
Abstraction of expectation functions using
Gaussian distributions

David Monniaux

http://www.di.ens.fr/~monniaux
David.Monniaux@ens.fr

LIENS
45 rue d’Ulm

75230 Paris cedex 5, France

Abstract. We consider semantics of infinite-state programs, both prob-
abilistic and nondeterministic, as expectation functions: for any set of
states A, we associate to each program point a function mapping each
state to its expectation of starting a trace reaching A. We then compute
a safe upper approximation of these functions using abstract interpreta-
tion. This computation takes place in an abstract domain of extended
Gaussian (normal) distributions.

Category: 1 (new results)

1 Introduction

Much progress has been made recently on the model-checking of probabilistic
and nondeterministic systems, considered as Markov decision processes [5, 10,
7]. These methods, however, consider finite-state processes. For infinite state
processes, one can either approximate them using finite-state processes, or use
a symbolic approximation. In this paper, we take the latter approach.

1.1 Contribution

We propose a symbolic method for computing a safe upper-bound on the prob-
ability of a certain set of events occuring in the set of traces of the analyzed
program. Our analysis method is set in the general framework of abstract in-
terpretation [4] of probabilistic programs using expectation functions [14]. This
analysis method approximates expectation functions from above using Gaus-
sian extended (n-dimensional) distributions . The kind of results that can be
established using this analysis is as follows:

∀x EA(x) ≤ α exp(−Q(x− x0))

where EA(x) notes the expectation of reaching a state in A from an initial state x
(a vector of real numbers representing the values of the various variables) and Q is
a positive quadratic form. This result is achieved through an over-approximation

http://www.di.ens.fr/~monniaux
David.Monniaux@ens.fr

of the value iteration sequence associated with the Markov decision process [15]
using widening operators to force convergence [4].

This result is sound, meaning that the bound that is obtained is necessarily
true (although not optimal in general). The algorithms used are mostly standard
numerical analysis, enabling the use of standard (bi)linear algebra packages such
as Matlab or libraries such as Lapack [1].

1.2 Comparison with other works

The field of probabilistic model checking has developed considerably during the
last few years. Some tools [5] are now available ; they use sophisticated algorithms
on compact symbolic representations of vectors in [0, 1]N where N is the number
of states. On the other hand, these tools are unable to work directly on computer
programs, which have infinite or at least very large state spaces (a system with
forty 32-bit variables has about 10384 states); they need a preliminary step of
(mostly manual) abstraction into a finite model.

In an earlier paper [14], we proposed a static analysis method for probabilis-
tic and nondeterministic programs. That method used an abstract domain of
step functions, that is, linear combinations of characteristic functions of basic
elements. Those basic elements are taken in an abstract domain suitable for non-
probabilistic analysis. That analysis method tends to perform well on the “big
mass” of distributions, but gives overly coarse approximations of the “tails” of
the expectation functions : they are uniformly bounded by a constant, whereas
we would like to see them bounded by some function that is negligible far away.

We also proposed a method combining Monte-Carlo sampling and non-pro-
babilistic abstract interpretation [12]. That method considers a slightly different
semantics and achieves results that are valid only up to a confidence interval; it
can become prohibitively expensive if the probability to be bounded with good
relative accuracy is small. It is however possible to use analyses such as the one
described in this paper to fine-tune the number of samples needed in different
regions by the Monte-Carlo analysis.

1.3 Structure of the paper

In section 2, we shall explain briefly our notion of backward probabilistic abstract
interpretation [12]. In section 3, we shall see the abstract domain of extended
Gaussian distributions. In section 4, we shall see a few mathematical facts on
second-degree polynomials and positive quadratic forms, as well as some effective
algorithms.

