

```

t_0_2 \(\cos t=14\)
if.end: ; b_2
\[
x .2=\text { phi [x.1,if.then], [x.0,entry] }
\]
\[
\text { sub }=\text { x_old. } 0-10
\]
\[
\text { cmp3 }=x .2<\text { sub }
\]
cmp3 ?


Step 1: encode instructions (Linear Integer Arithmetic)
```

entry: ; b_0
assume -10000 < x_old.0 <10000
x.0 = input (-10000,10000)
add = x_old.0 + 10
cmp = x.0 > add
cmp ?

```


Step 1: encode instructions (Linear Integer Arithmetic)
```

entry: ; b_0
assume -10000 < x_old.0 <10000
x.0 = input(-10000,10000)
add = x_old.0 + 10
cmp = x.0 > add
cmp ?

```


Step 1: encode instructions (Linear Integer Arithmetic)
```

entry: ; b_0
assume -10000 < x_old.0 <10000
x.0 = input(-10000,10000)
add = x_old.0 + 10
cmp = x.0 > add
cmp ?

```


\section*{Step 2: encode control flow (Very similar to ILP)}
\(\wedge \quad b_{-} 0=b_{-} 4=\) true
\(\wedge \quad b_{-} 1=t_{-} 0 \_1\)
\(\wedge \quad b_{-} 2=\left(t \_0 \_2 \vee t_{-} 1 \_2\right)\)
\(\wedge\)
\(\wedge\)
\(\wedge \quad t \_0 \_1=\left(b \_0 \wedge(x .0>a d d)\right)\)

\section*{\(\wedge \quad \vdots\) \\ \(\wedge \quad \vdots\)}

t_0_1 cost \(=15\)
if.then: ; b_1
x. 1 = x_old. \(0+10\)
\(t \_1 \_2 \quad\) cost \(=6\)
if.end: ; b_2
\(x .2\) = phi [x.1,if.then], [x.0,entry]
sub \(=\) x_old. 0 - 10
cmp3 \(=\) x. 2 < sub
cmp3 ?

if.then4: ; b_3
x. 3 = x_old. 0 - 10
\(t \_3 \_4 \quad\) cost \(=6\)
\(\cos t=11\)
if.end6: ; b_4
x_old.1 = phi [x.3,if.then4], [x.2,if.end]

\section*{Step 3: encode timings}
\(\wedge \quad c_{-} 0 \_1=\left(i f\left(t \_0 \_1\right)\right.\) then 15 else 0\()\)
\(\wedge \quad c_{-} 0 \_2=\left(i f\left(t \_0 \_2\right)\right.\) then 14 else 0\()\)
\(\wedge:\)
\(\wedge:\)
\(\wedge \quad \cos t=\left(c_{-} 0 \_1+c_{-} 0 \_2+c_{-} 1 \_2\right.\)
    \(\left.+c \_2 \_3+c \_2 \_4+c \_3 \_4\right)\)
```

entry: ; b_0
assume -10000 < x_old.0 <10000
x.0 = input (-10000,10000)
add = x_old.0 + 10
cmp = x.0 > add
cmp ?

```

    if. then: \(; b_{-} 1\)
x. \(1=x_{-}\)old. \(0+10\)
\(t \_1 \_2\) cost \(=6\)
if.end: ; b_2
\(x .2\) = phi [x.1,if.then], [x.0,entry]
sub \(=x\) oold. \(0-10\)
cmp3 \(=x .2<\) sub
cmp3 ?


\section*{1 satisfying assignment} \(\leftrightarrow 1\) program trace:
b_0 \(=\) b_1 = b_2 = b_4 = true
b_3 \(=\) false
\(t \_0 \_1=t \_1 \_2=t \_2 \_4=\) true
\(t \_0 \_2=t \_2 \_3=t \_3 \_4=\) false
x_old. \(0=50\)
\(\mathrm{x} .0=61\)
add \(=60\)
\(\mathrm{x} .1=60\)
\(\mathrm{x} .2=60\)
sub \(=40\)
cost \(=32\)
```

entry: ; b_0
assume -10000 < x_old.0 <10000
x.0 = input(-10000,10000)
add = x_old.0 + 10
cmp = x.0 > add
cmp ?

```

```

if.end: ; b_2
x.2 = phi [x.1,if.then], [x.0,entry]
sub = x_old.0 - 10
cmp3 = x.2 < sub
cmp3 ?

```


\section*{1 satisfying assignment} \(\leftrightarrow 1\) program trace:
\(b_{-} 0=b \_1=b \_2=b \_4=\) true
b_3 = false
\(t \_0 \_1=t \_1 \_2=t \_2 \_4=\) true
\(t \_0 \_2=t \_2 \_3=t \_3 \_4=\) false
x_old. \(0=50\)
\(\mathrm{x} .0=61\)
add \(=60\)
\(\mathrm{x} .1=60\)
\(\mathrm{x} .2=60\)
sub \(=40\)
cost \(=32\)
entry: ; b_0
entry: ; b_0
assume -10000 < x_old.0 <10000
assume -10000 < x_old.0 <10000
x.0 = input(-10000,10000)
x.0 = input(-10000,10000)
add = x_old.0 + 10
add = x_old.0 + 10
cmp = x.0 > add
cmp = x.0 > add
cmp ?
cmp ?
t_0_1 cost = 15
t_0_1 cost = 15
    if.then: ; b_1 
    if.then: ; b_1 
t_1_2 cost=6
t_1_2 cost=6
if.end: ; b_2
if.end: ; b_2
x.2 = phi [x.1,if.then], [x.0,entry]
x.2 = phi [x.1,if.then], [x.0,entry]
sub = x_old.0 - 10
sub = x_old.0 - 10
cmp3 = x.2 < sub
cmp3 = x.2 < sub
cmp3 ?
cmp3 ?
if.end6: ; b_4
if.end6: ; b_4
x_old.1 = phi [x.3,if.then4], [x.2,if.end]
x_old.1 = phi [x.3,if.then4], [x.2,if.end]

\section*{Mixed approach to optimization}
(see in MathSAT)
Binary search Start with lower and upper bound, divide the interval in two test for satisfiability above the midpoint.

