
Abstract interpretation of programs as Markov
decision processes

David Monniaux

http://www.di.ens.fr/~monniaux
École Normale Supérieure

Département d’Informatique
45, rue d’Ulm

75230 Paris cedex 5
France

Abstract. We propose a formal language for the specification of trace
properties of probabilistic, nondeterministic transition systems, encom-
passing the properties expressible in Linear Time Logic. Those formulas
are in general undecidable on infinite deterministic transition systems
and thus on infinite Markov decision processes. This language has both
a semantics in terms of sets of traces, as well as another semantics in
terms of measurable functions; we give and prove theorems linking the
two semantics. We then apply abstract interpretation-based techniques
to give upper bounds on the worst-case probability of the studied prop-
erty. We propose an enhancement of this technique when the state space
is partitioned — for instance along the program points —, allowing the
use of faster iteration methods.

1 Introduction

The study of probabilistic programs is of considerable interest for the valida-
tion of networking protocols, embedded systems, or simply for compiling opti-
mizations. It is also a difficult matter, due to the undecidability of properties
on infinite-state deterministic programs, as well as the difficulties arising from
probabilities. In this paper, we provide methods for the analysis of programs
represented as infinite-state Markov decision processes.

The analysis of finite-state Markov decision processes was originally con-
ducted in the fields of operational research and finance mathematics [23]. More
recently, they have been studied from the angle of probabilistic computing sys-
tems [1–4,15,24]. Effective resolution techniques include linear programming [23,
§7.2.7] [7] and newer data structures such as MTBDDs [2]. However, the problem
of large- or infinite-state systems has not been so well studied.

In the case of deterministic or nondeterministic systems without a notion of
probability, various analysis techniques have been proposed in the last twenty
years. Since the problem is undecidable, those techniques are either partially
manual (i.e. require the input of invariants or similar), either approximate (i.e.,
the analysis takes a pessimistic point of view when it cannot solve the problem

exactly). In this paper, we take the latter approach and build our analysis meth-
ods upon the existing framework of abstract interpretation [9], a general theory
of approximation between semantics.

We have earlier proposed two classes of automatic methods to analyze such
system: some forward [16,17], some backward [19,20]. In this paper, we focus on
the backward approach and extend it to a larger class of properties (including
those specified by LTL formulas). We also prove that chaotic iterations strategies
[8, §2.9] apply to our case, which allows parallel implementations.

In section 2, we give an introduction to probabilistic transition systems, which
we extend in section 3 to nondeterministic and probabilistic systems. In section 4,
we give a formal language for the specification of trace properties, including
those formulated using Büchi or Rabin automata. In section 5, we explain how
to analyze those properties backward and in section 6.1 how to apply abstract
analyses.

2 Probabilistic transition systems

The natural extension of transition systems to the probabilistic case is proba-
bilistic transition systems, also known as Markov chains or discrete-time Markov
process.

2.1 Probabilistic transitions

We assume that the set of states is finite or countable so as to avoid technical-
ities. The natural extension of the notion of deterministic state is the notion of
probability distribution on the set of states.

Definition 1 Let Ω be a finite or countable set of states. A function f : Ω →
[0, 1] is called a probability distribution if

∑

ω∈Ω f(ω) = 1. We shall note D(Ω)
the set of probabilistic distributions on Ω.

Now that we have the probabilistic counterpart of the notion of state, we
need to have the counterpart of the notion of transition.

Definition 2 Let Ω be a finite or countable set of states. Let us consider a
function T : Ω × Ω → [0, 1] such that for all ω1 ∈ Ω,

∑

ω2∈Ω T (ω1; ω2) = 1.
(Ω,T) is called a probabilistic transition system.

If Ω is finite, the relation relation can be given by a probabilistic transition
matrix. Let us assimilate Ω to {1, . . . , N}. Then, the transition matrix M is
defined by mi,j = T (i, j) if i → j, 0 otherwise.

The intuitive notion of a probabilistic transition is that it maps an input
distribution to an output distribution. It is the probabilistic counterpart of the
notion of a successor state.