2 Backwards probabilistic abstract interpretation

With respect to probabilistic program semantics, one has the choice between for-
ward denotational semantics [8,9,11], backward denotational semantics [14] and
small-step operational semantics (Markov decision processes) [13, ch. 7,8]. The

10.90.80.70.60.50.40.30.20.10
y

43210-1-2-3-4x
43210-1-2-3-4

gaussian

Fig. 1. An extended Gaussian distribution. Its matrix is (0.6 0
0 1) in the orthog-

onal basis
(

cos 0.4 − sin 0.4
sin 0.4 cos 0.4

)

.

analysis method described in this paper applies both to backward denotational
semantics and backward small-step operational semantics. However, for the sake
of brevity, we shall explain it using denotational semantics.

2.1 Concrete semantics

We shall begin by giving the concrete semantics, that is, the precise semantics
of the programs to be analyzed.

In his seminal papers [8,9], Kozen introduced semantics of probabilistic pro-
grams as continuous linear operators on measure spaces. These semantics are
forward, since they map the input probability distribution (measure) of the pro-
gram to its output distribution. Using a linear duality relation, we obtained a
backward probabilistic semantics operating on measurable functions [14]. This
semantics is easily lifted to nondeterministic and probabilistic programs, which
take choices, some of which according to a known probability distribution and
the others in a certain known domain. We recall here this semantics in a com-
positional fashion.

[[H]]∗p is the semantics of program construct H. If the environment (vector of
variables, registers, heap...) before H is taken in the set X and after H taken in
Y , then [[H]]∗p is a function from Y →measurable [0, 1] to X →measurable [0, 1]. This
function is upper-continuous (the image of the limit of an ascending sequence
is the limit of the images) and, when H does not include nondeterministic con-
structs, it is linear.

Sequence Straightforward composition:

[[e1;e2]]∗p = [[e1]]∗p ◦ [[e2]]∗p. (1)

Tests RW is the linear operator mapping a function f to its pointwise product
with the characteristic function of W . Then

[[if c then e1 else e2]]∗p = Rχ[[c]] ◦ [[e1]]∗p + Rχ[[c]]C
◦ [[e2]]∗p. (2)

Loops lfpΨ is the least fixpoint of Ψ . Since Ψ is upper-continuous, lfp =
tnΨn(0). Then

[[while c do e]]∗p.f0 = Rχ[[c]]C
. lfp

(

f 7→ f0 + Rχ[[c]] ◦ [[e]]∗p(f)
)

(3)

This equation is the denotational version of the definition of the value of a
Markov decision process using value iteration [15, §7.2.4].

Deterministic operations These are operations such as arithmetic, fetching
data etc...

[[H]]∗p.f = f ◦ [[H]] (4)

where [[H]] is the denotational semantics of the deterministic operation H,
mapping each input to the operation to the corresponding output.

Random generation The operation takes an environment (vector of variables)
x and appends to it a random value r taken according to the random distri-
bution µR.

([[r:=random]]∗p.f)(x) =
∫

f(x, r) dµR(r) (5)

Nondeterministic generation The operation takes an environment (vector
of variables) x and appends to it a variable y nondeterministically chosen
in Y .

([[r:=nondeterministic]]∗p.f)(x) = sup
y∈Y

f(x, y) (6)

2.2 Abstract interpretation

Following [14], we associate an abstract semantics [[H]]∗p
] to any program con-

struct H. This semantics is linked to the concrete one by the abstraction relation :

∀f, f] f ≤ f] =⇒ [[H]]∗p.f ≤ [[H]]∗p
].f], (7)

using the pointwise ordering.
We shall restrict the abstract computations to a certain family of functions

taken in an abstract domain. We shall introduce a domain of extended Gaussian
distributions in section 3.

The domain should implement some elementary abstract operations:

– abstract counterparts of the semantics of deterministic operations, nonde-
terministic generation, probabilistic generation

– an abstraction +] of the + operator
– an abstraction R]

[[c]] of R[[c]] for any boolean condition c (such as a comparison
between two variables)

– an abstraction of the t (least upper bound operator):

f] t] g] ≥ f] (8)

f] t] g] ≥ g] (9)

– a widening operator ∇:

• for all f] and g], f]∇g] is greater than f] and g];
• for any sequence v]

n and any u]
0, the sequence defined by u]

n+1 = u]
n∇v]

n
is ultimately stationary.