If seeking integer value, termination ensues.

Local search Find a polyhedron \(\bigwedge l_{i} \Longrightarrow \phi\), optimize locally in \(\bigwedge l_{i}\), get a new bound.

\section*{Diamonds}

Corresponds to sequence of \(n\) "if-then-else":
if (b[i]) \{ timing 2 \} else \{ timing 3 \} if (b[i]) \{ timing 3 \} else \{ timing 2 \}
\(D(n)\) the unsatisfiable formula:
\[
\begin{aligned}
& \text { for } 0 \leq i<n\left\{\begin{array}{l}
x_{i}-t_{i} \leq 2 \\
y_{i}-t_{i} \leq 3 \\
\left(t_{i+1}-x_{i} \leq 3\right) \vee\left(t_{i+1}-y_{i} \leq 2\right) \\
t_{n}-t_{0}>5 n
\end{array}\right.
\end{aligned}
\]

\section*{Schedule}

\section*{Introduction}

\section*{Propositional logic}

First-order logic

\section*{Applications}

\section*{Beyond DPLL(T) \\ WCET example \\ CDCL explosion \\ Abstract CDCL (ACDCL)}


\section*{Behavior of SMT-solvers}


\section*{Cost increases near bound}


\section*{DPLL(T) on diamonds}

Will enumerate each combination of disjuncts \(=\) All terms in disjunctive normal form

Fundamental limitation: can only use atoms from original formula.

\section*{Schedule}

\section*{Introduction}

\section*{Propositional logic}

First-order logic

\section*{Applications}

\section*{Beyond DPLL(T) \\ WCET example \\ CDCL explosion \\ Abstract CDCL (ACDCL)}


\section*{Abstract CDCL}

DPLL / CDCL assign truth values to Booleans
\(\downarrow\) generalization

ACDCL assigns truth values to Booleans and intervals to reals (or elements from an abstract domain)
e.g. if current assignment \(x \in[1,+\infty)\) and \(y=[4,10]\)
constraint \(z=x-y \rightsquigarrow x \in[-9,+\infty)\)
If too coarse, split intervals.
Akin to constraint programming.

\section*{Learning in ACDCL}

Constraints \((y=x) \wedge(z=x \cdot y) \wedge(z \leq-1)\)
Search context \(x \leq-4\), contradiction.
Contradiction ensured by \(x<0\) weaker than search context.
Learn \(x<0\). Predicate not in original formula.
(CDCL-style learning would only learn \(x>-4\).)

\section*{Non unicity of learning}

Choices \(x \geq 10\) and \(y \geq 10\) constraint \(x+y<10\). Possible generalizations:
- \(x \geq 0\) and \(y \geq 10\)
- \(x \geq 5\) and \(y \geq 5\)
- \(x \geq 10\) and \(y \geq 0\)

\section*{Schedule}

\section*{Introduction}

\section*{Propositional logic}

First-order logic

\section*{Applications}

\section*{Beyond DPLL(T) \\ WCET example \\ CDCL explosion \\ Abstract CDCL (ACDCL)}


\section*{MCSAT}

In DPLL(T), assign only to Booleans and atoms from original formula.
In MCSAT, assign to propositional atoms and numeric variables \(x_{1}, \ldots, x_{n}, \ldots\)

When finding an impossibility when trying to assign to \(x_{n+1}\), derive a general impossibility on \(x_{1}, \ldots, x_{n}\) (partial projection).

\section*{Example: diamonds}
\[
\begin{aligned}
& \text { for } 0 \leq i \leq 2\left\{\begin{array}{l}
x_{i}-t_{i} \leq 2 \\
y_{i}-t_{i} \leq 3 \\
t_{i+1}-x_{i} \leq 3 \vee t_{i+1}-y_{i} \leq 2
\end{array}\right. \\
& t_{0}=0 \\
& t_{3} \geq 16
\end{aligned}
\]

Pick \(t_{0} \mapsto 0, t_{1}-x_{0} \leq 3 \mapsto \mathbf{t}, x_{0} \mapsto 0\),
\(t_{1} \mapsto 0, t_{2}-x_{1} \leq 3 \mapsto \mathbf{t}, x_{1} \mapsto 0\),
\(t_{2} \mapsto 0, t_{3}-x_{2} \leq 3 \mapsto \mathbf{t}, x_{2} \mapsto 0\).
No way to assign to \(x_{3}\) !
Because \(x_{2} \mapsto 0\) and \(t_{3}-x_{2} \leq 3\) and \(t_{3} \geq 16\).

\section*{Analyze the failure}
\(x_{2} \mapsto 0\) fails due to a more general reason (Fourier-Motzkin)
\[
\left\{\begin{array}{l}
t_{3}-x_{2} \leq 3 \\
t_{3} \geq 16
\end{array} \Longrightarrow x_{2} \geq 13\right.
\]

Possible to learn
\[
t_{3}-x_{2}>3 \vee x_{2} \geq 13
\]

Retract \(x_{2} \mapsto 0\).