Definition 3 Let T be a transition probability between Ω1 and Ω2. Let us define−→
T : D(Ω1) → D(Ω2) as follows:

−→
T (d)(ω2) =

∑

ω1∈Ω1
T (ω1, ω2)d(ω1).

Let us now describe the probabilistic counterpart of the notion of predeces-
sor state. Given a transition probability T between Ω1 and Ω2 and a boolean
property π : Ω2 → {0, 1}, the expectation of a state ω1 ∈ Ω1 to reach π in one
step is then

∑

ω2∈Ω2
T (ω1, ω2)π(ω2). We have thus defined a function Ω1 → [0, 1]

mapping each state to its corresponding expectation.
A natural extension of this construction is to consider any function f ∈

P (Ω2) = Ω2 → [0, 1]. We call such functions condition functions.1

Definition 4 Let T be a transition probability between Ω1 and Ω2. Let us define←−
T : P (Ω2) → P (Ω1) as follows:

←−
T (f)(ω1) =

∑

ω2∈Ω2
T (ω1, ω2)f(ω2).

Lemma 1. For all transition probability T ,
←−
T is ω-continuous.

Those functions are linked by the following adjunction relation: if T is a
transition probability relative to Ω1 and Ω2, noting 〈f, µ〉 =

∑

ω f(ω)µ(ω), then

∀f ∈ P (Ω2) ∀ µ ∈ D(Ω1) 〈f,
−→
T .µ〉 = 〈

←−
T .f, µ〉. (1)

2.2 Probability measures on traces

We shall also use probability measures on sets of traces arising from probabilistic
transition systems. Let us start with a simple example — consider sequences of
tosses of a fair coin: the coin has probability 0.5 of giving 0 and 0.5 of giving
1. A trace is then an infinite sequence of zeroes and ones. Let us consider the
(regular) set 0n(0|1)∗ of sequences starting by at least n zeroes. It is obvious that
the probability of falling into that set is 2−n. The probability of the singleton
containing the sequence of only zeroes is 0.

We use the theorem of Ionescu Tulcea (Appendix B) to construct the prob-
ability measure µω on the set of traces according to the probability distribution
µ on the initial states and the transition probability T .

The probability of a property P : ΩN → {0, 1} on the traces is then
∫

P dµω.

3 Nondeterministic and probabilistic transition systems

We shall see how to combine the notions of nondeterministic choice (sets of
possible choices for which we know no probabilistic properties) and probabilis-
tic choice (sets of possible choices for which we know probabilistic properties),
obtaining discrete-time Markov decision processes [23] , which has been studied
more particularly in the field of operational research and finance mathematics,
as well as machine learning.

Let us now consider the case where the system must be able to do both
nondeterministic and probabilistic transitions (example in Fig. 1). The system
then has the choice between different transition probabilities.
1 Please note that while those functions look similar to distributions, they are quite

different in their meaning and are different mathematical objects when treated in
the general, non discrete, case.

Start

x = 0
(Q1)

x = 1

x = 0
(Q3)

x = 1
(Q4)

0
0,5

1

0,5

0

1

0

1

1

1

Fig. 1. A probabilistic-nondeterministic transition system

Start

x = 0
(Q1)

x = 1

x = 0
(Q3)

x = 1
(Q4)

0
0,5

1

0,5

0

0

1

1

(a) Upper transitions

Start

x = 0
(Q1)

x = 1

x = 0
(Q3)

x = 1
(Q4)

0
0,5

1

0,5

1

1

1

1

(b) Lower transitions

Fig. 2. Two purely probabilistic transition systems that define, when composed to-
gether nondeterministically, the same probabilistic-nondeterministic transition system
as in Fig. 1.

For instance, on Fig. 1, in state Q1, the system has the choice between two
partial transition probabilities: the first goes to Q3 with probability 1, the second
goes to Q4 with probability 1. For an easier intuition, one may think about this
choice as if it were made by an adversary willing to induce certain behaviors.
The adversary is supposed to follow a strategy or policy [23, §2.1.5].

