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Introduction

Why abstract interpretation

Over-approximations of behavior of programs.
(And also under-approximations.)

▶ Prove that programs satisfy specifications.
▶ Study program behavior.
▶ Enable optimizations in compilers.
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Introduction

Abstract interpretation in a nutshell

What can happen in the program: R (undecidable as per Rice’s theorem)
What we compute: R♯

Soundness: R ⊆ R♯

Program takes a step from R to R′

We compute: R♯′
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Introduction

Limits of this tutorial

Vast topic

Will skim over many aspects

Focus on numerical abstraction because easier to visualize
(But will talk about other kinds of abstraction)

Will not cover underapproximations
Will not cover termination analysis
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Vanilla: finite lattices Mapping to finite state
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Vanilla: finite lattices Mapping to finite state

Rule of signs
Abstract integers into {-,0,+}.
To each z ∈ Z, associate s(z) = + if z > 0, s(z) = - if z < 0, s(0) = 0.

⊤ = {-,0,+}

x y x+ y
- - -
- 0 -
- + ⊤
0 - -
0 0 0
0 + +
+ - ⊤
+ 0 +
+ + +
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Vanilla: finite lattices Mapping to finite state

Refinement for known constants

x x+ 1
- {-, 0}
0 +
+ +
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Vanilla: finite lattices Mapping to finite state

From variable to state

Finite number of variables: abstract each variable separately.
Concrete state: (x1, . . . , xn)
Abstract state: (α(x1), . . . , α(xn))

Transform concrete → into abstract →♯

e.g. (x, y)
y:=x+y−−−−→ (x′, y′) defined by (x, y) → (x, x+ y)(

x♯, y♯
) y:=x+y−−−−→

(
x♯, y♯′

)
for all y♯′ in the plus abstract table.

e.g. (+, -) →♯ (+,+)
(+, -) →♯ (+,0)
(+, -) →♯ (+, -)
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Vanilla: finite lattices Mapping to finite state

Control locations

The control location is just another variable, often not abstracted.

If instruction from control location p to control location p′ is y := x+ y,:
(p, x, y) → (p′, x′, y′)
and proceed as above
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Vanilla: finite lattices Mapping to finite state

Simple data abstractions

Abstraction
To each s ∈ Σ attach α(s) ∈ Σ♯.
To each S ⊆ Σ, define α(S) = {α(s) | s ∈ S}.

Replace P (Σ) (infinite) by P
(
Σ♯

)
(finite).

Soundness
σ → σ′ =⇒ α(σ) →♯ α(σ′)

Most precise: σ♯ →♯ σ♯′ iff
∃σ, σ′ α(σ) = σ♯ ∧ α(σ′) = σ♯′ ∧ σ → σ′
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Vanilla: finite lattices Mapping to finite state

Reachability analysis

Reachable states for →♯ are computable, because finite state, if →♯ is decidable.

Worklist graph traversal algorithm:
▶ start from initial state σ♯

0, add σ♯
0 to worklist

▶ until worklist empty, take σ♯ from worklist, if not marked as “reached”, mark it
and add all its successors to worklist
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Vanilla: finite lattices Mapping to finite state

Note on algorithmic results

Reachability in the abstract is uniquely defined.

The above algorithm computes the same set of abstract states regardless of worklist
ordering.

Choices of ordering =⇒ cost of analysis issue only
(e.g. order worklist using reverse postorder)
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Vanilla: finite lattices Mapping to finite state

Collecting by program point

We collect abstract states (p, v♯1, . . . , v
♯
n). We can group them by control location

(program point) p.

For each program point, compute a set of reachable abstract states (v♯1, . . . , v
♯
n) where

v1, . . . , vn ∈ {-,0,+}.

In other words, to each p, associate R♯(p) ⊆ {-,0,+}n
similar to collecting R(p) reachable program states at control location p.
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Vanilla: finite lattices Smaller lattices
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Vanilla: finite lattices Smaller lattices

Independent abstraction between variables

Instead of any R♯(p) ⊆ {-,0,+}n
consider only Cartesian products

∏n
i=1 R

♯(p, i) where R♯(p, i) ⊆ {-,0,+}

In other words: R♯(p) is either
▶ ⊥ “location is unreachable”
▶ a map from 1 . . . n to P ({-,0,+}) \ {}

“Smashed bottom” = “if one variable cannot contain a value, then the instruction is
unreachable”
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Vanilla: finite lattices Smaller lattices

