How to obtain and prove invariants

David Monniaux

CNRS / VERIMAG (Grenoble)

September 28, 2014
Project STATOR, VERIMAG, Grenoble

http://stator.imag.fr/
Project STATOR, VERIMAG, Grenoble

http://stator.imag.fr/
1. Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2. Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3. Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4. Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5. Large block encoding

6. Other data

7. Tools
In short

Prove that a **program** does not end in the wrong place.
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstration
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
Systems we consider

Software considered as a discrete-time transition system.

Nondeterminism:

External components inputs, operating system...

Due to modeling libraries that we do not want to consider in detail (e.g. \(\sin(x) \in [-1, 1] \)).
Safety properties

In this talk: properties of the form
“∀ execution, ∀ state along execution, property P holds”

Otherwise said: “the system cannot reach $\neg P$”

Obvious use: $\neg P$ is the error states
 - runtime errors (division by zero, null pointer, array access out of bounds, invalid cast…)
 - assertion violations
Safety properties on states for input/output specifications

Often, specifications “∀x ∈ I f(x) = f_{spec}(x)” (deterministic function)
Or “∀x ∈ I r(x, f(x))” (nondeterministic function)

Solution Keep a copy of input state x in the current state (x, l, y) where l program location and y current program variables
P(x, l, y) is l = final ⇒ r(x, y)
Safety properties on states for input/output specifications

Often, specifications \(\forall x \in I \ f(x) = f_{\text{spec}}(x) \) (deterministic function)
Or \(\forall x \in I \ r(x, f(x)) \) (nondeterministic function)

Solution Keep a copy of input state \(x \) in the current state \((x, l, y)\) where \(l \) program location and \(y \) current program variables
\(P(x, l, y) \) is \(l = \text{final} \Rightarrow r(x, y) \)
Safety properties for termination

1. Choose an integer ranking function ρ
2. Prove that it decreases along all executions
3. Prove that it remains nonnegative

3 is directly a safety property
2 also is (record previous state along with current state)
1 Safety properties and induction
 - Safety properties
 - **Induction**
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
First idea: direct proof by induction

Prove

1. for all initial state σ, $P(\sigma)$
2. (induction step) for all consecutive states $\sigma \rightarrow \sigma'$, $P(\sigma) \Rightarrow P(\sigma')$

Weakness?
A mathematical example

- initialization \(x := 0 \)
- step \(x \rightarrow x^2 \)

Prove \(x < 100 \).

Not inductive.
Yet \(x = 0 \) always! Property obviously always true!

Note: \(x = 0 \implies x < 100 \).
Strengthened property is inductive.
A mathematical example

- initialization $x := 0$
- step $x \rightarrow x^2$

Prove $x < 100$.

Not inductive.
Yet $x = 0$ always! Property obviously always true!

Note: $x = 0 \Rightarrow x < 100$.

Strengthened property is inductive.
A loopy example

```java
for(int i=0; i!=100; i++) {}
```

Loop body:
- initialization $i := 0$
- step $i \rightarrow i + 1$ if $i \neq 100$

Prove $i < 200$. Inductive?

Not inductive. Yet stronger $i \leq 100$ inductive!
A loopy example

for(int i=0; i!=100; i++) {}

Loop body:
- initialization $i := 0$
- step $i \rightarrow i + 1$ if $i \neq 100$

Prove $i < 200$. Inductive?

Not inductive. Yet stronger $i \leq 100$ inductive!
Vocabulary: invariants

For some authors:
- **Invariant**: property that always holds on all traces
- **Inductive invariant**: invariant that can be proved correct by a proof of induction

For other authors or e.g. Floyd-Hoare proofs: “invariant” means “inductive invariant”.
The property to prove is almost never inductive. Replace it by a stronger, inductive property. **Invariant strengthening**

(Basis of Floyd-Hoare rule for loops.)
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
Relative completeness

If a property is always true, does there necessarily exist a stronger, inductive property?

Yes, always.

But...
Relative completeness

If a property is always true, does there necessarily exist a stronger, inductive property?

Yes, always.

But...
The set of reachable states

The set R of reachable states is the **least inductive invariant**:
- contains the initial states I
- stable by \rightarrow

Equal to $\{y \mid x \rightarrow^* y, x \in I\}$

P always holds on all traces iff $R \Rightarrow P$

(identify sets and properties)
Example: (non)inductive invariants

Initialize: \(x \in [-1, 1], \ y = 0 \).
Step: rotate by 45°

Reachable states = star
Non inductive invariant: \([-1, 1] \times [-1, 1]\)
Inductive invariants: octagon or disc
As a least fixed point

Initialize $S_0 = \emptyset$

Iterate $S_{k+1} \mapsto \text{step}(S_k) \cup \text{initial states}$

Ascending sequence, its limit is the set of reachable states

If finite state space (size n), converges in n
If infinite state space... quite useless!
Decidability

Assume initial state + transition relation in linear arithmetic (e.g. counter machine)

Is membership in the set of reachable states decidable?

No, since it allows deciding the halting problem over deterministic counter machines (test reachability of final state).
Decidability

Assume initial state + transition relation in linear arithmetic (e.g. counter machine)

Is membership in the set of reachable states decidable?

No, since it allows deciding the **halting problem** over deterministic counter machines (test reachability of final state).
Halting
In Peano arithmetic

(Cook’s completeness theorem)

If
- memory state is in \mathbb{Z}^n
- initial states: first-order formula over n variables
- transition relation: first-order formula over $n + n$ variables

Then the set of reachable states is defined in Peano arithmetic (Gödel encoding).

(But Peano arithmetic is undecidable! Can’t even show that the invariant implies the property!)
In Peano arithmetic

(Cook’s completeness theorem)

If

- memory state is in \mathbb{Z}^n
- initial states: first-order formula over n variables
- transition relation: first-order formula over $n + n$ variables

Then the set of reachable states is defined in Peano arithmetic (Gödel encoding).