\section*{Backtracking}

We have learnt \(t_{3}-x_{2}>3 \vee x_{2} \geq 13\).
\(t_{3}-x_{2} \leq 3\) still assigned.
\[
\left\{x_{2} \geq 13 x_{2}-t_{2} \leq 2 \quad \Longrightarrow \quad t_{2} \geq 11\right.
\]

Thus learn
\[
t_{3}-x_{2}>3 \vee t_{2} \geq 11
\]
\(t_{3}-x_{2} \leq 3 \mapsto \mathbf{t}\) retracted.

\section*{Continuation}

Same reasoning for \(t_{3}-x_{2} \leq 3 \mapsto \mathbf{f}\) yields by learning
\[
t_{3}-x_{2} \leq 3 \vee t_{2} \geq 11
\]

Thus
\[
\left\{\begin{array}{l}
t_{3}-x_{2}>3 \vee t_{2} \geq 11 \\
t_{3}-x_{2} \leq 3 \vee t_{2} \geq 11
\end{array} \Rightarrow t_{2} \geq 11\right.
\]

One learns \(t_{2} \geq 11\).
Then \(t_{1} \geq 6\) similarly.
But then no satisfying assignment to \(t_{0}\) !

\section*{NLSAT}
(Dejan Jovanović, Leonardo De Moura) MCSAT for non-linear arithmetic

Partial projection: Fourier-Motzkin replaced by partial cylindrical algebraic decomposition.

\section*{Nonexhaustive list of SMT-solvers}

See also http://smtlib.cs.uiowa.edu/ http://smtlib.cs.uiowa.edu/solvers.shtml Free
- Z3 (Microsoft Research) https://github.com/Z3Prover
- Yices (SRI International) http://yices.csl.sri.com/
- CVC4 http://cvc4.cs.nyu.edu/web/

\section*{Non-free}
- MathSAT (Fundazione Bruno Kessler) http://mathsat.fbk.eu/

\section*{Schedule}

\section*{Introduction}

\section*{Propositional logic}

First-order logic

\section*{Applications}

\section*{Beyond DPLL(T)}

Quantifier elimination

\section*{Quantifier elimination}

Over \(\mathbb{Z}\) or \(\mathbb{Q}\) or \(\mathbb{R}\),
\[
\forall y y \leq x \Longrightarrow y \leq 1
\]
is equivalent to
\[
x \leq 1
\]

Finding an equivalent formula without quantifiers = quantifier elimination

Note: quantifier elimination algorithm + decidable ground formulas
\(\Longrightarrow\) decidability

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Resolution}

A formula in CNF \(\bigwedge_{i} C_{i}=\) a set \(\left\{C_{1}, \ldots, C_{n}\right\}\) of clauses.
Assume:
- no redundant literals in a clause (e.g. \(a \vee a \vee b\) )
- no trivially true clauses (e.g. \(a \vee \neg a \vee b\) ).

For clauses where \(a\) appears, apply resolution:
\[
\frac{C_{i}^{\prime} \vee a \quad C_{j}^{\prime} \vee \neg a}{C_{j}^{\prime} \vee C_{j}^{\prime}}
\]

Th: the result (clauses without \(a\) ) is equivalent to the projection on variables except for \(a\)
\[
C_{1}^{\prime} \wedge \cdots \wedge C_{n^{\prime}}^{\prime} \equiv \exists a\left(C_{1} \wedge \cdots \wedge C_{n}\right)
\]

\section*{Some remarks on resolution}
- Not efficient if applied blindly.
- May be used as simplification if not inflating the set too much.
- \(\leq 3^{|V|}\) different clauses, thus termination.
- Detect subsumption: do not store \(a \vee b \vee c\) in addition to \(a \vee b\).
- Eliminate all variables: obtain the empty clause (f) iff \(\bigwedge_{i} C_{i}\) unsatisfiable.
- (More on this later) DPLL/CDCL SAT-solvers finding "unsat" can give a resolution proof (more clever than blind search)

\section*{Other method}
\[
\begin{aligned}
& \exists x F(x) \equiv F(0) \vee F(1) \\
& \forall x F(x) \equiv F(0) \wedge F(1)
\end{aligned}
\]

Generalizes to any finite structure.
Again, explosive complexity !

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Remarks}
- \(\forall x F \equiv \neg \exists x \neg F\)
- \(\exists x\left(F_{1} \vee F_{2}\right) \equiv\left(\exists x F_{1}\right) \vee\left(\exists x F_{2}\right)\)
- \(\exists x F \equiv \exists x F\) where \(F\) DNF of \(F\)

All cases boil down to \(\exists x_{1} \ldots x_{n} C\) where \(C\) conjunction.

\section*{Geometrically}
\(C\) conjunction of linear inequalities.
Strict inequalities: \(L(x, y, \ldots)<B\) into \(L(x, y, \ldots)+\epsilon \geq B\).
Closed convex polyhedron in \(x, y, \ldots, \epsilon\).
Either represented by constraints (= faces) or generators (= vertices, + rays and lines for unbounded).

One projection method: go to generators, project them, move back to constraints.

\section*{Constraints vs generators}


3 constraints \(\equiv 2\) vertices +2 rays

\section*{Chernikova's algorithm}

Often applied following Le Verge's remarks.
http:
//www.irisa.fr/polylib/document/cher.ps.gz
Compute generators from constraints : conjoin with constraints one by one.