Difference between dependent and independent abstraction

1: y := x
2: if x = 0:
3: if y ̸= 0:
4: here

Variables: x, y

Dependent
R♯(2) = {(-, -), (0,0), (+,+)}
R♯(3) = {(0,0)}
R♯(4) = ∅

Independent
R♯(2) = {-,0,+} × {-,0,+}
R♯(3) = {0} × {-,0,+}
R♯(4) = {0} × {-,+}
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Vanilla: finite lattices Smaller lattices

Powerset lattice

To each program location and each variable, attach a nonempty subset of {-,0,+}.
-,0,+

-,+-,0 0,+

0- +

∅
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Vanilla: finite lattices Smaller lattices

A simpler lattice

To each program location and each variable, attach an element of this lattice L♯

⊤

0- +

⊥
n variables, take “smashed bottom” product lattice

(
L♯
)n

(one ⊥ = ⊥ everywhere)
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Vanilla: finite lattices Smaller lattices

What this means, variable per variable

Concretization function
γ maps a lattice element to the values it represents.
γ(⊤) = Z γ(-) = (−∞, 1] γ(0) = {0} γ(+) = [1,+∞)

Abstraction function
α(∅) = ⊥
For S ⊆ (−∞, 1], S ̸= ∅, α(S) = -
For S ⊆ [1,+∞), S ̸= ∅, α(S) = +
α({0}) = 0
α(S) = ⊤ otherwise
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Vanilla: finite lattices Smaller lattices

Abstraction for a vector of variables

Concretization
γv(l

♯
1, . . . , l

♯
n) = {x1, . . . , xn | ∀i xi ∈ γ(l♯i )}

Abstraction
αv(A) = {a♯1, . . . , a♯n}
a♯i =

⊔
x1,...,xn∈A α(xi)

α, γ form a Galois connection.
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Vanilla: finite lattices Invariant inference algorithm

Plan
Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 23 / 82



Vanilla: finite lattices Invariant inference algorithm

An algorithm for inferring invariants

Worklist graph traversal algorithm:

▶ start from initial state
(
p0, σ

♯
0

)
, set R♯(p0) := σ♯

0, add p0 to worklist

▶ until worklist empty, take p in worklist; for each transition p
op−→ p′:

▶ compute y♯ := R♯(p′) ⊔ op♯(R♯(p))
▶ if y♯ ̸= R♯(p′), set R♯(p′) := y♯ and add p′ to the worklist
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Vanilla: finite lattices Invariant inference algorithm

Termination and soundness

Termination
At every iteration, at least one R♯(p) increases, within a finite domain

Soundness
When it terminates, for any transition p

op−→ p′: op♯(R♯(p)) ⊑ (R♯(p′)).
Consequence: if (p, σ)

op−→ (p′, σ′), α(σ) ∈ R♯(p), then α(σ′) ∈ R♯(p′).

In other words, the R♯(p) define inductive invariants.
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Vanilla: finite lattices Invariant inference algorithm

Optimality

Assuming
▶ op♯ is monotone
▶ ⊔ computes least upper bound

Then this algorithm computes the least fixed point.
R♯(p) everywhere for least inductive invariant expressed by α.
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Vanilla: finite lattices Invariant inference algorithm

Optimal only among inductive invariants

i = 6 ;
do { i −=2 ; } while ( i $ \ neq$ 0 ) ;

p1 p2 p3
i := 6

i := i− 2; i ̸= 0

i = 0

Concrete reachable states at p2: {6, 4, 2}.
α({6, 4, 2}) = {+}

Abstract reachable states at p2: {-,0,+}
(because 1 → −1, 1 abstractly reachable but not concretely)
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Vanilla: finite lattices Examples from the real world
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Vanilla: finite lattices Examples from the real world

Constant propagation

⊤

0

⊥

-1-2…MIN_INT +1 +2 … MAX_INT
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Vanilla: finite lattices Examples from the real world

Example: CompCert

CompCert (2022 ACM System Software Award)

“Value analysis” computes fixed point in a (complicated) finite lattice with points-to
analysis:
▶ constant propagation
▶ local strength reduction of instructions with known parameters

Distinguishes pointers
▶ points into local stackframe, at known or unknown offset
▶ points out of local stackframe

▶ points into global variable, at known or unknown offset
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Vanilla: finite lattices Examples from the real world

“Is matched by”

CompCert has predicates:
▶ pointer p is matched by abstract pointer p♯ [according to block classification C]
▶ pointer v is matched by abstract value v♯ [according to block classification C]