(But Peano arithmetic is undecidable! Can’t even show that the invariant implies the property!)
Undecidability of arithmetic
Reversing the arrows

So far: compute inductive invariant, show no bad states inside (forward)

Alternative: compute inductive invariant on reverse transition system, starting from bad states; show no initial state inside (backward)

Combinations
Our weapons

Abstraction Search for invariant in a restricted class
Extrapolation Find inductive invariant in a finite number of steps
Refinement If invariant too coarse, refine it
Tricks Cheap and not-so cheap improvements
Our goals

Depending on usage:

Guided by a property Prove a given property P

Unguided Provide “strong” invariants (best-effort)
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
A simple idea

Replace arbitrary sets of states (or traces etc.) by symbolically represented sets and compute on them.
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
Intervals

State space = \(\mathbb{Z}^d \) (\(d \) integer variables)
Compute one interval per variable per program point

```c
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
    y = x; // y ∈ [0, 5]
} else { // x ∈ [−7, −1]
    y = −x; // y ∈ [1, 7]
} // y ∈ [0, 7]
```

```c
z = 2*y + x; // z ∈ [−7, 19]
```
Intervals

State space $= \mathbb{Z}^d$ (d integer variables)
Compute one interval per variable per program point

```c
int x, y, z;  // x ∈ [−7, 5]
if (x >= 0) {  // x ∈ [0, 5]
    y = x;  // y ∈ [0, 5]
} else {  // x ∈ [−7, −1]
    y = -x;  // y ∈ [1, 7]
}  // y ∈ [0, 7]
z = 2*y + x;  // z ∈ [−7, 19]
```
Intervals

State space $= \mathbb{Z}^d$ (d integer variables)
Compute one interval per variable per program point

```c
int x, y, z; // x \in [-7, 5]
if (x >= 0) { // x \in [0, 5]
    y = x;    // y \in [0, 5]
} else {   // x \in [-7, -1]
    y = -x;  // y \in [1, 7]
} // y \in [0, 7]
z = 2*y + x; // z \in [-7, 19]
```
Intervals

State space $= \mathbb{Z}^d$ (d integer variables)
Compute one interval per variable per program point

```c
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
    y = x; // y ∈ [0, 5]
} else { // x ∈ [−7, −1]
    y = −x; // y ∈ [1, 7]
} // y ∈ [0, 7]
z = 2*y + x; // z ∈ [−7, 19]
```
Intervals

State space $= \mathbb{Z}^d$ (d integer variables)
Compute one interval per variable per program point

```c
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
    y = x; // y ∈ [0, 5]
} else { // x ∈ [−7, −1]
    y = -x; // y ∈ [1, 7]
} // y ∈ [0, 7]
z = 2*y + x; // z ∈ [−7, 19]
```

David Monniaux (VERIMAG)
How to obtain and prove invariants
September 28, 2014 32 / 126
Lack of relationality

```c
int x, y, z; // x ∈ [0, 1]
y = x; // y ∈ [0, 1]
z = x - y; // z ∈ [−1, 1]
```

No relation tracked between x and y thus z over-approximated.
Recovering relationality

E.g. SSA form and symbolic expressions.

```c
int x, y, z;  // x ∈ [0, 1]
y = x;        // y ∈ [0, 1]
z = x - x;
```
Recovering relationality

Simplification step (see Miné)

```c
int x, y, z;  // x ∈ [0, 1]
y = x;  // y ∈ [0, 1]
z = 0;  // z ∈ [0, 0]
```
Code motion

```c
int x, y, z;  // x ∈ [−7, 5]
if (x >= 0) {  // x ∈ [0, 5]
    y = x;  // y ∈ [0, 5]
    z = 2*y + x;  // z ∈ 0, 15
} else {  // x ∈ [−7, −1]
    y = -x;  // y ∈ [1, 7]
    z = 2*y + x;  // z ∈ [−5, 13]
}  // z ∈ [−5, 15]
```

(Recall: without motion, z ∈ [−7, 19])
Code motion

```c
int x, y, z;    // x ∈ [-7, 5]
if (x >= 0) {    // x ∈ [0, 5]
    y = x;       // y ∈ [0, 5]
    z = 2*y + x; // z ∈ 0, 15
} else {        // x ∈ [-7, -1]
    y = -x;      // y ∈ [1, 7]
    z = 2*y + x; // z ∈ [-5, 13]
}                // z ∈ [-5, 15]

(Recall: without motion, z ∈ [-7, 19])
```
Code motion

```c
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
    y = x; // y ∈ [0, 5]
    z = 2*y + x; // z ∈ 0, 15
} else { // x ∈ [−7, −1]
    y = -x; // y ∈ [1, 7]
    z = 2*y + x; // z ∈ [−5, 13]
} // z ∈ [−5, 15]
```

(Recall: without motion, z ∈ [−7, 19])
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
 y = x; // y ∈ [0, 5]
 z = 2*y + x; // z ∈ 0, 15
} else { // x ∈ [−7, −1]
 y = -x; // y ∈ [1, 7]
 z = 2*y + x; // z ∈ [−5, 13]
} // z ∈ [−5, 15]

(Recall: without motion, z ∈ [−7, 19])
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
 y = x; // y ∈ [0, 5]
 z = 2*y + x; // z ∈ 0, 15]
} else { // x ∈ [−7, −1]
 y = −x; // y ∈ [1, 7]
 z = 2*y + x; // z ∈ [−5, 13]
} // z ∈ [−5, 15]

(Recall: without motion, z ∈ [−7, 19])
Code motion and symbolic expressions

```c
int x, y, z;
if (x >= 0)
    y = x;
    z = 2*x + x;
} else {
    y = -x;
    z = 2*(-x) + x;
}
```
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
 y = x; // y ∈ [0, 5]
 z = 3*x; // z ∈ [0, 15]
} else { // x ∈ [−7, −1]
 y = -x; // y ∈ [1, 7]
 z = -x; // z ∈ [1, 7]
} // z ∈ [0, 15]
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
 y = x; // y ∈ [0, 5]
 z = 3*x; // z ∈ [0, 15]
} else { // x ∈ [−7, −1]
 y = -x; // y ∈ [1, 7]
 z = -x; // z ∈ [1, 7]
} // z ∈ [0, 15]
int x, y, z; // x ∈ [−7, 5]
if (x >= 0) { // x ∈ [0, 5]
 y = x; // y ∈ [0, 5]
 z = 3*x; // z ∈ [0, 15]
} else { // x ∈ [−7, −1]
 y = -x; // y ∈ [1, 7]
 z = -x; // z ∈ [1, 7]
} // z ∈ [0, 15]
Implementation note: exploit sparsity

/* 10000 variables initialized */
if (x > 0) {
 y = 1;
}

The merge operation at the end of if-then-else should not perform 9999 useless interval merges.
Intervals: summary

+ Easy to implement
+ Low complexity
+ Handles $+, -, \times, /, \sqrt{\ldots}$
 - No relations
 - Enforces convexity
= Some relations may be recovered by symbolic rewriting
Safety properties and induction
- Safety properties
- Induction
- The set of reachable states

Abstraction
- Intervals
- Forward / backward
- Relational numeric domains
- Predicate abstraction
- Complexity theory