\section*{Chernikova's algorithm, reversed}

Duality constraints vs generators
Dual polyhedron: reverse constraints and generators

\section*{Fourier-Motzkin}

Takes a list \(L\) of linear inequalities and a variable \(x\). Split \(L\) into:
- \(L_{+}\), where \(x\) has positive coefficient ( \(n \cdot x+\cdots \leq b\) ), thus \(\equiv x \leq \frac{1}{n}\). \((b-\ldots)\)
- \(L_{-}\), where \(x\) has negative coefficient \(((-n) \cdot x+\cdots \leq b)\), thus \(\equiv x \geq \frac{1}{n}\). \((b-\ldots)\)
- \(L_{0}\), without \(x\)

Otherwise said
\[
\max _{i} l_{i}^{-}(y, \ldots) \leq x \leq \min _{j} l_{j}^{+}(y, \ldots)
\]

\section*{Elimination}
\(\exists x \max _{i} l_{i}^{-}(y, \ldots) \leq x \leq \min _{j} l_{j}^{+}(y, \ldots)\)
iff \(\max _{i} l_{i}^{-}(y, \ldots) \leq \min _{j} l_{j}^{+}(y, \ldots)\)
iff for all \(i\) and \(j l_{i}^{-}(y, \ldots) \leq l_{j}^{+}(y, \ldots)\)
Elimination:
- Copy \(L_{0}\)
- For all pair \(\left(l_{i}^{-}(y, \ldots) \geq x, x \leq l_{j}^{+}(y, \ldots)\right) \in L_{-} \times L_{+}\) produce \(l_{i}^{-}(y, \ldots) \leq l_{j}^{+}(y, \ldots)\).

\section*{Example}

Eliminate \(y\) from:
\(x+y \leq 1 \wedge-x+y \leq 1 \wedge x-y \leq 1 \wedge-x-y \leq 1\)
\(x+y \leq 1 \wedge x-y \leq 1 \rightsquigarrow x \leq 2 \equiv x \leq 1\)
\(x+y \leq 1 \wedge-x-y \leq 1 \rightsquigarrow 0 \leq 2\)
\(-x+y \leq 1 \wedge x-y \leq 1 \rightsquigarrow 0 \leq 2\)
\(-x+y \leq 1 \wedge-x-y \leq 1 \rightsquigarrow-2 x \leq 2 \equiv x \geq-1\)
Note: generates trivial constraints and more generally redundant constraints.

\section*{Constraint growth}

Project 1 variable: if \(n / 2\) positive and \(n / 2\) negative constraints, then \(n^{2} / 4\) constraints in the output.
(Heuristic: start with the dimensions minimizing \# positive constraints \(\times\) \# negative constraints)
For \(p\) projected dimensions: bound in \(n^{2^{p}}\).
But McMullen's bound (\# dimension- \(k\) faces of a polyhedron with \(v\) vertices in \(d\)-dimension space) yields a single exponential bound!

Anything above is redundant constraints.

\section*{Elimination of redundant constraints}
- Syntactic criteria (cf Simon \& King, SAS 2005), e.g. \(a_{1} x_{1}+\cdots+a_{n} x_{n} \leq B\) eliminated by \(a_{1} x_{1}+\cdots+a_{n} x_{n} \leq B^{\prime}\) with \(B^{\prime} \leq B\)
- Linear programming: if we have \(C\) and add \(C^{\prime}\) \(\left(a_{1} x_{1}+\cdots+a_{n} x_{n} \leq B\right)\),
- test emptiness of \(C \wedge \neg C^{\prime}\) by linear programming
- or maximize \(a_{1} x_{1}+\cdots+a_{n} x_{n}\) w.r.t \(C\) and keep \(C^{\prime}\) if \(B\) less than the optimum
- Or ray-tracing (Maréchal \& Périn, 2017) https://hal.archives-ouvertes.fr/ hal-01385653/document

\section*{Improvements on projection-based methods}

Convert \(F\) to DNF then project?
Rather (Monniaux, LPAR 2008)
- Extract a conjunction \(C \Rightarrow F\) of atoms of \(F\) (see SMT-solving).
- Extract maximal conjunction \(C^{\prime}\) s.t. \(C \Rightarrow C^{\prime} \Rightarrow F\). From SMT-solving and/or unsat-core.
- Project \(C^{\prime}\) into \(\pi\left(C^{\prime}\right)\), add to output \(F\).
- Conjoin \(\neg \pi\left(C^{\prime}\right)\) to \(F\).
and improvements around that theme.

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Basic ideas of substitution methods}

Obvious: if \(x\) is in a finite domain \(\left\{k_{1}, \ldots, k_{n}\right\}\) then \(\exists x F \equiv F\left[x \mapsto k_{1}\right] \vee \cdots \vee F\left[x \mapsto k_{n}\right]\).

Nontrivial extension: For certain logics, can use \(k_{i}\) functions of free variables of the formula.

Known as substitution (or virtual substitution) methods.

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Linear inequalities over the reals}

Impossible to distinguish \(\mathbb{Q}, \mathbb{R}\), etc.
Axioms: totally ordered group + scheme \(« \forall x \exists y x=\mathbf{n} . x »\) for any natural \(n\).

\section*{Test points}


\section*{Ferrante \& Rackoff's method}
\(\exists x F\) is true iff
- true for \(x \rightarrow-\infty, x \rightarrow+\infty\),
- true for all \(x\) intersection point or median to intersections

Let \(x_{1}, \ldots, x_{n}\) the intersections as functions of \(y, z, \ldots\)
\(\exists x F \equiv F[x \mapsto-\infty] \vee F[x \mapsto+\infty] \bigvee \bigvee_{i} F\left[x \mapsto x_{i}\right] \bigvee \bigvee_{i<j} F\left[x \mapsto \frac{x_{i}+x_{j}}{2}\right]\)

Quadratic number of substitutions.