In this paper, we shall assume that the adversary may see the present and
past states of the execution. This is realistic if the adversary models a human
evildoer as well as the physical environment of an embedded system.

Let us note that other choices can give very different results. For instance, let
us consider a program that chooses a Boolean variable x nondeterministically,
then chooses a Boolean variable y with uniform probability, then replaces x with
the exclusive or of x and y (Fig. 1). Clearly, if the nondeterminism is allowed to
“look at the future” and predict the outcome of the random generator, it can
always arrange for z to be true. If it can only look at the past, it cannot and z
is uniformly distributed.

Let us suppose that our system is defined by a transition probability T from
Ω × Y to Ω, where Y is the domain of nondeterministic choices. For instance,
for the system given in Fig. 1, Y is {0, 1} (choice between the upper and lower
arrows, as seen in Fig. 2). The operation of the adversary for the transition
between states n and n + 1 is modeled using an unknown transition probability
Un from Ωn to Y . The whole transition that is executed by the system is then
the composition Tn = T ◦

[

Id
Un

]

, which is a transition probability between Ωn

and Ω. By this notation, we mean that, using the notation of Def. 2,

Tn(x0, . . . , xn−1; xn) = T (xn−1, Un(x0, . . . , xn−1); xn). (2)

Ionescu Tulcea’s theorem (Appendix B) then constructs from the (Tn) a transi-
tion probability G(T, (Un)n∈N) from Ω (the initial state space) to ΩN. We note

ST (f, (Un)n∈N) = t0 7→ 〈t 7→ f(t0, t), G(T, (Un)n∈N)(t0)〉 (3)

(S short for ST if there is no ambiguity about T) and R(f) the set of all functions
S(T, (Un)n∈N) when (Un)n∈N is a sequence of transition probabilities, Un being
a transition probability from Ωn to Y . The λ is here a functional notation.

Let ET
+ or, if there is no confusion possible, E+(f) = sup R(f) be the worst-

case semantics and E−(f) = inf R(f) be the best-case semantics (those designa-
tions assume that f indicates some kind of failure condition). Intuitively, if f is
the characteristic function of a set of “faulty” traces, E+ expresses a “worst case”
analysis, modeling an adversary willing to make the system err and E− a “best
case” analysis, modeling an adversary willing to prevent the system from erring.
E+(f) is often called the value of the Markov decision process with respect to
the reward function f (even though we use a slightly different framework as the
one given in [23]).

Lemma 5 E+(1) = 1 and E+(0) = 0. E+ is monotone and upper-continuous.

4 The properties to analyze

We consider a property to analyze on the traces. To each initial state we attach
its expectation, that is, the integral of the property to analyze over the traces
starting from this state (or the set of integrals, if considering nondeterminism).
The properties to analyze are expressed as measurable functions from the set
of (possible) traces of execution; we call these functions trace valuators. We
shall actually consider a class of trace valuators defined syntactically by certain
formulas.

4.1 Expectation Functions

Let I = [0, 1] or [0, +∞], depending on the kind of properties to analyze. Let Ω
be a finite or countable set of states — we impose this cardinality constraint so
as to avoid theoretical complexities. P(Ω) is the set of subsets of Ω. Let Ω → I
be the set of functions from Ω to I, the expectation functions of our system; this
set, ordered by ≤ point-wise, is a complete lattice.

4.2 Trace Valuators

Let ΩN → I be the set of measurable functions from ΩN to I, ordered point-wise.
We shall call such functions “valuators”.