Extrapolation and convergence
- Acceleration
- Widening
- Max-policy iteration

Refinement
- From goal
- k-induction and variants
- Min-policy iteration

Large block encoding

Other data

Tools
Forward analysis can be insufficient

double x, z;
if (abs(x) > 0.1) {
 assert(z != 0);
 z = 1.0 / x;
 ...
}

double x, y, z;
if (x >= 0) { ///x ≥ 0
 y = x; /// y ≥ 0
} else { /// x < 0
 y = -x; /// y > 0
} ///y ≥ 0
if (y > 0.1) { ///y > 0.1
 assert(x != 0); ///FAIL
 z = 1.0 / x;
}
Forward analysis can be insufficient

define double x, y, z;
define if (abs(x) > 0.1) {
 assert(z != 0);
 z = 1.0 / x;
}...

define double x, y, z;
define if (x >= 0) {
 y = x; // y >= 0
} else {
 y = -x; // y > 0
} // y >= 0

define if (y > 0.1) {
 assert(x != 0); // FAIL
 z = 1.0 / x;
}
Forward analysis can be insufficient

double x, z;
if (abs(x) > 0.1) {
 assert(z != 0);
z = 1.0 / x;
...
}

double x, y, z;
if (x >= 0) { /* x ≥ 0 */
y = x; /* y ≥ 0 */
} else { /* x < 0 */
y = -x; /* y > 0 */
} /* y ≥ 0 */
if (y > 0.1) { /* y > 0.1 */
 assert(x != 0); /* FAIL */
z = 1.0 / x;
}
Forward analysis can be insufficient

double x, z;
if (abs(x) > 0.1) {
 assert(z != 0);
 z = 1.0 / x;
 ...
}

double x, y, z;
if (x >= 0) {
 y = x; // y ≥ 0
} else { // x < 0
 y = -x; // y > 0
} // y ≥ 0
if (y > 0.1) { // y > 0.1
 assert(x != 0); // FAIL
 z = 1.0 / x;
}
Forward analysis can be insufficient

double x, z;
if (abs(x) > 0.1) {
 assert(z != 0);
 z = 1.0 / x;
 ...
}

double x, y, z;
if (x >= 0) {
 y = x; // y >= 0
} else {
 y = -x; // y > 0
} // y >= 0
if (y > 0.1) { // y > 0.1
 assert(x != 0); // FAIL
 z = 1.0 / x;
}
Forward analysis can be insufficient

double x, y, z;
if (abs(x) > 0.1) {
 assert(z != 0);
 z = 1.0 / x;
...}

double x, y, z;
if (x >= 0) {
 y = x; // y ≥ 0
} else {
 y = -x; // y > 0
} // y ≥ 0
if (y > 0.1) {
 assert(x != 0); // FAIL
 z = 1.0 / x;
}
double x, y, z;
if (x >= 0) { //x ≥ 0
 y = x; //y ≥ 0
 if (y > 0.1) { //y > 0.1
 assert(x != 0); //FAIL
 z = 1.0 / x;
 }
} else { //x < 0
 y = -x; //y > 0
 if (y > 0.1) { //y > 0.1
 assert(x != 0); //FAIL
 z = 1.0 / x;
 }
}
double x, y, z;
if (x >= 0) { //x ≥ 0
 y = x; //y ≥ 0
 if (y > 0.1) { //y > 0.1
 assert(x != 0); //FAIL
 z = 1.0 / x;
 }
} else { //x < 0
 y = -x; //y > 0
 if (y > 0.1) { //y > 0.1
 assert(x != 0); //FAIL
 z = 1.0 / x;
 }
}
double x, y, z;
if (x >= 0) { //x ≥ 0
 y = x; //y ≥ 0
 if (y > 0.1) { //y > 0.1
 assert(x != 0); //FAIL
 z = 1.0 / x;
 }
} else { //x < 0
 y = -x; //y > 0
 if (y > 0.1) { //y > 0.1
 assert(x != 0); //FAIL
 z = 1.0 / x;
 }
}
double x, y, z;
if (x >= 0) { // x ≥ 0
 y = x; // y ≥ 0
 if (y > 0.1) { // y > 0.1
 assert(x != 0); // FAIL
 z = 1.0 / x;
 }
} else { // x < 0
 y = -x; // y > 0
 if (y > 0.1) { // y > 0.1
 assert(x != 0); // FAIL
 z = 1.0 / x;
 }
}
Code motion

double x, y, z;
if (x >= 0) { // x >= 0
 y = x; // y >= 0
 if (y > 0.1) { // y > 0.1
 assert(x != 0); // FAIL
 z = 1.0 / x;
 }
} else { // x < 0
 y = -x; // y > 0
 if (y > 0.1) { // y > 0.1
 assert(x != 0); // FAIL
 z = 1.0 / x;
 }
}
Forward, then backward

double x, y, z;
if (x >= 0) { // x >= 0
 y = x; // y >= 0
} else { // x < 0
 y = -x; // y > 0
}
if (y > 0.1) { // y > 0.1
 assert (x != 0);
 z = 1.0 / x;
}

double x, y, z; // x = 0
if (x >= 0) { // x >= 0
 y = x; // y >= 0 ∧ x = 0
} else { //
 y = -x; // y > 0 ∧ x = 0
}
if (y > 0.1) { // y > 0.1 ∧ x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}
Forward, then backward

double x, y, z;
if (x >= 0) { //x ≥ 0
 y = x; //y ≥ 0
} else { //x < 0
 y = -x; //y > 0
}
if (y > 0.1) { //y > 0.1
 assert(x != 0);
 z = 1.0 / x;
}

double x, y, z; //x = 0
if (x >= 0) { //x ≥ 0
 y = x; //y ≥ 0 ∧ x = 0
} else { //
 y = -x; //y > 0 ∧ x = 0
}
if (y > 0.1) { //y > 0.1 ∧ x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}
Forward, then backward

double \(x, y, z; \) //\(x = 0 \)
if (\(x \geq 0 \)) { //\(x \geq 0 \)
 y = x; //\(y \geq 0 \)
} else { //\(x < 0 \)
 y = -x; //\(y > 0 \)
}
if (\(y > 0.1 \)) { //\(y > 0.1 \)
 if (\(x == 0 \)) {
 assert(\(x \neq 0 \));
 z = 1.0 / x;
 }
 z = 1.0 / x;
}
Forward, then backward

double x, y, z;
if (x >= 0) { // x ≥ 0
 y = x; // y ≥ 0
} else { // x < 0
 y = -x; // y > 0
}
if (y > 0.1) { // y > 0.1
 assert(x != 0);
 z = 1.0 / x;
}

double x, y, z; // x = 0
if (x >= 0) { // x = 0
 y = x; // y ≥ 0 ∧ x = 0
} else { // ⊥
 y = -x; // y > 0 ∧ x = 0
}
if (y > 0.1) { // y > 0.1 ∧ x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}
Forward, then backward