γ(v♯) = {v | vmatch(C, v♯, v)}

Proofs that if ∀i, vmatch(C, vi, v
♯
i ), vmatch(C, op(v1, . . . , vn), op♯(v

♯
1, . . . , v

♯
n))

Fixed-point proof: if fixed-point iterations converge within N steps, then the result is
inductive.
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Vanilla: finite lattices Examples from the real world

Example: forward dataflow analysis

Finite set P1, . . . , Pn of predicates over program states = subsets of program states
Abstract element: S♯ ⊆ {1 . . . n}
γ(S♯) =

∩
i∈S♯ Pi

S♯ ⊑ S♯′ iff S♯′ ⊆ S♯

Note: opposite direction, dataflow analysis usually presented with opposite ordering as
abstract interpretation
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Coffee: paths and direction

Convex polyhedra
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Coffee: paths and direction

Convex polyhedra: widening

(Possibility: thresholds = linear inequalities found in program)
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Coffee: paths and direction

Convex polyhedra

Two overapproximations: the abstraction + the widening!
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Coffee: paths and direction

Note about Galois connections

α(S) is the best overapproximation of S in the abstract domain.

A disc has no best overapproximation as a convex polyhedron.

Cannot define α in general.

“Constructive” views of abstract interpretation often just define γ.
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Coffee: paths and direction

Absolute value

y = abs ( x ) ;
i f ( y >= 1 ) {

a s s e r t ( x ! = 0 ) ;
}
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Coffee: paths and direction

Intervals

Intervals:

/ ∗ −1000 <= x <= 2000 ∗ /
i f ( x < 0 ) y = −x ; / ∗ 0 <= y <= 1000 ∗ /
e l s e y = x ; / ∗ 0 <= y <= 2000 ∗ /

i f ( y >= 1 ) { / ∗ 1 <= y <= 2000 ∗ /
a s s e r t ( x ! = 0 ) ; / ∗ −1000 <= x <= 2000 ! ! ! ∗ /

}
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Coffee: paths and direction

Polyhedra
Branch x ≥ 0
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Coffee: paths and direction

Other branch
Branch x < 0
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Coffee: paths and direction

After first test
y = |x| = union of the two red lines. Not a convex.
Convex hull = pink polyhedron
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Coffee: paths and direction

At second test
Note: includes (x, y) = (0, 1).
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Coffee: paths and direction

Disjunction

Possible if we do a union of two polyhedra:
▶ x ≥ 0 ∧ y = x
▶ x < 0 ∧ y = −x

But with n tests?
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Coffee: paths and direction

Sources of imprecision

▶ Need to distinguish each path and compute one polyhedron for each.
▶ But 2n paths.
▶ Too costly if done naively.
▶ Use SMT-solving to distinguish individual paths (as e.g. PAGAI tool, see Henry’s

PhD thesis)
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Coffee: paths and direction

Forward analysis, reminder

Compute I♯p at all position p in forward direction (next-state)
γ(I♯p) contains all memory/variable states reachable at control position p

To prove that an undesirable control position p is unreachable: check I♯p = ⊥
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Coffee: paths and direction

Forward / backward analysis

Compute I♯p at all position p by combined forward/backward

We want:
γ(I♯p) contains all memory/variable states at control position p reachable (from program
start) and co-reachable from error location
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Coffee: paths and direction

Compute back from error location

/ ∗ false ∗ /
i f ( x >= 0 )

y = x ; / ∗ x = 0 ∧ x ≥ 1 ≡ false ∗ /
e l se

y = −x ; / ∗ x = 0 ∧ −x ≥ 1 ≡ false ∗ /
i f ( y >= 1 ) { / ∗ x = 0 ∧ y ≥ 1 ∗ /

a s s e r t ( x ! = 0 ) ; / ∗ x = 0 ∗ /
}
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Coffee: paths and direction

Forward / backward
More generally: compute forward from program start, then backward from error
location, possibly forward again.

Forward restricted to postcondition
y♯′ = forward(op, x♯, x♯′)

∀x, x′, x ∈ γ(x♯) ∧ x
op−→ x′ ∧ x′ ∈ γ(x♯

′
) =⇒ x′ ∈ γ(y♯

′
)

Backward restricted to precondition
y♯ = backward(op, x♯′, x♯)

∀x, x′, x′ ∈ γ(x♯
′
) ∧ x

op−→ x′ ∧ x ∈ γ(x♯) =⇒ x ∈ γ(x♯)
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Coffee: paths and direction

Why restrictions to precondition/postcondition

(See optional parameter in e.g APRON)

backward(op, x♯′, x♯) = backward(op, x♯′) ⊓ x♯ would be valid.
But less precise!