\section*{Loos \& Weisfpenning's method}
\(F\) in negation normal form, leaves are \(x \geq \ldots, x \leq \ldots\), \(x>\ldots, x<\ldots\)
\(\exists x F\) true iff
- true when \(x \rightarrow-\infty\)
- true for all \(x=x_{i}\) given \(x \geq x_{i}(y, \ldots)\)
- true for all \(x=x_{i}+\epsilon\) given by \(x>x_{i}(y\) dots \()\)
\(\epsilon\) infinitesimal, \(x \geq t+\epsilon\) means \(x>t\)
\(\exists x F \equiv F[x \mapsto-\infty] \vee F[x \mapsto+\infty] \vee \bigvee_{i} F\left[x \mapsto x_{i}\right] \bigvee \bigvee_{j} F\left[x \mapsto x_{i}^{\prime}+\epsilon\right]\)

Linear number of substitutions.

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Presburger arithmetic}
,,\(+- \geq\) (+multiplication by constant)
Does it admit quantifier elimination?

\section*{Presburger arithmetic}
,,\(+- \geq\) (+multiplication by constant)
Does it admit quantifier elimination?
No: \(\exists x y=2 x \not \equiv\) a quantifier-free formula
If adding an infinity of predicates \(n \mid x\) ( \(n\) natural constant) then admits quantifier elimination.

\section*{Cooper's method}

Same idea as Loos \& Weisfpenning
Put \(F\) in NNF: atoms are \(h . x \leq \ldots, h . x \geq \ldots, h . x<\ldots\), \(h . x>\ldots, h . x=\ldots, \neq n \mid \ldots, n \nmid \ldots\)
Rewrite \(=, \neq, \geq, \leq\) into \(>,<\).
Any atom is thus h.x \(<t, h . x>t, n \mid h . x+t\) or \(n \nmid h . x+t(t\) without \(x\) )

Let \(m\) be the least common multiple of \(h\). Scale atoms such that h.x into m.x.
Replace \(m . x\) by \(x^{\prime}\) and conjoin \(m \mid x^{\prime}\).
Get \(F\). Any atom is \(x^{\prime}<t, x^{\prime}>t, n \mid x^{\prime}+t\) or \(n \nmid x^{\prime}+t(t\) without \(\chi^{\prime}\) )

\section*{Some remark}

Let \(\delta\) the least common multiple of \(n\) in \(n \mid x^{\prime}+t\) or \(n \nmid x^{\prime}+t\). Divisibility predicates have \(\delta\)-periodic truth value.

Fix \(y, z, \ldots\) There is a solution \(x^{\prime}\) iff
- there is an infinity of solutions \(\rightarrow-\infty\)
- or there is a least solution

\section*{Solutions to \(-\infty\)}
(Fix \(y, z, \ldots\) )
Case when for all \(M\) there is a solution \(x^{\prime}<M\). There are thus solutions \(x^{\prime}\)
- making true all atoms \(x^{\prime}<t\)
- making false all atoms \(x^{\prime}>t\).

Replace \(x^{\prime}<t\) (etc.) by \(\mathbf{t}, x^{\prime}>t\) by \(\mathbf{f}\).
Obtain \(F_{-\infty}\). Only divisibility atoms.
The problem is now \(\delta\)-periodic, thus take
\[
F\left[x^{\prime} \mapsto 1\right] \vee \cdots \vee F^{\prime}\left[x^{\prime} \mapsto \delta\right]
\]

\section*{Other solutions}

There is a least solution \(x^{\prime}\).
Can only exist if \(x^{\prime}>t\) has become true.
Any \(x^{\prime}\) is solution if it satisfies the same inequalities and the same divisibility predicates.
By \(\delta\)-periodicity:
Test \(\left.F^{\prime}\left[x^{\prime} \mapsto t+1\right] \ldots F^{\prime} \mapsto t+\delta\right]\).
Finally:
\[
\exists x F \equiv \exists x^{\prime} F^{\prime} \equiv \bigvee_{j=1} F_{-\infty}^{\prime}\left[x^{\prime} \mapsto j\right] \vee \bigvee_{j=1} \bigvee_{t \in B} F^{\prime}\left[x^{\prime} \mapsto b+j\right]
\]

\section*{Some optimizations}

Replace \(x\) by \(-x\) and apply the same process?
If several variables are to be eliminated: move \(\exists y_{1} \ldots y_{n}\) into the disjunction terms \(\bigvee_{j=1}^{\delta} \bigvee_{t \in B} F\left[x^{\prime} \mapsto b+j\right]\).
Eliminate in \(\exists y_{1} \ldots y_{n} F\left[x^{\prime}+j\right]\) where \(j\) extra variable, then replace \(j\).

In disjunctions, test using SMT-solving if the formula is satisfiable.
(see e.g. works by Nikolaj Bjørner)

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Encoding into regular languages}

Formula with \(n\) free variables in \(\mathbb{N}\)
\(\rightsquigarrow\) finite automaton recognizing \(n\)-tuples of binary words
\(\rightsquigarrow\) finite automaton recognizing words over \(\{0,1\}^{n}\)
Example : \(z=x+y\), recognize \((x, y, z)\)


\section*{Constructions}
- Constants: easy.
- \(\mathbb{Z}\) : use a sign bit, or encode \(\geq 0\) into even numbers and \(<0\) into odd numbers.
- Successor, addition etc.: propagate carry inside the automaton state.