The widening operator ∇ is a kind of convergence accelerator for fixpoint
iterations [4, §4.3]. Let us suppose we have a concrete function Ψ and its abstract
counterpart Ψ]. We wish to obtain an abstraction (upper approximation) of
lfp Ψ (the least fixpoint of Ψ). lfp Ψ is the limit of the sequence (fn)n∈N defined
by f0 = 0 and fn+1 = Ψfn. Let us now consider the sequence f]

0 = 0 and
f]

n+1 = f]
n∇Ψ]f]

n. Obviously, fn ≤ f]
n for any n. Furthermore, f]

n is ultimately
stationary. Its limit L] is therefore an upper bound on lfp Ψ = limn→n f]

n. Let
us note it lfp] Ψ].

The abstract semantics is obtained by replacing each elementary operation
in the definition of the concrete semantics (§2.1) by its abstract counterpart.

3 Extended Gaussian distributions

We shall now describe the domain of extended Gaussian distributions (Fig. 1).

3.1 Construction

We shall first describe the form of the functions making up the abstract domain.

Definition 1. Let E be a finite dimensional real vector space. Let us consider a
positive quadratic form Q and a linear form L over E such that kerQ ⊆ kerL.
q0 is a real number. The function

E → R+
v 7→ exp(−Q(v) + L(v) + q0)

is called an extended Gaussian distribution. It shall be noted GQ,L,q0 .

Proposition 1. Let φ : v 7→ exp(−Q(v) + Lv + q) be an extended Gaussian
distribution over an euclidean space E. Then there exists an orthonormal ba-
sis (vi)1≤1≤n, a positive real number K, coefficients (λi)1≤1≤n and coordinates
(pi)1≤1≤n such that

φ
(
∑

xivi

)

= K exp

(

−
∑

i

λi(xi − pi)2
)

.

The point P , whose coordinates in the basis (vi)1≤1≤n are (pi)1≤1≤n, is called
the center of the distribution.

3.2 Least upper bound and widening

Let (Q1, L1, q1) and (Q2, L2, q2) be two extended Gaussian distributions. We
wish to get a common upper bound for them.

Let us note that, in general, there is no least upper bound in Gaussian distri-
butions, even when the Gaussians are centered and unscaled: two ellipses with
a common center do not necessarily have a least upper bound.

We define the extended Gaussian distribution (Q1, L1, q1) t (Q2, L2, q2) as
follows. Since Q1 and Q2 are positive, we diagonalize them in the same base
(vi)1≤1≤n (theorem 2). Then Q1(

∑

i xivi) =
∑

λix2
i and Q2(

∑

i xivi) =
∑

µix2
i .

Let us write the linear forms L1 and L2 in this basis: L1(
∑

i xivi) =
∑

αixi and
L2(

∑

i xivi) =
∑

βixi.
Let σi and τi be partitions of q1 and q2 respectively (

∑

i σi = q1 and
∑

i τi =
q2). We can take σi = q1/n and τi = q2/n.

Let aiX2 + biX + ci = (λiX2 + αiX + σi) u (µiX2 + βiX + τi) (as defined
in §4.1).

Let Q(
∑

i xivi) =
∑

i aix2
i , L(

∑

i xivi) =
∑

i bixi and q =
∑

i ci.
Let us check that ker Q ⊆ ker L. Since ker Q is the isotropic cone of Q and

the vi form a diagonal basis for Q, it follows that a subset of the vi form a basis
of kerQ. For any index i such that vi is in that basis, ai = 0; since we exclude
polynomials of degree one (ker Q ⊆ kerL), bi must also be null.

by construction, so vi ∈ kerL.
We define

(Q1, L1, q1) t (Q2, L2, q2) = (Q,L, q). (10)

Let us remark that

dimker Q ≥ max(dimker Q1, dimker Q2) (11)

since for all i such that λi = 0 or µi = 0, ai = 0.
We define the widening operator similarly, except that this time we need to

ensure convergence of the ascending sequences un+1 = un∇vn. We shall modify
the least upper bound operator in two respects to obtain the widening operator:

1. Intuitively, when ai < λi, this means that along that particular vector vi

the Gaussian gets flatter and flatter. The natural widening is to upper-
approximate it by a flat line. In this case, we take a′i = b′i = 0 and

c′i = min
x

(aix2 + bix + c) =
−b2

4a
+ c. (12)

2. If all ai = 0 and c is still decreasing, we take the last resort of removing all
constraints.

The convergence of the method is ensured by the fact that whenever step 1
is applied, dim ker Q strictly increases. Since in non-widening steps, dimker Q
increases or stays constant, it follows that at most dim E step 1 may be applied.
After this, the ai stay constant. The only way the sequence can still go on
ascending is by an increase in c. Then step 2 ensures termination.

3.3 Random generators

Let us recall Equ. 5 the backwards operation associated with ρ = random where
ρ is a fresh real variable

g = [[ρ = random]]∗p.f = v 7→
∫

x
f(v + xe) dµR(x) (13)

where e is an additional basis vector corresponding to the fresh variable ρ and µR
is the distribution of the new variable. If µR is given by the Gaussian exp(−(λx2+
c1)), and f is given by (Q,L, c), then

g(v) =
Z +∞

−∞
exp

“

−(Q(v + xe) + L(v + xe) + c + λx2 + c1)
”

dx

= exp

0

B

B

B

B

@

−

0

B

B

B

B

@

Q(v)−
1
4α

Q∗(v, e)2

| {z }

Q′(v)

+ L(v)−
1
2α

Q∗(v, e)L(e)
| {z }

L′(v)

+ c + c1 −
L(e)2

4α
−

1
2

log
π
a

| {z }

c′

1

C

C

C

C

A

1

C

C

C

C

A

(14)

Because of the definition of g as the integral of a bounded function versus a
measure of finite total weight, g is bounded; thus Q is positive and ker L ⊆ ker Q.

3.4 Linear operations

We shall deal here with program statements such as vn :=
∑

i αivi and more
generally any linear transformation M where the vector of variables V ′ after
the instruction is M.V where V is the vector of variable before the instruction.
Following Equ. 4,

[[V :=M.V]]∗p.f = f ◦M (15)

and thus (Q′, L′, c) = (tM QM,LM, c).

3.5 Other operations

We shall approximate other operations by releasing all constraints on the vari-
ables affected by them: forgetting variable in set V is achieved as follows:

– q′i,j = qi,j if i /∈ V and j /∈ V , q′i,j = 0 otherwise;
– L′i = Li if i /∈ V , Li = 0.

It is quite obvious that if f : E 7→ E leaves all coordinates outside of V intact,
GQ,L,q0 ◦ f ≤ GQ′,L′,q0 point-wise.

4 Mathematical facts

We shall see now a few mathematical points on second-degree polynomials and
positive quadratic forms.

4.1 Parabolas

Let P1(x) = a1x2 + b1x + c1 and P2(x) = a2x2 + b2x + c2. Let us find a quadric
polynomial P3(x) = a3x2 + b3x + c3 less than P1 and P2. Obviously, a3 must be
less than both a1 and a2, else P3 is above P1 or P2 near ±∞.

Let us first suppose that neither P1 ≤ P2 nor P2 ≤ P1 pointwise, since those
cases have an obvious solution. Let us remark that this condition holds if and
only if P1 and P2 intersect, that is, when discr(P1−P2) > 0 — discr(ax2+bx+c)
is the discriminant b2 − 4ac.