Precondition: x ∈ [0, 3], postcondition ⊤, instruction: assume x ≤ y.

Backward analysis of assume x ≤ y from ⊤ in the interval domain: ⊤, intersection with
x ∈ [0, 3] is x ∈ [0, 3]

Backward analysis knowing x ∈ [0, 3] yields x ∈ [0, 3] ∧ y ∈ [0,∞)
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Fudge: widenings

Bounded interval analysis

Elements of the lattice: pairs of integers (a, b), a ≤ b, or ⊥

α(S) = (min S,max S)

γ((a, b)) = a . . . b

(a, b) ⊑ (a′, b′) is ≤ a ≤ b ≤ b′

(note: ⊑ a kind of decidable inclusion, we need l ⊑ l′ =⇒ γ(l) ⊆ γ(l′))

Finite height lattice, largest [MIN_INT, MAX_INT]
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Fudge: widenings

On an example

i = 0 ;
while ( i < 1 0 ) {

i ++ ;
}

1 2 3

4

i := 0
i < 10

i := i+ 1i ≥ 10

First iteration: [0, 0] goes through i < 10, [1, 1] at line 3, ⊔ at line 2 yields [0, 1]
Ensuing iterations at line 2: [0, 2], [0, 3], [0, 4], …, [0, 10]
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Fudge: widenings

Objection

What if we have to iterate to ⊤ = [MIN_INT, MAX_INT]?

231 or even 263 iterations.

Need a way to accelerate!
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Fudge: widenings

Standard widening operator on intervals

Ascending right bounds [0, 1], [0, 2]…try [0, MAX_INT] (or [0,+∞)).

[0, MAX_INT] indeed an inductive invariant for

i = 0 ;
while ( i < 1 0 ) {

i ++ ;
}

Obviously not the strongest! (which is [0, 10])
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Fudge: widenings

Thresholds

(Reinvented several times)
▶ Notice (syntactically or by dynamic recording) that there is a i < 10 ≡ i ≤ 9

comparison.
▶ Widen to 9 then 10 instead of MAX_INT

Gets i ∈ [0, 10]
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Fudge: widenings

Narrowing step

i = 0 ;
while ( i < 1 0 ) {

i ++ ;
}

1 2 3

4

i := 0
i < 10

i := i+ 1i ≥ 10

If at location 2, we come from 1 or 3:
▶ either we start the loop, i ∈ [0, 0]
▶ either we have already gone through the loop, 2 → 3 → 2, thus executing

i < 10; i := i+ 1 from i ∈ [0, MAX_INT]: getting i ∈ [1, 10]

Thus at 2, i must be in [0, 10]!
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Fudge: widenings

A more mathematical view

We have an inductive invariant S: f(S) ⊆ S.

f (concrete semantics) is monotone (more states in precondition, more states in the
outcome): f(f(S)) ⊆ f(S)
f(S) is also an inductive invariant, and maybe f(S) ⊊ S!

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 58 / 82



Fudge: widenings

Narrowing works

i = 0 ;
while ( t r u e ) {

i ++ ;
i f ( i >= 1 0 ) i = 0 ;

}

1 2 5 6
i := 0 i := i+ 1 i ≥ 10

i := 0

i < 10

Widening: i ∈ [0,MAX_INT]
Narrowing: i ∈ [0, 9]
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Fudge: widenings

Narrowing is foiled

i = 0 ;
wh i l e ( t r u e ) {

i f ( ∗ ) {
i ++ ;
i f ( i >= 1 0 )

i = 0 ;
}

}

1 2 5 6
i := 0 i := i+ 1 i ≥ 10

i := 0

i < 10

Because of the self-loop, the “next iteration” operator satisfies S ⊆ f(S) and thus
narrowing never narrows.
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Fudge: widenings

Wider precondition

i = [ 0 , 9 ] ;
wh i l e ( t r u e ) {

i f ( ∗ ) {
i ++ ;
i f ( i >= 1 0 )

i = 0 ;
}

}

1 2 5 6
i := 0 i := i+ 1 i ≥ 10

i := 0

i < 10

No iterations needed, we have the invariant [0, 9] straight from the start!
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Fudge: widenings

Non-monotonic behavior

Precondition i = 0: analysis computes i ∈ [0, MAX_INT]
Precondition i ∈ [0, 9]: analysis computes i ∈ [0, 9]

A more precise precondition leads to a less precise analysis result!
Counter-intuitive for end users.
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Fudge: widenings

(Other cause of non-monotonic behavior)

A long time ago in a galaxy far, far away.