- \(\wedge\) : intersection of regular languages
- \(V\) : union of regular languages
- \(\neg\) : complement
- \(\exists v_{i} F\) : make transitions depending on the \(i\)-th input nondeterministic

Check for satisfiability: does the automaton accept words?

\section*{Richness of the logic}

We have encoded Presburger arithmetic into finite automata. Are there finite automata encoding non-Presburger formulas?

\section*{Richness of the logic}

We have encoded Presburger arithmetic into finite automata. Are there finite automata encoding non-Presburger formulas?

Yes: \(0^{*} 1\) encodes \(\left\{2^{n} \mid n \in \mathbb{N}\right\}\)
Difficult to take an automaton and convert it into Presburger.
Costly procedures. Implementations: MONA, LIRA...

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Theory of the real closed fields}

Totally ordered field such that
- any positive number has a square root
- axiom scheme indexed by \(P \in \mathbb{Z}[X]\) of odd degree, then \(P\) has at least one root.

Cannot distinguish \(\mathbb{R}\) from algebraic reals.
NB: Quantifier elimination with all steps provable inside the theory
\(\Rightarrow\) any closed formula is decidable
\(\Rightarrow\) all models of the theory satisfy the same formulas

\section*{Theorem}

Tarski (1951) The theory of real closed fields admits quantifier elimination.

From the proof one can extract an algorithm with huge complexity.

Now: algorithm of cylindrical algebraic decomposition (Collins) + many improvements
Difficult to implement, few implementations (QEPCAD, Mathematica, partial in Microsoft Z3, partial in Yices?)

\section*{Muchnik's proof}

Start: polynomials \(P_{1}, \ldots, P_{m} \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{n}\right]\) with imposed signs \(\sigma_{1}, \ldots, \sigma_{m} \in\{-, 0,+\}\).

End: polynomials \(P_{1}^{\prime}, \ldots, P_{m^{\prime}}^{\prime} \in \mathbb{Z}\left[Y_{1}, \ldots, Y_{n}\right]\) such that imposing their sign yields a unique sign diagram for \(P_{1}, \ldots, P_{m}\) w.r.t \(X\).

Try all combinations of signs for \(P_{1}^{\prime}, \ldots, P_{m^{\prime}}^{\prime}\), keep those for which at least one suitable zone appears for \(X\).

\section*{Saturation}

Saturate the set of input polynomials by:
- derivation: given \(P\), add \(\mathrm{d} P / \mathrm{d} X\)
- extraction of leading coefficient: from \(\sum_{k=0}^{d} a_{k} X^{k}\) \(\left(a_{k} \in \mathbb{Z}\left[Y_{1}, \ldots, Y_{m}\right] \backslash\{0\}\right)\) get \(a_{k}\)
- removal of leading coefficient: from \(\sum_{k=0}^{d} a_{k} X^{k}\) get \(\sum_{k=0}^{d-1} a_{k} X^{k}\)
and "modified remainder" (modified to avoid non-integer coefficients) if \(A, B \in \mathbb{Z}\left[X, Y_{1}, \ldots, Y_{m}\right]\), \(\operatorname{deg} A \geq \operatorname{deg} B\), and \(D\) leading coefficient of \(B\), there exist unique \(Q\) and \(R\) s.t. \(D^{\operatorname{deg} A-\operatorname{deg} B+1} . A=Q B+R\); return \(R\).

Group polynomials into "strata" by application of the last rule.

\section*{Sign diagram}

Each \(\gamma_{1}<\gamma_{2}<\ldots\) corresponds to a root of at least one of the polynomials \(P_{1}, \ldots, P_{m}\).

For each \(P_{i}\) and interval \(]-\infty, \gamma_{1}\left[,\left\{\gamma_{1}\right\},\right] \gamma_{1}, \gamma_{2}\left[,\left\{\gamma_{2}\right\}, \ldots\right.\) give a \(\operatorname{sign}(-, 0,+)\).
\begin{tabular}{|l|ccccccc|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \(-\infty\) & \(\gamma_{1}\) & & \(\gamma_{2}\) & & \(\gamma_{3}\) & \(+\infty\) \\
\hline\(b\) & + & + & + & + & + & + & + \\
\(c\) & + & + & + & + & + & + & + \\
\(4 c-b^{2}\) & - & + & - & - & - & - & - \\
\hline \(2 x+b\) & - & - & - & 0 & + & + & + \\
\hline\(x^{2}+b x+c\) & + & 0 & - & - & - & 0 & + \\
\hline
\end{tabular}

\section*{Idea of the proof}

First impose the signs of the polynomials of degree 0 in \(X\).