Boolean Trace Valuators We take I = [0, 1] or even I = {0, 1}.
We shall consider formulas written in the following language:

formula1 ::= name
| constant
| name +set formula1 where set ⊆ Ω
| constant +set formula1
| lfp(name 7→ formula1)
| gfp(name 7→ formula1)
| shift(formula1)
| let name = formula1 in formula2

Let shift : ΩN → ΩN: (shift.t)k = tk+1.
Let envt be the set of environments of valuators, mapping each name to a

valuator, ordered point-wise.
JformulaKt : envt → (ΩN → I) is defined inductively as follows:

JnameKt .env = env(name) (4)

JconstantKt .env = constant (5)

Jf1 +S f2Kt .env = λt.χS(t0).(Jf1Kt env) + χSC (t0).(Jf2Kt env) (6)

Jlfp(name 7→ f)Kt .env = lfp(λφ.JfKt .env[name 7→ φ]) (7)

Jgfp(name 7→ f)Kt .env = gfp(λφ.JfKt .env[name 7→ φ]) (8)

Jshift(f)Kt .env = (JfKt .env) ◦ shift (9)

Jlet name = f1 in f2Kt .env = Jf2Kt .env[name 7→ Jf1Kt .env] (10)

χS is the characteristic function of S and SC the complement of S. t0 ∈ Ω is
the first state of the sequence of states t ∈ ΩN.

Let us note that we could introduce a negation operator ¬ (J¬fKt = 1−JfKt)
as syntactic sugar — any formula with negations can be transformed into one
without by pushing the negations to the leaves.

Lemma 6 For all formula f , JfKt is monotone. For all formula f without lfp
or gfp, JfKt is continuous.

Some particularly interesting Boolean valuators We shall consider in this
section four very important classes of properties, all of which can be shown to
be measurable.

– Let A be a set of states. The reachability property associated with A defines
the set of traces that pass through A at some point. It corresponds to the
formula:

lfp(f 7→ 1 +A shiftf) (11)

– Let A be a set of states. The liveness property associated with A defines the
set of traces that always remain in A. It corresponds to the formula:

gfp(f 7→ shiftf +A 0) (12)

– Let A be a (measurable) set of states. The Büchi acceptance property asso-
ciated with A defines the set of traces that pass through A infinitely often;
it is written as:

gfp(C 7→ lfp(R 7→ shift(C) +A shift(R))) (13)

The co-Büchi property is just the negation of this formula.
– Given a sequence ∅ ⊆ U2k ⊆ · · · ⊆ U0 = Ω, the Rabin acceptance property

associated with (Un) is the set of traces defined by the following temporal
property [10, sect. 5]:

R =
k−1
∨

i=0

(�♦U2i ∧ ¬�♦U2i+1) (14)

It corresponds to the following formula:

gfp(x2k−1 7→ lfp(x2k 7→ · · · gfp(x1 7→ lfp(x0 7→
((· · · (x2k−1 + U2k−1x2k−2) · · ·+U1 x0) +U0 0) (15)

Summation valuator A related family of trace valuators are the summing
valuators. The summation valuator associated with a (measurable) function f :
Ω 7→ [0, +∞] is the function

JΣAKt :
∣

∣

∣

∣

ΩN → [0,+∞]
(xn)n∈N 7→

∑∞
k=0 f(xk) (16)

Obviously, this function can be formulated as a least fixpoint:

JΣfKt = lfp(φ → f + φ ◦ shift) (17)

This construct has two obvious applications:

– counting the average number of times the program goes through a certain
set of states A; here, f is the characteristic function of A;

– counting the average time spent in the process; here f maps each state to
the amount of time spent in that state (0 for states meaning “termination”).

4.3 Temporal logics

Temporal logics [5, chapter 3] are expressive means of specifying properties of
transition systems.

Linear time logic (LTL) and ω-regular conditions A formula F in LTL
defines an ω-regular set of traces JF Kt, that is, a set of traces recognizable by a
(nondeterministic) Büchi automaton B [5, §3.2], or, equivalently, by a determin-
istic Rabin automaton R [25, §4].