double x, y, z;
if (x >= 0) { //x ≥ 0
 y = x; //y ≥ 0
} else { //x < 0
 y = -x; //y > 0
}
if (y > 0.1) { //y > 0.1
 assert(x != 0);
 z = 1.0 / x;
}

double x, y, z; //x = 0
if (x >= 0) { //x = 0
 y = x; //y ≥ 0 ∧ x = 0
} else { //⊥
 y = -x; //y > 0 ∧ x = 0
}
if (y > 0.1) { //y > 0.1 ∧ x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}
Forward, then backward, then forward

```c
double x, y, z; // x = 0
if (x >= 0) { // x \geq 0
    y = x; // y \geq 0 \land x = 0
} else { //
    y = -x; // y > 0 \land x = 0
}
if (y > 0.1) { // y > 0.1 \land x = 0
    if (x == 0) {
        fail(); // x = 0
    }
    z = 1.0 / x;
}
```

```c
double x, y, z; // x = 0
if (x >= 0) { // x = 0
    y = x; // y = 0
} else { //
    y = -x; // y \not= 0
} // y = 0
if (y > 0.1) { // y > 0.1
    if (x == 0) {
        fail(); // x = 0
    }
    z = 1.0 / x;
}
```
Forward, then backward, then forward

double x, y, z; // x = 0
if (x >= 0) { // x0
 y = x; // y >= 0 && x = 0
} else { //
 y = -x; // y > 0 && x = 0
}
if (y > 0.1) { // y > 0.1 && x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}

double x, y, z; // x = 0
if (x >= 0) { // x = 0
 y = x; // y = 0
} else { //
 y = -x; //
} // y = 0
if (y > 0.1) { //
 if (x == 0) { //
 fail(); //
 }
 z = 1.0 / x;
}
Forward, then backward, then forward

double x, y, z; // x = 0
if (x >= 0) { // x ≥ 0
 y = x; // y ≥ 0 ∧ x = 0
} else { // x < 0
 y = -x; // y > 0 ∧ x = 0
}
if (y > 0.1) { // y > 0.1 ∧ x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}

double x, y, z; // x = 0
if (x >= 0) { // x = 0
 y = x; // y = 0
} else { // ⊥
 y = -x; // ⊥
} // y = 0
if (y > 0.1) { // ⊥
 if (x == 0) {
 fail(); // ⊥
 }
 z = 1.0 / x;
}
Forward, then backward, then forward

double x, y, z; // x = 0
if (x >= 0) { // x = 0
 y = x; // y \geq 0 \land x = 0
} else { // \bot
 y = -x; // y > 0 \land x = 0
}
if (y > 0.1) { // y > 0.1 \land x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}

double x, y, z; // x = 0
if (x >= 0) { // x = 0
 y = x; // y = 0
} else { // \bot
 y = -x; // \bot
} // y = 0
if (y > 0.1) { // \bot
 if (x == 0) {
 fail(); // \bot
 }
 z = 1.0 / x;
}
double x, y, z; // x = 0
if (x >= 0) { // x = 0
 y = x; // y ≥ 0 ∧ x = 0
} else { // ⊥
 y = -x; // y > 0 ∧ x = 0
}
if (y > 0.1) { // y > 0.1 ∧ x = 0
 if (x == 0) {
 fail(); // x = 0
 }
 z = 1.0 / x;
}
Forward, backward, forward with Interproc

http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi

```
var x,y,z: real;

begin
  if x >= 0 then
    y = x;
  else
    y = -x;
  endif;
  if 10 * y >= 1 then
    if x == 0 then
      fail;
    endif;
  endif;
end
```

Forward: gets to “fail”
Forward — backward — forward: “fail” unreachable
1. Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2. Abstraction
 - Intervals
 - Forward / backward
 - **Relational numeric domains**
 - Predicate abstraction
 - Complexity theory

3. Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4. Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5. Large block encoding

6. Other data

7. Tools
Convex polyhedra
Unbounded convex polyhedra
Example of an inductive polyhedron

```c
int i, n;
assume(n >= 0);
i = 0;
while(i < n) {
    i = i+1;
}

int i, n;
assume(n >= 0);
i = 0;
LOOP: // 0 ≤ i ≤ n
    if (i >= n) goto EXIT;
    i = i+1;
    goto LOOP;
EXIT:
```
Octagons

$\pm x \pm y \leq C$ for all variables x and y

(Algorithmics: variants of Floyd-Warshall)
Linear templates

\[A\vec{x} \leq B, \ A \text{ set matrix}, \ \vec{x} \text{ program variables} \]

(Algorithmics: linear programming)
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - **Predicate abstraction**
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - \(k\)-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
A simple example

```java
for(int i=0; i<100; i++) {
    j = j+2;
}
assert(j < 210);
```

Diagram:

- **A**: $i' = 0$
- **B**: $i < 100$
 - $i' = i + 1$
 - $j' = j + 2$
- **ok**: $i' = i$
 - $j' = j$
 - $i \geq 100$
 - $j < 210$
- **fail**: $i' = i$
 - $j' = j$
 - $i \geq 100$
 - $j \geq 210$

Source: David Monniaux (VERIMAG)
Unsuccessful predicate abstraction

Split control node B according to $i < 90$

- $i' = i$
- $j' = j$
- $i \geq 100$
- $j < 210$

- $i < 100$
- $i' = i + 1$
- $j' = j + 2$

$B \land i < 90$

- $i' = 0$
- $j' = 0$

$B \land i \geq 90$

- $i < 100$
- $i' = i + 1$
- $j' = j + 2$

- $i \geq 100$
- $j < 210$

A

A

ok

fail

David Monniaux (VERIMAG)

How to obtain and prove invariants

September 28, 2014 55 / 126
Unsuccessful predicate abstraction

Split control node B according to $i \leq 100$

- $i' = i$
- $j' = j$
- $i \geq 100$
- $j < 210$

- $i' = i + 1$
- $j' = j + 2$

A

$i \leq 100$

ok

fail

$i' = 0$

$j' = 0$

$i' = 0$

$j' = 0$
Unsuccessful predicate abstraction

Split control node B according to $i \leq 100$

- $i' = i$
- $j' = j$
- $i \geq 100$
- $j < 210$

- $i' = 0$
- $j' = 0$

- $i < 100$
- $i' = i + 1$
- $j' = j + 2$

- $i' = i$
- $j' = j$
- $i \geq 100$
- $j \geq 210$

A -> $i \leq 100$ -> ok

A -> $i < 100$ -> fail

A -> $i \geq 100$
Successful predicate abstraction

Split control node \(B \) according to \(i \leq 100 \) and \(j \leq 2i \)

- \(i' = i \)
- \(j' = j \)
- \(i \geq 100 \)
- \(j < 210 \)

- \(i' = 0 \)
- \(j' = 0 \)