\begin{tabular}{|l|l|}
\cline { 2 - 2 } \multicolumn{1}{c|}{} & \\
\hline\(b\) & + \\
\(c\) & + \\
\(4 c-b^{2}\) & - \\
\hline
\end{tabular}

\section*{The other polynomials}

The sign of its derivative imposes the behavior \(2 x+b\), thus a root \(\gamma_{2}\)
\begin{tabular}{|l|ccc|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \(-\infty\) & \(\gamma_{2}\) & \(+\infty\) \\
\hline\(b\) & + & + & + \\
\(c\) & + & + & + \\
\(4 c-b^{2}\) & - & - & - \\
\hline \(2 x+b\) & - & 0 & + \\
\hline
\end{tabular}

\section*{From one stratum to one higher stratum}
\(x^{2}+b x+c\) is + when \(x \rightarrow \pm \infty\)
From \(4\left(x^{2}+b x+c\right)=(2 x+b)(2 x+b)+\left(4 c-b^{2}\right)\) get the sign of \(x^{2}+b x+c\) at \(x=\gamma_{2}\)
\begin{tabular}{|l|ccc|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & \(-\infty\) & \(\gamma_{2}\) & \(+\infty\) \\
\hline\(b\) & + & + & + \\
\(c\) & + & + & + \\
\(4 c-b^{2}\) & - & - & - \\
\hline \(2 x+b\) & - & 0 & + \\
\hline\(x^{2}+b x+c\) & + & - & + \\
\hline
\end{tabular}

\section*{Adding other roots}

By continuity, need extra roots \(\gamma_{1}\) and \(\gamma_{3}\)
\begin{tabular}{|l|ccccccc|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \(-\infty\) & \(\gamma_{1}\) & & \(\gamma_{2}\) & & \(\gamma_{3}\) & \(+\infty\) \\
\hline\(b\) & + & + & + & + & + & + & + \\
\(c\) & + & + & + & + & + & + & + \\
\(4 c-b^{2}\) & - & + & - & - & - & - & - \\
\hline \(2 x+b\) & - & - & - & 0 & + & + & + \\
\hline\(x^{2}+b x+c\) & + & 0 & & - & & 0 & + \\
\hline
\end{tabular}

\section*{Complete}

There can be no more roots of \(x^{2}+b x+c\) in \(] \gamma_{1}, \gamma_{2}[\) or \(] \gamma_{2}, \gamma_{3}[\) otherwise the derivative should have a zero.
\begin{tabular}{|l|ccccccc|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \(-\infty\) & \(\gamma_{1}\) & & \(\gamma_{2}\) & & \(\gamma_{3}\) & \(+\infty\) \\
\hline\(b\) & + & + & + & + & + & + & + \\
\(c\) & + & + & + & + & + & + & + \\
\(4 c-b^{2}\) & - & + & - & - & - & - & - \\
\hline \(2 x+b\) & - & - & - & 0 & + & + & + \\
\hline\(x^{2}+b x+c\) & + & 0 & - & - & - & 0 & + \\
\hline
\end{tabular}

\section*{More details?}

Michaux \& Ozturk, Quantifier elimination following Muchnik

This algorithm cannot be used except on very small systems but has a simple proof.

More involved mathematics for cylindrical algebraic decomposition but same general idea of "projecting" behaviors.

\section*{Schedule}
Introduction
Propositional logic
First-order logic

\section*{Applications}
Beyond DPLL(T)

Quantifier elimination
Booleans
Projecting conjunctions
Substitution methods

\section*{Conclusion}

Quantifier elimination
- Rather easy on linear theory of reals.
- Harder on linear theory of integers (Presburger) - see Fischer \& Rabin, 1974 for lower bound on costs.
- Painful in another way on polynomial real arithmetic (real closed fields).
- Impossible in general on polynomial integer arithmetic (undecidability) - we'll see it.

\section*{Schedule}

\section*{Introduction}

\section*{Propositional logic}

First-order logic

\section*{Applications}

\section*{Beyond DPLL(T)}

Quantifier elimination

Interpolants

\section*{Predicate abstraction}
```

for (int i=0; i<100; i++) \{
j = j+2;
\}
assert(j < 210);

```


\section*{A bad counterexample}

Try to find values for the red path:
\(i_{1}=0 \wedge j_{1}=0 \wedge i_{2}=i_{1} \wedge j_{2}=j_{1} \wedge i \geq 100 \wedge j \geq 210\)

\section*{A bad counterexample}

Try to find values for the red path:
\(i_{1}=0 \wedge j_{1}=0 \wedge i_{2}=i_{1} \wedge j_{2}=j_{1} \wedge i \geq 100 \wedge j \geq 210\)
UNSAT
Why wrong? Can move from one state in \(A\) to one state in \(B\), from one state in \(B\) to one in "fail". But states in \(B\) not the same.


\section*{A refinement}


Two step explanation for infeasible path:
\(-i_{1}=0 \wedge j_{1}=0 \wedge i_{2}=i_{1} \wedge j_{2}=j_{1} \Rightarrow j_{2}=2 i_{2} \wedge i \geq 100\)
- \(j_{2}=2 i_{2} \wedge i_{2} \geq 100 \Rightarrow j_{2}<210\)

\section*{A refinement}


Two step explanation for infeasible path:
\(-i_{1}=0 \wedge j_{1}=0 \wedge i_{2}=i_{1} \wedge j_{2}=j_{1} \Rightarrow j_{2}=2 i_{2} \wedge i \geq 100\)
- \(j_{2}=2 i_{2} \wedge i_{2} \geq 100 \Rightarrow j_{2}<210\)

This is a Craig interpolant.

\section*{A good refinement}


\[
i^{\prime}=i+1
\]
\[
j^{\prime}=j+2
\]

\section*{Another refinement}


Two step explanation for infeasible path:
- \(i_{1}=0 \wedge j_{1}=0 \wedge i_{2}=i_{1} \wedge j_{2}=j_{1} \Rightarrow i_{2}=0 \wedge j_{2}=0\)
- \(i_{2}=0 \wedge j_{2}=0 \Rightarrow j_{2}<210\)

This is another Craig interpolant.

\section*{Another refinement}


\section*{Further refinement}

Two step explanation for infeasible path:
- \(i_{1}=0 \wedge j_{1}=0 \wedge i_{2}=i_{1} \wedge j_{2}=j_{1} \Rightarrow i_{2}=0 \wedge j_{2}=0\)
- \(i_{2}=0 \wedge j_{2}=0 \wedge i_{3}=i_{2}+1 \wedge j_{3}=j_{2}+2 \Rightarrow i_{3}=1 \wedge j_{3}=2\)
- \(i_{3}=1 \wedge j_{3}=2 \Rightarrow j_{2}<210\)

This is another Craig interpolant.