Let us consider a (nondeterministic) probabilistic transition system T , and
the according definition of ET

+. Let us consider the synchronous product T ×R,
and C the associated Rabin acceptance condition. ET

+(JF Kt) is then equal to
ES×R

+ (JCKt) [10, §5].
If B is deterministic, we can similarly consider the synchronous product T ×

B, and C the associated Büchi condition. ET
+(JF Kt) is then equal to ES×B

+ (JCKt)
[10, §4].2

Branching-time logic: pCTL and pCTL* The branching-time logics CTL
and CTL* [5, §3.2] have had much success in the analysis of nondeterministic
(albeit non probabilistic) systems. It was therefore quite natural to extend this
notion to probabilistic systems. Proposed extensions to the probabilistic case
include pCTL [11] and pCTL*. We shall see here briefly how we deal with some
pCTL* formulas.

CTL* formulas define sets of states as the starting states of sets of traces
defined by LTL path formulas (in which state formulas are CTL* state formulas).

The operation that makes a CTL* state formula out of a LTL path formula
is the taking of the initial states: if JfKs denotes the semantics of f as a state
formula and JfKp its semantics as a path formula, then

JfKs = {x0 ∈ Ω | ∃x1, . . . 〈x0, x1, . . .〉 ∈ JfKp}. (18)

In the case of probabilistic systems, we do not have sets of starting states
but expectation functions; such expectation functions are then compared to a
threshold value, which gives sets of states. State formulas noted as f./α are thus
obtained, where f is a trace valuator and ./ is ≤, <, =, > or ≥. The semantics
of this construct is as follow:

Jf./αK = {x0 ∈ Ω | ∀(Un)n∈NS(JfKt , (Un)n∈N)(x0) ./ α} (19)

In the case of < and ≤, giving an upper bound on those sets is easy provided
we have an upper bound JfK]e+ of E+(JtKt) (see §5):

∀x0 JfK]e+ (x0) ./ α =⇒ x0 /∈ Jf./αK . (20)

2 Note that this does not hold for nondeterministic Büchi automata, since the au-
tomaton is allowed to take its nondeterministic choices with the knowledge of the
full sequence of states, not only the past and present states.

5 Backwards Worst Case Analysis

In section 4.2, we gave the syntax and semantics of a logic describing sets of
traces, or, more generally, measurable functions over the traces. Given a formula
f , one may want to compute its worst-case probability E+(JfKt), or at least get
an upper bound for it. Unfortunately, the definitions of both JfKt and E+ do
not yield effective means to do so.

In §5.1 we shall attach to each formula f another semantics JfKe+, which
we shall show how to abstract in §6. We shall see the abstraction relationship
between E+(JfKt) and JfKe+ in §5.2.

5.1 Backwards Worst Case Semantics on Expectation Functions

A well-known solution to the problem of the optimal value of a Markov decision
process is value iteration [23, §7.2.4]. This method is mainly of theoretical interest
for the analysis of finite state Markov decision processes, since there is little
control as to its rate of convergence and much better algorithms are available [23,
§7.2.4]. On the other hand, since it is actually a kind of generalization to Markov
decision processes of the backwards reachability analysis for nondeterministic
systems, we can apply abstract interpretation techniques so as to provide an
effective mean to compute upper bounds on the probability of the properties to
analyze.

Let enve be the set of environments of expectation functions (an environment
of expectation functions maps each name to a expectation function), ordered
point-wise.

JformulaKe+ : (Ω → I) → (Ω → I) is defined inductively as follows:

JnameKe+ .env = env(name) (21)

JconstantKe+ .env = λx.constant (22)

Jf1 +S f2Ke+ .env = χS .(Jf1Ke+ env) + χSC .(Jf2Ke+ env) (23)

Jlfp(name 7→ f)Ke+ .env = lfp(λφ.JfKe+ .env[name 7→ φ]) (24)

Jgfp(name 7→ f)Ke+ .env = gfp(λφ.JfKe+ .env[name 7→ φ]) (25)

Jshift(f)Ke+ .env = sup
T∈T

(
←−
T (JfKe+ .env)) (26)

Jlet name = f1 in f2Ke+ .env = Jf2Ke+ .env[name 7→ Jf1Ke+ .env] (27)

This semantics is thus some form of µ-calculus, except that “lfp” replaces the
µ binder and “gfp” ν; but since we also use µ to note measures, it would have
been confusing to also use it in the syntax of the formulas.