In the Astrée analyzer.

Rewriting system + intervals y ∈ [0, 10]
y → x+ 1
z → 3× y

Straight computation for t := z+ 1 yield ⊤.
Full rewriting of t := z+ 1 yields t := 3(x+ 1) + 1, yields ⊤.
Partial rewriting (forget y → x+ 1) yields t := 3y+ 1, yields t ∈ [1, 31].

Partial propagation of information for efficiency → non-monotonic behavior.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 63 / 82

https://www.astree.ens.fr/


Fudge: widenings

(Other cause of non-monotonic behavior)

A long time ago in a galaxy far, far away.
In the Astrée analyzer.

Rewriting system + intervals y ∈ [0, 10]
y → x+ 1
z → 3× y

Straight computation for t := z+ 1 yield ⊤.
Full rewriting of t := z+ 1 yields t := 3(x+ 1) + 1, yields ⊤.
Partial rewriting (forget y → x+ 1) yields t := 3y+ 1, yields t ∈ [1, 31].

Partial propagation of information for efficiency → non-monotonic behavior.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 63 / 82

https://www.astree.ens.fr/


Blackcurrant: accelerated solving

Plan
Introduction

Vanilla: finite lattices
Mapping to finite state
Smaller lattices
Invariant inference algorithm
Examples from the real world

Coffee: paths and direction

Fudge: widenings

Blackcurrant: accelerated solving

Fiore di latte: conclusion

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 64 / 82



Blackcurrant: accelerated solving

The problem on which narrowing failed

1 i = 0 ;
2 wh i l e ( t r u e ) {
3 i f ( ∗ ) {
4 i ++ ;
5 i f ( i >= 1 0 )
6 i = 0 ;
7 }
8 }

Write the interval analysis symbolically (forget handling of possibly empty intervals):
[−l1, h1] = [0, 0], [−l2, h2] = [−max(l1, l8),max(h1, h8)], [−l5, h5] = [−(l2 − 1), h2 + 1],
[−l6, h6] = [−l5,min(h5, 9)], [−l7, h7] = [−max(l6, 0),max(h6, 0)],
[−l8, h8] = [−max(l2, l7),max(h2, h7)].
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Blackcurrant: accelerated solving

In a nutshell

l2 = max(0,max(l2,max(l2 − 1, 0)))

h2 = max(0,max(h2,max(min(h2 + 1, 9), 0)))

(separated equations on this simple examples, in general not)

Any solution in (l2, h2) yields an inductive invariant in intervals.
How to solve such equations? (Outside of SMT-solving them.)
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Blackcurrant: accelerated solving

Descending policy iterations

(Many publications in E. Goubault’s group, see also P.L. Garoche, P. Roux)

“min(a, b) must be equal to either a or b”

h2 = max(0,max(h2,max(min(h2 + 1, 9), 0))) can become
▶ h2 = max(0,max(h2,max(h2 + 1, 0))): h2 = +∞ as only solution (no real solution)
▶ h2 = max(0,max(h2,max(9, 0))): h2 = 9 as only solution

Thus h2 = 9 as only solution!
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Blackcurrant: accelerated solving

Heuristic for descending iterations

h2 = max(0,max(h2,max(h2 + 1, 0))) and h2 = max(0,max(h2,max(9, 0))) correspond
to the original program with one guard (test) over-approximated:
i < 10 means the interval for i
▶ either is the same (the bound has no effect, the test is always taken)
▶ or is truncated by 9

Heuristic: tests are likely to be useful, not always taken, thus try the second case first!
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Blackcurrant: accelerated solving

Solving the simplified system
Ordinary abstract interpretation
Run a regular abstract interpreter on a simplified program (simpler interpretation of
guards/tests).

Exact solving
Least solution of h2 = max(0,max(h2,max(h2 + 1, 0))): by monotonicity, least solution
of

h2 ≥ 0

h2 ≥ h2

h2 ≥ h2 + 1

Solve by linear programming: no real solution.
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Blackcurrant: accelerated solving

Downward iterations

Assume we solve and get h2 = +∞.
Evaluate max(0,max(h2,max(min(h2 + 1, 9), 0))) with h2 = +∞, get 9.
The solution of the simplified system is not a solution of the original system.