\section*{Further refinement}
```

for (int i=0; i<100; i++) \{
j = j+2;
\}
assert(j < 210);

```


\section*{Overfitting and convergence}
- Interpolant \(j=2 i \wedge i \leq 100\) (polyhedral inductive invariant) proves the property.
- Interpolants \(i=0 \wedge j=0, i=1 \wedge j=2, i=2 \wedge j=4\) ...(exact post-conditions) lead to non-termination.

Challenge: find "good" interpolants "likely" to become inductive
Problem similar to widening
McMillan: find "short" interpolants using few "magic" constants?

\section*{Problem statement}

Suppose \(A(x, y) \Longrightarrow B(y, z)\)
Obtain \(I(y)\) such that \(A \Longrightarrow I \Longrightarrow B\)
I talks about common variables
If theory admits quantifier elimination, possibilities:
Stronger \(\exists x A(x, y)\)
Weaker \(\forall z B(y, z)\)
but they may be "too precise" (overfitting !)

\section*{Interpolants from proofs}

Suppose \(A \wedge B\) unsatisfiable (aka \(A \Longrightarrow \bar{B}\) )
Obtain a resolution proof of \(\mathbf{f}\), process proof to get interpolants (McMillan)

For a clause \(c, g(c)=c\) keeping only global symbols (common to \(A\) and \(B)\). \([g(c)\) partial interpolant at \(c\)

\section*{Rules}
(courtesy of Ken McMillan and Philipp Rümmer)
\[
\overline{c[c \downarrow B]} c \in A \quad \overline{c[\mathbf{t}]} c \in B
\]
\(\left.\frac{v \vee c \quad\left[I_{1}\right]}{} \begin{array}{lll}c \vee d & \bar{v} \vee d & {\left[I_{2} \vee\right.}\end{array} v I_{2}\right] \quad v\) does not occur in \(B\)
\[
\frac{v \vee c \quad\left[I_{1}\right] \quad \bar{v} \vee d \quad\left[I_{2}\right]}{c \vee d \quad\left[I_{1} \wedge I_{2}\right]} v \text { occurs in } B
\]

\section*{Correctness}
\(c \backslash B\) clause \(c\) without the literals occurring in \(B\) \(c \downarrow B\) clause \(c\) with only the literals occurring in \(B\)

In any such annotated proof at any node \(c \quad\left[I_{c}\right]\)
- \(A \vDash I_{c} \vee(c \backslash B)\)
- \(B, I_{c} \mid=c \downarrow B\)
- \(I_{c} \preceq A\) and \(I_{C} \preceq B\)

In particular at the root!

\section*{With theories}

Combining preceding rules with theory-specific rules
Can become complicated if the theory introduces mixed literals when solving
(= literals with variables from both \(A\) and \(B\) ) see Jürgen Christ's thesis

Linear real arithmetic: simple case

\section*{Interpolants in linear real arithmetic}
\(\neg \phi\) is a conjunction of inequalities \(C_{1} \wedge \cdots \wedge C_{n}\)
\(C_{i}\) over \(\vec{x}, \vec{y}, \vec{z}\) vectors
Collect \(C_{i}\) into \(A_{i}\) over \(\vec{x}, \vec{y}\) and \(B_{i}\) over \(\vec{y}, \vec{z}\)
\(\bigwedge_{i} A_{i}\) is a polyhedron over \(\vec{x}, \vec{y}\)
\(A^{\prime}=\exists \vec{x} \bigwedge_{i} A_{i}\) is a polyhedron over \(\vec{y}\)
\(\bigwedge_{i} B_{i}\) is a polyhedron over \(\vec{y}, \vec{z}\)
\(B^{\prime}=\exists \vec{z} \bigwedge_{i} B_{i}\) is a polyhedron over \(\vec{y}\)
\(A^{\prime} \cap B^{\prime}=\emptyset\)
Find a separating hyperplane: \(A^{\prime} \vDash I_{\phi}, B^{\prime} \models \neg I_{\phi}\)

\section*{Difficulties}

Solving certain theories involves adding new predicates e.g. branching and cutting planes in linear integer arithmetic some of these predicates may involve local variables from \(A\) and \(B\)
they should not be made global
Interpolation then more complicated (see e.g. Jürgen Christ's thesis)

\section*{Criticism}

The proof tree depends on heuristics and random choices (variables, polarities, restarts...).
The interpolant thus depends on them. Interpolants get fed into a refinement loop
\(\Rightarrow\) brittleness
Search for "simpler", more "beautiful" interpolants?

\section*{An interpolation problem}

Interpolation problem \(A \Rightarrow I, I \Rightarrow \neg B\) :
\[
\begin{array}{ll}
A_{1}=x \leq 1 \wedge y \leq 4 & A_{2}=x \leq 4 \wedge y \leq 1 \\
A=A_{1} \vee A_{2} & B=x \geq 3 \wedge y \geq 3 \tag{6}
\end{array}
\]

SMTInterpol and MathSAT produce \(I=x \leq 1 \vee y \leq 1\).

\section*{Simpler, more beautiful ones}


How about \(x+2 y \leq 9\), or \(x+y \leq 5\) ?

\section*{Extensions}

\section*{Trace interpolants}

Tree interpolants (for Horn clauses)

\section*{Questions?}

For internships, theses etc.:
http://www-verimag.imag.fr/~monniaux/ David. Monniaux@univ-grenoble-alpes.fr```