- \(i < 100 \)
- \(i' = i + 1 \)
- \(j' = j + 2 \)

- \(i' = i, j' = j \)
- \(i \geq 100, j \geq 210 \)
Successful predicate abstraction

Split control node B according to $i \leq 100$ and $j \leq 2i$

\begin{align*}
 i' &= i \\
 j' &= j \\
 i &\geq 100 \\
 j &< 210
\end{align*}

\begin{align*}
 i' &= i \\
 j' &= j \\
 i &\geq 100 \\
 j &\geq 210
\end{align*}

\begin{align*}
 i' &= 0 \\
 j' &= 0
\end{align*}
Do not generate unreachable states

\[i' = 0 \quad j' = 0 \]

\[i \leq 100 \land j \leq 2i \]

\[i' = i \quad j' = j \]

\[i \geq 100 \land j < 210 \]

\[i < 100 \quad i' = i + 1 \quad j' = j + 2 \]
Summary

Select a finite set of predicates (possibly depending on control location)

Split each control state according to predicates (use subsumption)

Draw feasible transitions

Procedure in finite time: only finitely many abstract states
Safety properties and induction
- Safety properties
- Induction
- The set of reachable states

Abstraction
- Intervals
- Forward / backward
- Relational numeric domains
- Predicate abstraction
 - Complexity theory

Extrapolation and convergence
- Acceleration
- Widening
- Max-policy iteration

Refinement
- From goal
- k-induction and variants
- Min-policy iteration

Large block encoding

Other data

Tools
Some decision problem

Given
- initial state
- transition relation (in fixed class)
- final state

answer whether there exist inductive invariant in fixed class.

Vary class of relations and class of invariants.

Proved on template polyhedra:
- ???? for intervals for linear transitions (related to mean-payoff?)
- Σ_2^P-completeness (even single $x \leq B$ interval bound) for transitions with \lor, \land, \exists-first-order linear arithmetic
- EXPTIME-hardness, in NEXPTIME, for implicit CFG (in the Papadimitriou-Yannakakis sense)
1. Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2. Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3. Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4. Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5. Large block encoding

6. Other data

7. Tools
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
Concrete acceleration

Given \rightarrow, compute transitive closure \rightarrow^+

example: $x \rightarrow x' \iff x < n \land x' = x + 1$

transitive closure: $y \rightarrow^+ y' \iff y < y' \leq n$

Possible for certain subclasses of formulas.
e.g. conjunction of “octagonal” inequalities $\pm x \pm y \leq C$ (Bozga, Iosif, Konečný)
Disjunctions

Let a, b... be accelerable relations.

```latex
if (*) {
    a
} else {
    b
}
```

$$(a|b)^+ = a^+|b^+|a^+b^+|b^+a^+|\ldots$$

Replace normal Kleene iterations by partial acceleration.

(Bozga, Iosif, Konečný) FLATA tool
Disjunctions

Let $a, b \ldots$ be accelerable relations.

```plaintext
if (*) {
  a
} else {
  b
}
```

$$(a | b)^+ = a^+ | b^+ | a^+ b^+ | b^+ a^+ | \ldots$$

Replace normal Kleene iterations by partial acceleration.

(Bozga, Iosif, Konečný) FLATA tool
Abstract acceleration

Given τ, compute $\alpha(\tau^+)$ where $\alpha(X)$ is “strongest abstraction” in a certain domain.

(Gonnord & Halbwachs; Jeannet, Schrammel & Sankaranarayanan)
Finite automata

Saturation in finite time:
- Finite concrete state (e.g. n Boolean variables): compute exact reachable states
- Predicate abstraction with fixed set of predicates: compute reachable abstract states

Terminates (can be slow)
int i=0;
while(i < 1000000) {
 i++;
}

Follow edges, merge etc. until stabilization.
Intervals

```c
int i = 0;
while (i < 1000000) { // i \in [0, 0]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Intervals

```c
int i=0;
while(i < 1000000) {  // i ∈ [0,1]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Intervals

```c
int i = 0;
while (i < 1000000) {
    // i ∈ [0, 2]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Intervals

```c
int i=0;
while(i < 1000000) { // i∈[0,3]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Intervals

```c
int i=0;
while(i < 1000000) {  // i ∈ [0,4]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Intervals

```c
int i=0;
while(i < 1000000) { // i ∈ [0, 5]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Intervals

```c
int i=0;
while(i < 1000000) { // i ∈ [0, 6]
    i++;
}

Follow edges, merge etc. until stabilization.
```
Intervals

```c
int i=0;
while(i < 1000000) { // i \in [0,7]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Intervals

```c
int i=0;
while(i < 1000000) { // i ∈ [0, 8]
    i++;
}
```

Follow edges, merge etc. until stabilization.
Interval widening

```c
int i=0;
while(i < 1000000) { // i ∈ [0, +∞)
    i++;
}
```

Idea: unstable bounds go to $+\infty$
Widening on polyhedra

(Halbwachs)
Interval widening “up to”

Syntactic tracking/extraction of bounds in the program; here \(i \rightarrow 1000000 \)

```java
int i = 0;
while (i < 1000000) { // i \in [0,1000000]
    i++;
}
```

Resembles predicate abstraction!
Can be generalized to polyhedra (see Jeannet).
Upward “Kleene” iterations

- Iterate (upward, using merges) until a fixed point is reached.
- If possibility of infinite ascending sequence (e.g. intervals, polyhedra), apply **widening** instead of normal merge.

Where do we need to apply widening?

Need to apply widening only at “cut set” of control states.
Upward “Kleene” iterations

- Iterate (upward, using merges) until a fixed point is reached.
- If possibility of infinite ascending sequence (e.g. intervals, polyhedra), apply **widening** instead of normal merge.

Where do we need to apply widening?
Need to apply widening only at “cut set” of control states.
Cut sets

Insufficient: uncut loop at C
Cut sets

Loop heads
Cut sets

Minimal
How to compute a cut set

- Simple but not optimal: target of back edges in depth-first search
- Least cardinality: NP-complete in general
- ...but linear time for structured programs (reducible cfg) [Shamir '79]
How to compute a cut set

- Simple but not optimal: target of back edges in depth-first search
- Least cardinality: NP-complete in general
- ... but linear time for structured programs (reducible cfg) [Shamir '79]
Non monotonicity

```c
int i=0;
while(i != 1000000) {
    i++;
}
```
Non monotonicity

```c
int i=0;
while(i != 1000000) { // i ∈ [0,0]
i++;
}
```
Non monotonicity

```c
int i=0;
while (i != 1000000) {  // i ∈ [0,1]
    i++;
}
```
Non monotonicity