Let us note that there is in general no “greatest lower bound” among quadratic
polynomials. The first choice, an arbitrary one, will thus be of any positive a3

less than a1 and a2.
We choose P3 to be tangent to both P1 and P2. This means that P3−P1 and

P ′3 −P ′1 have a common root (resp. for P3 −P2 and P ′3 −P ′2). This is equivalent
to P3 − P1 and P2 − P1 each having a double root. That property is ensured by
the conditions on the discriminants of the polynomials: discr(P3 − P1) = 0 and
discr(P3 − P2) = 0, that is:

(b3 − b1)2 = 4(a3 − a1)(c3 − c1) (16)

(b3 − b2)2 = 4(a3 − a2)(c3 − c2) (17)

Let us suppose for now that a1 > a2. Solving this 2-unknown, 2-equation
system yields:

b3 =
−a2b1 + a3(b1 − b2) + a1b2 ±

√
∆

a1 − a2
(18)

∆ = (a1 − a3)(−a2 + a3)(−(b1 − b2)2 + 4(a1 − a2)(c1 − c2)) (19)

There are two solutions for this system, which means that for any choice of
a3, there are two polynomials P3 corresponding to two parabolas tangent to both
P1 and P2. We wish P3 to be pointwise less than P1 and P2, but we would prefer
it not to be too “low”; for this reason, between the two choices, we choose the
one for which inf P3 = − b3

2a3
is maximal and thus b3 is minimal. Since a1 > a2,

this means that we choose

b3 =
−a2b1 + a3(b1 − b2) + a1b2 −

√
∆

a1 − a2
(20)

c3 = c1 +
(b3 − b1)2

4(a3 − a1)
(21)

The case a1 < a2 is treated mutatis mutandis.
Let us now treat a1 = a2, which is a degenerate case.

b3 =
b1 + b2

2
− 2

(a1− a3)(c1− c2)
b1− b2

(22)

c3 = c1 +
(b3 − b1)2

4(a3 − a1)
(23)

P4(x), a3 = 0.9
P3(x), a3 = 0.7

P2(x) = 0.95x2 − 2x + 0.8
P1(x) = x2 − 2x + 1

151050-5-10-15

300

250

200

150

100

50

0

-50

Fig. 2. An example of common lower bounds in quadratic polynomials (P4 and
P3 for P1 and P2).

P3(x), a3 = 0.7
P2(x) = 0.95x2 − 2x + 0.8

P1(x) = x2 − 2x + 1

6420-2-4-6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 3. The Gaussians corresponding to the preceding figure. Note that while
the central part is grossly overestimated (and truncated in the figure), the tails
are finely approximated.

4.2 Positive quadratic forms

Extended gaussian distributions are defined using positive quadratic forms. An
eigenvalue of zero along an axis indicates that there is no Gaussian constraint
along that axis; this is the case, for instance, if this axis corresponds to a variable
chosen according to a non-Gaussian distribution.

Basic facts

Definition 2 ((Positive) quadratic forms). A quadratic form Q on a real
vector space E is defined by a bilinear symmetric function Q∗ (called its polar
form) from E×E to R. We note Q(x) = Q∗(x, x). A positive quadratic form Q
is such that for all x in E, Q(x) ≥ 0.

Lemma 1. Let E be a vector space. Let Q be a quadratic form over E. Let F
be a finite dimensional subspace of E so that F ∩ Iso Q = {0}. Then F has an
orthonormal basis with respect to Q.

Common diagonalization We shall often have to consider two different quadratic
forms at the same time. It is then very useful to consider both of them in the
same orthogonal basis. The following theorem guarantees that it is possible pro-
vided at least one of the quadratic forms is positive definite (or negative defi-
nite) [2, th. III.3.1]:

Theorem 1. Let E be a finite dimensional vector space. Let Q1 be a quadratic
form over E and Q2 be a positive definite (or negative definite) quadratic form
over E. Then there exists a base where both Q1 and Q2 are diagonal.

We shall suppose that we have implementations of certain numerical algo-
rithms (algorithms 1, 2, 3). Those are available in the general literature as well
as free and commercial software [6].

Algorithm 1 QuadDiag0, diagonalize a symmetric matrix in an orthonormal
basis
Require: M a symmetric matrix
Ensure: [P, D] where D is a diagonal matrix and P is an orthogonal matrix such that

M = PDP−1.

