
The Astrée static analyzer and
beyond

David Monniaux
http://www.di.ens.fr/∼monniaux

Centre National de la Recherche Scientifique

École Normale Supérieure
Département d’Informatique

45, rue d’Ulm, 75230 Paris cedex 5, France

http://www.di.ens.fr/~monniaux


Introduction

D. Monniaux — The Astrée static analyzer and beyond 2



The Astrée static analyzer

Astrée http://www.astree.ens.fr is a static analyzer based on abstract

interpretation.

• Analyzes a subset of the C language.
• Machine integers and floating-point numbers, not “mathematical”

integers and real numbers.
• Tuned for large-scale control/command codes, automatically

generated from high-level specifications.
• Precise domains for numerical computations.
• Detects runtime errors.

D. Monniaux — The Astrée static analyzer and beyond 3

http://www.astree.ens.fr


Challenges

Has to analyze the original source code, not a derived “model”.

Has to be sound (i.e. not say “there is no runtime error possible” when

there are)

Has to be precise (i.e. not warn about many possible alarms that can’t

happen — false alarms)

Handle floating-point well, including digital filtering algorithms

D. Monniaux — The Astrée static analyzer and beyond 4



The biggest challenge

Very large software (� 300,000 LOC) ⇒ efficiency questions !

Commodity PC hardware ⇒ keep memory requirements low

⇒ keep analysis times low

D. Monniaux — The Astrée static analyzer and beyond 5



Efficiency considerations

False “good idea” For final “certification” of the system, only need a

single pass of analysis, even if it is slow.

In reality... You want fast analysis

• for debugging the analyzer

• for using it while you develop the analyzed code

• for debugging input specifications (i.e. bounds on the inputs)

D. Monniaux — The Astrée static analyzer and beyond 6



The team

Bruno Blanchet [CNRS] (formerly)

Patrick [ENS] and Radhia Cousot [CNRS]

Jerôme Feret [ENS]

Laurent Mauborgne [ENS]

Antoine Miné [ENS]

David Monniaux [CNRS]

Xavier Rival [ENS] (now postdoc at Berkeley)

D. Monniaux — The Astrée static analyzer and beyond 7



Abstract interpretation

D. Monniaux — The Astrée static analyzer and beyond 8



Basic idea

To each program point, set of reachable memory (variable) states at this

point

Over-approximate the set by some constraints

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

D. Monniaux — The Astrée static analyzer and beyond 9



Abstract operations

A program statement has semantics JP K : P(X) →∪ P(X) (X = possible

memory states).

γ(x): x abstraction (ex: shape of polyhedron), γ(x) set of concrete

memory states represented

Abstraction of a program statement: JP K] : X] → X]

Soundness: JP K ◦ γ(x]) ⊆ γ ◦ JP K] (x])

D. Monniaux — The Astrée static analyzer and beyond 10



Tests

JBK = set of states matched by boolean expression B

Abstract W 7→ W ∩ JBK

Can be constructed from tests for atomic expressions and t

γ(a]) ∪ γ(b]) v γ(a t b)

Ex: polyhedra ⇒ convex hull

Jif c then p1 else p2K (x) = Jp1K (x ∩ JcK) ∪ Jp2K (x ∩ JcKC)
Jif c then p1 else p2K

] (x]) = Jp1K
] ◦ JcK] (x]) t Jp2K

] ◦ J¬cK] (x])
D. Monniaux — The Astrée static analyzer and beyond 11



System of equations approach

Express the set of states at each statement as a function of the set of

states at other statements.

beep
A:

foo
bar
if (xyz) goto B;

C:goto A;

States at point A: outcome from beep ∪ states at point C
D. Monniaux — The Astrée static analyzer and beyond 12



What is the concrete fixed point?

Sets of reachable states at program points:

S1 = F1(S1, S2, . . . , Sn) (1)

... (2)

Sn = Fn(S1, S2, . . . , Sn) (3)

(4)

All Fi functions ω-continuous

Start at ⊥ and iterate ω times to reach fixed point.
D. Monniaux — The Astrée static analyzer and beyond 13



Abstract fixed point

Replace all Fi by F ]
i .

Accelerate convergence using a widening operator O

Concrete sequence x1, x2, x3 . . . approximated by x]
1, x

]
2, x

]
3 . . . with

∀i xi ⊆ γ(x]
i).

D. Monniaux — The Astrée static analyzer and beyond 14



In practice

Iterations use the block-structure of the source code

Saves memory: one abstract environment per nested loop

Trace partitioning

D. Monniaux — The Astrée static analyzer and beyond 15



An open system

D. Monniaux — The Astrée static analyzer and beyond 16



Simple I/O

System takes scalar values (integers, floats) as inputs

Simple interval constraints known on them: input cannot go beyond [-10,

10]

Prove ”worst case” behaviour

D. Monniaux — The Astrée static analyzer and beyond 17



Physical feedback

Industrial users would like user-level properties such as ”in normal

conditions, FOOBAR X is in [-30, 30]”

At present Astrée does worst case behavior, say [-1000, 1000]

Reconstructed scenarios of inputs are often physically impossible

Future work: How about an abstract model of the physical world?

(Dynamic system, real numbers)

D. Monniaux — The Astrée static analyzer and beyond 18



Intelligent I/O

Previous analyses: system does I/O through simple memory-mapped

registers, aka volatile variables

Increasing use of intelligent I/O controllers, coprocessors executing I/O

programs (industrial req.)

Example: USB controller, OHCI spec, asynchronously updates linked lists

(for worklists) and does bus-mastering DMA

Only vague specification for I/O controller (OHCI spec = book in English,

many details somewhat vague) ⇒ model as highly nondeterministic

routines
D. Monniaux — The Astrée static analyzer and beyond 19



Asynchronous model

One main big synchronous process

Some known memory-mapped I/O zones (if necessary through preanalysis)

Some small nondeterministic routines processed asynchronously (e.g.

”perhaps process one item from the worklist”)

Semantics: before each time when the main process reads/writes MMIO

or DMA zones, asynchronous routines may execute an unknown number

of times

Each async routine implements some atomic step of the I/O controller

(e.g. ”transmit one word of data”, ”update head worklist pointer”, etc.)
D. Monniaux — The Astrée static analyzer and beyond 20



Asynchronous analysis

Pointer analysis detects interference with MMIO/DMA zones

Read/writes to these results in fixpoint iterations of async routines

Work in progress

Difficulty: I/O drivers are often very dirty

Comparison: Microsoft SLAM analyzes drivers, but apparently with

ideal integers, does not handle many constructs, and totally ignores

I/O controllers

D. Monniaux — The Astrée static analyzer and beyond 21