```c
int i=0;
while(i != 1000000) { // i ∈ [0,2]
    i++;
}
```
Non monotonicity

```c
int i=0;
while(i != 1000000) { // i ∈ [0,3]
    i++;
}
```
Non monotonicity

```c
int i=0;
while(i != 1000000) { // i ∈ [0,4]
    i++;
}
```

David Monniaux (VERIMAG)

How to obtain and prove invariants

September 28, 2014 76 / 126
Non monotonicity

```c
int i=0;
while(i != 1000000) { // i ∈ [0,5]
    i++;
}
```
Non monotonicity

```c
int i=0;
while(i != 1000000) {   // i ∈ [0,6]
    i++;
}
```
Non monotonicity

```c
int i=0;
while(i != 1000000) { // i ∈ [0, +∞)
    i++;
}
```
Non monotonicity

```c
int i=choose(0, 1000000);  // i ∈ [0,1000000]
while(i != 1000000) { //
    i++;  
}
```
Non monotonicity

```c
int i = choose(0, 1000000); // i ∈ [0,1000000]
while (i != 1000000) { // i ∈ [0,1000000]
    i ++;
}
```
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
A very simple loop

```c
i=0;
while (i < 100) {
    i=i+1;
}
```

Find an inductive loop invariant as an interval $[-l, h]$:

- $[-l, h]$ must contain the initial state: $l \geq 0$, $h \geq 0$
- $[-l, h]$ must be stable by “pushing the interval through the loop”
 - test maps $[-l, h]$ to $[-l, \min(h, 99)]$
 - then $i = i + 1$ maps $[-l, \min(h, 99)]$ to $[-(l - 1), \min(h, 99) + 1]$

Thus inclusion: $l \geq l - 1$ and $h \geq \min(h, 99) + 1$

Thus the least solution satisfies

- $l = \max(0, l - 1)$
- $h = \max(0, \min(h, 99) + 1)$
How to solve min-max equations

We end with equations with “min”, “max”, and monotone affine-linear expressions

\[h = \max(0, \min(h, 99) + 1) \]

How to solve them?

Naive approach:
- Enumerate all argument choices for “min” and “max”
- For each choice, compute solution of linear equation system
- Discard if not a solution of the original problem (wrong choices of arguments of “min” and “max”)
- Take the least one
How to solve min-max equations

We end with equations with “min”, “max”, and monotone affine-linear expressions

\[h = \max(0, \min(h, 99) + 1) \]

How to solve them?

Naive approach:
- Enumerate all argument choices for “min” and “max”
- For each choice, compute solution of linear equation system
- Discard if not a solution of the original problem (wrong choices of arguments of “min” and “max”)
- Take the least one
Solving the naive way

\[h = \max(0, \min(h, 99) + 1) \] \hspace{1cm} (1)

Turned into 3 different equations:

- \(h = \max(0, \min(h, 99) + 1) \leadsto h = 0 \) (left-arg to “max”), solution \(h = 0 \), but not solution of (1): \(\max(0, \min(0, 99) + 1) \), the right argument of “max” is greater \(\Rightarrow \) discarded

- \(h = \max(0, \min(h, 99) + 1) \leadsto h = h + 1 \) (right-arg to “max”, left-arg to “min”), solution \(h = +\infty \), but not solution of (1): \(\min(+\infty, 99) \), the argument of “min” is smaller \(\Rightarrow \) discarded

- \(h = \max(0, \min(h, 99) + 1) \leadsto h = 99 + 1 = 100 \) (right-arg to “max”, right-arg to “min”), \textbf{solution} of the original problem.

But \textbf{exponential blowup}.
Max-policy iteration

(Developed by H. Seidl, T. Gawlitza)

\[h = \max(-\infty, 0, \min(h, 99) + 1) \]

Pick an argument for “max”:

- Initial value for \(h = -\infty \)
- \(h = \max(-\infty, 0, \min(h, 99) + 1); \ h = -\infty; \ \text{replace:} \ \max(-\infty, 0, -\infty), \ \text{found higher argument} \ h = 0 \)
- \(h = \max(-\infty, 0, \min(h, 99) + 1); \ h = 0; \ \text{replace:} \ \max(-\infty, 0, 1), \ \text{found higher argument} \ h = 1 \)
- \(h = \max(-\infty, 0, \min(h, 99) + 1); \ \text{solve} \ h = \min(h, 99) + 1 \ \text{for solution} \ h \geq 1: \ \\
Solve \ h \leq h + 1 \land h \leq 99 + 1 \ \text{for maximal finite} \ h; \ h = 100. \)
High level view

Transforms the original problem (with “max”) into a sequence of problems (without “max”) with increasing “value”.

Intuition: solution is maximum of “order-concave” functions

It’s like solving $h = F(h)$ by infinite ascending sequence $-\infty, F(-\infty), F \circ F(-\infty), F \circ F \circ F(-\infty)\ldots$ but taking “big strides”!
Max policy iteration: executive summary

- Works for linear templates (and some nonlinear ones, but much more difficult)
- For linear transitions (and...)
- “Policy”: for each control node, and each bound in the template, pick an incoming edge \((-\infty = \text{unreachable}, +\infty = \text{unbounded})\)
- Solve resulting system for greatest finite fixed point
- Change policy if unstable

Replaces blind widening and widening “up to” by a kind of acceleration of \(\omega\) Kleene iteration steps.
Refinement

From a property or invariant, get a stronger one.

Unguided Get a stronger one.

Guided Get a stronger one that “kills” some counterexample.
1. Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2. Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3. Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4. Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5. Large block encoding

6. Other data

7. Tools
In predicate abstraction

```java
for (int i = 0; i < 100; i++) {
    j = j + 2;
}
assert (j < 210);
```

![Diagram showing state transitions and invariants]

- **A**:
 - $i' = 0$
 - $j' = 0$

- **B**:
 - $i < 100$
 - $i' = i + 1$
 - $j' = j + 2$
 - $i \geq 100$
 - $j \geq 210$

- **Ok**:
 - $i' = i$
 - $j' = j$
 - $i \geq 100$
 - $j < 210$

- **Fail**:
 - $i' = i$
 - $j' = j$

David Monniaux (VERIMAG)
A bad counterexample

Try to find values for the red path:

\[i_1 = 0 \land j_1 = 0 \land i_2 = i_1 \land j_2 = j_1 \land i \geq 100 \land j \geq 210 \]

UNSAT

Why wrong? Can move from one state in \(A \) to one state in \(B \), from one state in \(B \) to one in “fail”. But states in \(B \) not the same.
A bad counterexample

Try to find values for the red path:
\[i_1 = 0 \land j_1 = 0 \land i_2 = i_1 \land j_2 = j_1 \land i \geq 100 \land j \geq 210 \]

UNSAT

Why wrong? Can move from one state in A to one state in B, from one state in B to one in “fail”. But states in B not the same.
A refinement

Two step explanation for infeasible path:

- $i_1 = 0 \land j_1 = 0 \land i_2 = i_1 \land j_2 = j_1 \implies j_2 = 2i_2 \land i \geq 100$
- $j_2 = 2i_2 \land i_2 \geq 100 \implies j_2 < 210$

This is a Craig interpolant.
A refinement

Two step explanation for infeasible path:
- $i_1 = 0 \land j_1 = 0 \land i_2 = i_1 \land j_2 = j_1 \Rightarrow j_2 = 2i_2 \land i \geq 100$
- $j_2 = 2i_2 \land i_2 \geq 100 \Rightarrow j_2 < 210$

This is a **Craig interpolant**.
A good refinement