Algorithm 2 Orth, get an orthnormal basis of the image space of a matrix
Require: M a matrix
Ensure: B such that Im B = Im M and its columns form an orthonormal free family

Algorithm 3 Null, get an orthnormal basis of the null space of a matrix
Require: M a matrix
Ensure: B such that Im B = ker M its columns form an orthonormal free family

Algorithm 4 QuadDiag1, common diagonalization of a quadratic form and a
positive definite quadratic form
Require: [Q1, Q2] where Q1 a symmetric matrix, Q2 a positive definite symmetric

matrix
Ensure: [P, I, d, D1] where P is an invertible matrix, I its inverse, d = det P , D1 is a

diagonal matrices such that Q1 = tI D1I and Q2 = tI I
[P2, D2] ← QuadDiag0[Q2]
Z ← D−1/2

2
H ← P2Z
G ← tH Q2H
[P1, D1] ← QuadDiag0[G]
I ← tP1

√
D2

tP2

P ← P2ZP1

d ← det Z

Unfortunately, in our case, we have to handle quadratic forms that have
isotropic vectors. On the other hand, we only consider positive forms, and we
thus have a theorem:

Theorem 2. Let E be a finite dimensional vector space. Let n be dim E. Let
Q1 and Q2 be two positive quadratic forms over E. Then there exists a base
(ei)1≤i≤n where both Q1 and Q2 are diagonal, that is, there exist two families
real numbers (λi)1≤i≤n and (µi)1≤i≤n so that

Q1

(

∑

i

αiei

)

=
∑

i

λiα2
i (24)

Q2

(

∑

i

αiei

)

=
∑

i

µiα2
i . (25)

Let us now develop an effective algorithm for this theorem (Alg. 5). For
effectiveness reasons, we choose F to be the orthogonal of ker Q1 ∩ kerQ2 for
the canonic dot product. Since ker Q1 ∩ kerQ⊥

2 = Im Q1 + Im Q2 we obtain
an orthonormal basis of F by orthogonalizing a generating family of Im Q1

(the columns of Q1), extending that basis to an orthonormal basis of Im Q1 +
Im Q2 using a generating family of Im Q2 (the columns of Q2). We then have
an orthonormal basis of F , which can be extended to a basis B of Rn using a
generating family of R (the canonical basis).

We consider both quadratic forms Q1 and Q2 on that basis B. Their matrices
are of the form

Qi = tB QiB =
(

Q′
i 0

0 0

)

(26)

where Q′
1 and Q′

2 are square matrices of size dim F . We diagonalize Q′
1 with

respect to the definite positive matrix Q′
1 + Q′

2 and output the results with
respect to the right bases.

Algorithm 5 QuadDiag2, common diagonalization of two positive quadratic
forms
Require: Q1 and Q2 two positive symmetric matrices
Ensure: [P, I, d, D1, D2] where P is an invertible matrix, I its inverse, d = det P , D1

and D2 two diagonal matrices such that Q1 = tI D1I and Q2 = tI D2I
F ← Orth [(Q1 Q2)]
K ← Null

ˆ`Q1
Q2

´˜

[P ′, I ′, d, D′
1] ← QuadDiag1(tF Q1F, tF (Q1 + Q2)F)

D1 ←
“

D′1 0
0 0

”

D2 ←
“

1−D′1 0
0 0

”

P ← (FP ′ K)

I ←
“

I′ tF
tK

”

5 Conclusions

We presented an abstract domain for the backwards abstract interpretation of
probabilistic programs, with a view to representing exactly the properties of
programs using normally distributed generators.

As shown in Fig. 3, this analysis yields coarse results in the center of the
functions; on the other hand, it leads to very precise results in the tails of the
distribution. It therefore seems desirable to use it as a way to bound the influ-
ence of the tails of the random generators while using other methods, including
abstract Monte-Carlo [12], for the center of the distribution.

The main problem with this domain is that it does not interact well with
precise bounds, obtained for instance with a test with respect to an interval. A
possible direction of research is an abstract domain covering both precise bounds
and Gaussian bounds.