Flip the choice for min to a number yielding a lower value in the current solution!
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Blackcurrant: accelerated solving

Downward policy iteration

“Strategy” or “policy” iteration by similarity with approach for solving Markov decision
processes and games.

▶ Pick argument for min or even inf occurring in the equation system (= simplify
tests and reductions).

▶ Solve the simplified problem exactly or approximately.
▶ Replace the solution into the original problem, check if solution.
▶ If not solution, switch to other choices for min or inf and restart.

All intermediate systems over-approximate the original, thus their solved solutions
over-approximate the least solution of the original system.
Can stop at any point and remain sound!
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Blackcurrant: accelerated solving

Treatment of relational abstract domains

x ≤ A

y ≤ B

x+ y ≤ C

can be reduced with e.g. x+ y ≤ A+ B thus C′ = min(C,A+ B)

min or inf operations occur explicitly or implicity in bound computations (e.g. dual
linear programming = take a minimum over Farkas witnesses)

Also to be treated by downward policy iteration!
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Blackcurrant: accelerated solving

Take-home message

Downward policy iteration
▶ computes downward sequence of simpler fixed-points
▶ sequence may be stopped at any time, producing a valid inductive invariant
▶ not guaranteed to converge to least fixed-point (= least inductive invariant in the

abstract domain) but often does
▶ good heuristic choice of initial “policy” (choice of min-argument) matters
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Blackcurrant: accelerated solving

Max-policies

h2 = max(0, h2,min(h2 + 1, 9))

Each max operator has value one of its arguments, add also −∞
▶ h2 = −∞
▶ h2 = 0
▶ h2 = h2

▶ h2 = min(h2 + 1, 0)

Start with h2 = −∞.

David Monniaux (CNRS / VERIMAG) Flavors of abstract interpretation April 9, 2024 74 / 82



Blackcurrant: accelerated solving

Max-policy iterations

(Many publications from H. Seidl)

1. h2 = −∞ replaced in max(0, h2,min(h2 + 1, 9)):
max(0,−∞,min(−∞+ 1, 9) = 0 > −∞, pick 0 (2nd argument) instead

2. h2 = 0 replaced in max(0, h2,min(h2 + 1, 9)): max(0, 0,min(0+ 1, 9)) = 1 > 0, pick
1 (3rd argument) instead

3. h2 = min(h2 + 1, 9); solve for least solution and get h2 = 9
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Blackcurrant: accelerated solving

Max-policy iterations in a nutshell

Replace a least fixed-point computation by an ascending sequence of fixed-point
computations

Must go on until no “improvement” possible.

Converges to strongest inductive invariant in domain / least fixed point
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Blackcurrant: accelerated solving

Another example

i = 0 ;
wh i l e ( t r u e ) {

i ++ ;
i f ( i == 1 0 )

i = 0 ;
}

Widening to +∞, narrowing does not help.
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Blackcurrant: accelerated solving

Guided static analysis

Idea: replace an invariant computation over the full program by a sequence of invariant
computations over partial programs.
Partial program = subset of control-flow graph

i = 0 ;
wh i l e ( t r u e ) {

i ++ ;
i f ( i == 1 0 )

i = 0 ;
}

1 2 5 6
i := 0 i := i+ 1 i = 10

i := 0

i < 10

i > 10

At node 2: ⊥
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Fiore di latte: conclusion

An intriguing problem

Given a class of programs (with unreachability assertions) and an abstract domain, is
the existence of inductive invariants suitable for proving unreachability decidable?

E.g. for template polyhedra, intervals etc. decidable because existence of invariants
expressible in a decidable arithmetic theory (real closed fields, Presburger…)

How about general convex polyhedra, for linear programs? (if nonlinear: undecidable)
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Fiore di latte: conclusion

More generally: relative completeness

Design methods that will not “lose” inductive invariants if they exist in the abstract
domain.

E.g. certain analyses on abstractions of functions/maps/arrays can be expressed as
syntactic transformation without losing completeness
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Fiore di latte: conclusion

Conclusion

▶ devil in the details
▶ widenings lead to non-monotonicity and brittleness
▶ rough lattices (intervals…) can regain precision by splitting along paths and/or

using forward/backward
▶ exact methods in some cases
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