```java
for (int i = 0; i < 100; i++) {
    j = j + 2;
}
assert (j < 210);
```

Diagram:

- **A**
 - $i' = 0$
 - $j' = 0$

- **B**
 - $j = 2i \land i \leq 100$

 - **fail**
 - $i' = i$
 - $j' = j$
 - $i \geq 100$
 - $j \geq 210$

 - **ok**
 - $i' = i$
 - $j' = j$
 - $i \geq 100$
 - $j < 210$
Another refinement

Two step explanation for infeasible path:
- $i_1 = 0 \land j_1 = 0 \land i_2 = i_1 \land j_2 = j_1 \Rightarrow i_2 = 0 \land j_2 = 0$
- $i_2 = 0 \land j_2 = 0 \Rightarrow j_2 < 210$

This is another Craig interpolant.
Another refinement

```java
for(int i=0; i<100; i++) {
    j = j+2;
}
assert(j < 210);
```
Further refinement

Two step explanation for infeasible path:

- $i_1 = 0 \land j_1 = 0 \land i_2 = i_1 \land j_2 = j_1 \Rightarrow i_2 = 0 \land j_2 = 0$
- $i_2 = 0 \land j_2 = 0 \land i_3 = i_2 + 1 \land j_3 = j_2 + 2 \Rightarrow i_3 = 1 \land j_3 = 2$
- $i_3 = 1 \land j_3 = 2 \Rightarrow j_2 < 210$

This is another Craig interpolant.
Further refinement

```java
for(int i=0; i<100; i++) {
    j = j + 2;
}
assert(j < 210);
```

The diagram represents the transition between states A and B with the following conditions:

- From state A: $i' = 0$ and $j' = 0$
- From state B: $i' = i + 1$, $i < 100$, $j' = j + 2$, and $j < 210$

The transitions continue to state B with different conditions until reaching state fail or ok.
Overfitting and convergence

- Interpolant $j = 2i \land i \leq 100$ (polyhedral inductive invariant) proves the property.
- Interpolants $i = 0 \land j = 0$, $i = 1 \land j = 2$, $i = 2 \land j = 4$... (exact post-conditions) lead to non-termination.

Challenge: find “good” interpolants “likely” to become inductive
Problem similar to widening
McMillan: find “short” interpolants using few “magic” constants?
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 -Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
When simple induction is insufficient

```c
int index = 0, tab[8];
while (true) {
    out = tab[index];
    tab[index] = input(-10, 10);
    index++;
    if (index==8) index=0;
}
```

Cannot prove \(out \in [-10, 10] \) by simple induction.
Otherwise said

```c
while(true) {
    int t0, t1, t2, t3,
        t4, t5, t6, t7;
    out = t7;
    t7 = t6; t6 = t5;
    t5 = t4; t4 = t3;
    t3 = t2; t2 = t1;
    t1 = t0;
    t0 = input(-10, 10);
}
```
node top
 (in : int)
returns
 (ok : bool);

var
 t0 : int;
 t1 : int;
 t2 : int;
 t3 : int;
 t4 : int;
 t5 : int;
 t6 : int;
 t7 : int;
 out : int;

let

 ok = out >= -10
 and out <= 10;
 out = 0 -> pre t7;
 t7 = 0 -> pre t6;
 t6 = 0 -> pre t5;
 t5 = 0 -> pre t4;
 t4 = 0 -> pre t3;
 t3 = 0 -> pre t2;
 t2 = 0 -> pre t1;
 t1 = 0 -> pre t0;
 t0 = if in >= -10
 and in <= 10
 then in else 0;

 --%PROPERTY ok;

tel
http://clc.cs.uiowa.edu/Kind/
Proves the above program correct by 9-induction.
Descending sequence in abstract interpretation

```c
int i=0, n;
assume(n >= 0);
while(i < n) {
    i = i+1;
}
```

Invariant inferred after widening: \(i \geq 0 \)

Reasoning: “in order to be at loop head, either coming from initialization, either from preceding iteration”

Preceding iteration:

```c
assume(i >= 0);
assume(i < n);
i = i+1;
```

Thus: \(i = 0 \lor 1 \leq i \leq n \), thus \(0 \leq i \leq n \) better invariant.
Executive summary: k-induction and descending sequence

k-induction

Given P to prove:

Initialization
Prove that P holds on k first steps of execution

Induction
If P holds on k steps

$x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_{k-1}$ and $x_{k-1} \rightarrow x_k$

then P holds on x_k

Descending sequence

Given any invariant I:

Initialization
Keep states in k first steps of execution in I'

Induction
Assume I holds on k steps

$x_0 \rightarrow x_1 \rightarrow \cdots \rightarrow x_{k-1}$ and $x_{k-1} \rightarrow x_k$, add x_k states to I'.
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
(E. Goubault’s group)

If precondition → program → $x \leq 10$ provable in, say, octagons

A proof of $x \leq 10$ can be written using only a subset

- of the guards (tests) and other constraints (operations)
- of possible reasoning steps (e.g. “if $y - x \leq 3$ and $z - y \leq 5$ then $z - x \leq 8$”)

Iterative refinement: if another subset is “obviously” better, choose it.
A very simple loop

\[i = 0; \]
\[\text{while } (i < 100) \{ \]
\[i = i + 1; \]
\[\}

Find an inductive loop invariant as an interval \([-l, h](:

- \([-l, h]\) must contain the initial state: \(l \geq 0, h \geq 0\)
- \([-l, h]\) must be stable by “pushing the interval through the loop”
 - test maps \([-l, h]\) to \([-l, \min(h, 99)]\)
 - then \(i = i + 1\) maps \([-l, \min(h, 99)]\) to \([-l - 1, \min(h, 99) + 1]\)

Thus inclusion: \(l \geq l - 1\) and \(h \geq \min(h, 99) + 1\)

Thus the least solution satisfies
- \(l = \max(0, l - 1)\)
- \(h = \max(0, \min(h, 99) + 1)\)
Min-policy iteration

Only choose for “min”:

- \(h = \max(0, \min(h, 99) + 1) \Rightarrow h = \max(0, h + 1) \Rightarrow \) find least solution of \(h \geq 0 \land h \geq h + 1 \) (linear programming) \(\Rightarrow h = +\infty \) min(\(+\infty, 99\) = 99, so flip to right argument of “min”
- \(h = \max(0, \min(h, 99) + 1) \Rightarrow h = \max(0, 100) \Rightarrow \) find least solution of \(h \geq 0 \land h \geq 100 \) (linear programming) \(\Rightarrow h = 100 \)

Solution: \(h = 100 \)

Always the least one?

In general, the min-policy iteration process may stop on a solution of the system of min-max equation that is not the least one.
Min-policy iteration

Only choose for “min”:

- $h = \max(0, \min(h, 99) + 1) \Rightarrow h = \max(0, h + 1) \Rightarrow$ find least solution of $h \geq 0 \land h \geq h + 1$ (linear programming) $\Rightarrow h = +\infty$

$\min(+\infty, 99) = 99$, so flip to right argument of “min”

- $h = \max(0, \min(h, 99) + 1) \Rightarrow h = \max(0, 100) \Rightarrow$ find least solution of $h \geq 0 \land h \geq 100$ (linear programming) $\Rightarrow h = 100$

Solution: $h = 100$

Always the least one?

In general, the min-policy iteration process may stop on a solution of the system of min-max equation that is not the least one.
Min-policy iteration, executive summary

- Replaces original system by an over-approximation: leave out some guards and other constraints on the reachable states
- Solve the resulting, simple, system
- If the system solves the property, terminate
- Check whether some “obvious” improvement exists, loop
1 Safety properties and induction
 - Safety properties
 - Induction
 - The set of reachable states

2 Abstraction
 - Intervals
 - Forward / backward
 - Relational numeric domains
 - Predicate abstraction
 - Complexity theory

3 Extrapolation and convergence
 - Acceleration
 - Widening
 - Max-policy iteration

4 Refinement
 - From goal
 - k-induction and variants
 - Min-policy iteration

5 Large block encoding

6 Other data

7 Tools
double x, y, z;
if (x >= 0) {
 y = x;
 if (y > 0.1) {
 assert(x != 0);
 z = 1.0 / x;
 }
} else {
 y = -x;
 if (y > 0.1) {
 assert(x != 0);
 z = 1.0 / x;
 }
}

In general: exponential cost
Considering individual paths
Use of SMT-solving

(Satisfiability modulo theory: given a first-order formula in a theory, say “unsat” or give a solution)

Instead of explicitly considering all 2^n paths consider them implicitly, as needed

Solve successive SMT problems “is my current candidate invariant inductive”?

Applied to

- Kleene iterations + widening [Monniaux & Gonnord, C. Tinelli]
- max-policy iteration [Gawlitza & Monniaux, Monniaux & Schrammel]
Safety properties and induction
- Safety properties
- Induction
- The set of reachable states

Abstraction
- Intervals
- Forward / backward
- Relational numeric domains
- Predicate abstraction
- Complexity theory

Extrapolation and convergence
- Acceleration
- Widening
- Max-policy iteration

Refinement
- From goal
- k-induction and variants
- Min-policy iteration

Large block encoding

Other data

Tools
Floating-point

Most abstract domains: ideal mathematics (\mathbb{Z}, \mathbb{Q}, \mathbb{R})

Intervals: handle floating-point by directed rounding

But relational domains?

\[x \oplus y = x + y + \epsilon, \ |\epsilon| \leq \epsilon_r |x + y| \]

\[x \otimes y = x \times y + \epsilon, \ |\epsilon| \leq \min(\epsilon_a, \epsilon_r |x + y|) \]

ϵ_r “error at last bit of precision”

ϵ_a least positive floating-point value
Floating-point

Most abstract domains: ideal mathematics \((\mathbb{Z}, \mathbb{Q}, \mathbb{R})\)
Intervals: handle floating-point by directed rounding
But relational domains?

\[
x \oplus y = x + y + \epsilon, \quad |\epsilon| \leq \epsilon_r |x + y|
\]

\[
x \otimes y = x \times y + \epsilon, \quad |\epsilon| \leq \min(\epsilon_a, \epsilon_r |x + y|)
\]

\(\epsilon_r\) “error at last bit of precision”
\(\epsilon_a\) least positive floating-point value
Data structures

- Point-to graph (may/must)
- Abstract into a single variable
 - all data allocated at single location? (but beware of malloc-like functions)
 - all fields with same field identifier (e.g. in Java)
- Recursive decomposition of memory
- Separation logic?
Safety properties and induction:
- Safety properties
- Induction
- The set of reachable states

Abstraction:
- Intervals
- Forward / backward
- Relational numeric domains
- Predicate abstraction
- Complexity theory

Extrapolation and convergence:
- Acceleration
- Widening
- Max-policy iteration

Refinement:
- From goal
- k-induction and variants
- Min-policy iteration

Large block encoding

Other data

Tools
Warning

List of tools certainly not exhaustive.
General framework

(not all tools exactly this way)

compiler front-end (Java bytecode, LLVM, CIL, Eclipse CDT . . .)
↓
iterator
↓
data structure abstractions
↓
numeric abstractions
Polyspace

(commercial) now Mathworks
Astrée

Cousot et al. (commercial)
http://www.astree.ens.fr/
http://www.absint.com/astree/index.htm

- home-made front-end
- only abstract interpretation
- intervals and octagons
- specialized abstractions for numerical filters
- limited memory abstractions
- now support for parallel programs
Astrée applications

Large plane, large fly-by-wire code
http://cpachecker.sosy-lab.org/

- Eclipse CDT front-end
- mostly predicate interpretation
- intervals
- limited support for octagons and polyhedra
Verasco

Proved correct in Coq

- Compcert front-end
- (floating point) intervals
- polyhedra
- memory
- in the future: filters

No public release yet
http://verasco.imag.fr/
APRON & Interproc

Jeannet & Miné

APRON: abstract domains
(Concur)Interproc: demonstrator analyzer

http://apron.cri.ensmp.fr/library/
http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi
PAGAI

http://pagai.forge.imag.fr/ (Julien Henry)

- LLVM front-end
- uses APRON abstract domains
- path-focusing for SMT-solving
- extra applications to worst case execution time (WCET) analysis

Demo
http://pagai.forge.imag.fr/ (Julien Henry)

- LLVM front-end
- uses APRON abstract domains
- path-focusing for SMT-solving
- extra applications to worst case execution time (WCET) analysis

Demo
Questions?

http://stator.imag.fr/

European Research Council
Established by the European Commission