An application of this Gaussian analysis could be the study of the propagation
of computational inaccuracies introduced by floating-point arithmetics, modeled
by random choices.1 We hope to contribute to that recently opened field [16] of
abstract interpretation applied to round-off errors.

References

1. E. Anderson, Z. Bai, C. Bischof, S. Blackfordand J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK

1 This idea of modeling inaccuracies by random choices is the basis of the CESTAC
method [17].

Users’ Guide. SIAM, third edition, 1999. On-line extra documentation at http:
//www.netlib.org/lapack/.

2. J.M. Arnaudiès and H. Fraysse. Cours de mathématiques, 4 : Algèbre bilinéaire et
géométrie. Dunod Université, 1990.

3. Philippe G. Ciarlet. Introduction à l’analyse numérique matricielle et à
l’optimisation. Masson, Paris, 1982.

4. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to
logic programs. J. Logic Prog., 2-3(13):103–179, 1992.

5. Luca de Alfaro, Marta Kwiatkowska, Gethin Norman, David Parker, and Roberto
Segala. Symbolic model checking of probabilistic processes using MTBDDs and
the kronecker representation. In TACAS’2000, volume 1785 of Lecture Notes in
Computer Science. Springer-Verlag, January 2000.

6. Free Software Foundation. GNU Octave: A high-level interactive language for
numerical computations.
http://www.octave.org/doc/octave_toc.html

7. Michael Huth and Marta Kwiatkowska. On probabilistic model checking. Technical
Report CSR-96-15, University of Birmingham, School of Computer Science, August
1996.
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSR-96-15.ps.gz

8. D. Kozen. Semantics of probabilistic programs. In 20th Annual Symposium on
Foundations of Computer Science, pages 101–114, Long Beach, Ca., USA, October
1979. IEEE Computer Society Press.

9. D. Kozen. Semantics of probabilistic programs. Journal of Computer and System
Sciences, 22(3):328–350, 1981.

10. Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston.
Verifying quantitative properties of continuous probabilistic timed automata. Tech-
nical Report CSR-00-6, University of Birmingham, School of Computer Science,
March 2000.
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2000/CSR-00-06.ps.gz

11. David Monniaux. Abstract interpretation of probabilistic semantics. In Seventh
International Static Analysis Symposium (SAS’00), number 1824 in Lecture Notes
in Computer Science, pages 322–339. Springer-Verlag, 2000. Extended version on
the author’s web site.

12. David Monniaux. An abstract Monte-Carlo method for the analysis of probabilistic
programs (extended abstract). In 28th Symposium on Principles of Programming
Languages (POPL ’01), pages 93–101. Association for Computer Machinery, 2001.

13. David Monniaux. Analyse de programmes probabilistes par interprétation abstraite.
Thèse de doctorat, Université Paris IX Dauphine, 2001. Résumé étendu en français.
Contents in English.

14. David Monniaux. Backwards abstract interpretation of probabilistic programs.
In European Symposium on Programming Languages and Systems (ESOP ’01),
number 2028 in Lecture Notes in Computer Science, pages 367–382. Springer-
Verlag, 2001.

15. Martin L. Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. Wiley series in probability and mathematical statistics. John Wiley &
Sons, 1994.

16. Éric Goubault. Static analyses of floating-point operations. In Static Analysis
(SAS ’01), Lecture Notes in Computer Science. Springer-Verlag, July 2001.

17. J. Vignes and R. Alt. An efficient stochastic method for round-off error analysis. In
Accurate scientific computations (Bad Neuenahr, 1985), pages 183–205. Springer,
Berlin, 1986.

http://www.netlib.org/lapack/.
http://www.netlib.org/lapack/.
http://www.octave.org/doc/octave_toc.html
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSR-96-15.ps.gz
ftp://ftp.cs.bham.ac.uk/pub/tech-reports/2000/CSR-00-06.ps.gz

	Abstraction of expectation functions using Gaussian distributions