JformulaKe+ is monotone.

Lemma 7 Let f be a formula not containing gfp. JfKe+ is ω-upper-continuous.

As for the summation valuator,

JΣfKe+ = lfp
(

φ 7→ f + sup
T∈T

(
←−
T .φ)

)

(28)

5.2 The Abstraction Relation Between the Semantics

Theorem 8 Let f be a formula not containing gfp. Let env be an environment
of valuators. Noting E+(env) the point-wise application of E+ to env,

JfKe+ .(E+(env)) = E+(JfKt .env) (29)

Proof. Proof by induction on the structure of f .

– The cases for “let”, name and constant are trivial.
– For f1 +S f2: Let t0 ∈ X.

Jf1 +S f2Ke+ .(E+(env)).t0
= χS(t0).(Jf1Ke+ .E+(env).t0) + χSC (t0).(Jf2Ke+ .E+(env).t0)
= χS(t0).(E+(Jf1Kt .env).t0) + χSC (t0).(E+(Jf2Kt .env).t0) (induction)
= E+(λt.χS(t0).(Jf1Kt envt) + χSC (t0).(Jf2Kt envt)).t0 (lemma 2)
= E+(Jf1 +S f2Kt).t0.

– For shift: Let us first fix U1. Let us note T1 = T ◦
[

Id
U1

]

and consider
←−
T1.E+ (JfKt). From lemma 1,

←−
T1 is a monotonic, ω-continuous, operator;

from lemma 3, R(JfKt) is directed;
from lemma 4,

⊔

f∈R(JfKt.env)

(
←−
T1f) =

←−
T1(

⊔

f∈R(JfKt.env)

f).

It follows that (using the λ-notation for functions),

←−
T1.E+(JfKt).t0 =
sup(Un)n≥2

Un not depending on t0

∫ ∫

λ〈t2, . . .〉.(JfKt .env)(〈t1, . . .〉) d[G(T, (Un)n≥2).t1] T1(t0, dt1)

= sup (Un)n≥2
Un not depending on t0

∫

λ〈t2, . . .〉.(JfKt .env)(〈t1, . . .〉) d[G(T, (Un)n≥1).t0]

Let us apply lemma 11 to that last expression. We obtain

←−
T1.E+(JfKt).t0 = sup

(Un)n≥2

∫

λ〈t2, . . .〉.(JfKt .env)(〈t1, . . .〉) d[G(T, (Un)n≥1).t0]

(30)
Let t0 ∈ X. Let us now consider all U1’s.

E+(Jshift(f)Kt .env).t0
= sup(Un)n≥1

∫

λ〈t1, . . .〉.(JfKt .env) ◦ shift(〈t0, t1, . . .〉) d[G(T, (Un)n≥1).t0]
= supU1

sup(Un)n≥2

∫

λ〈t1, . . .〉.(JfKt .env)(〈t1, . . .〉) d[G(T, (Un)n≥1).t0]

=
(

supU1

←−−−−−−−(

T ◦
[

Id
U1

])

.E+(JfKt)
)

.t0 (using Equ. 30)
= Jshift(f)Ke+ .E+(env)

– Jlfp(name 7→ f)Ke+ .env = lfp(λφ.JfKe+ .env[name 7→ φ]).
From lemma 7, λφ.JfKe+ .env[name 7→ φ] is ω-upper-continuous.
Jlfp(name 7→ f)Kt .env = lfp(λφ.JfKt .env[name 7→ φ]).
From lemma 6, λφ.JfKt .env[name 7→ φ] is ω-upper-continuous.
From the induction hypothesis,

E+ ◦ (λφ.JfKt .env[name 7→ φ]) = (λφ.JfKe+ .E+(env)[name 7→ φ])).

From lemma 5, E+ is ω-upper-continuous. The conclusion then follows from
lemma 5.

The following theorem guarantees the soundness of the abstract analysis for
all formulas.

Theorem 9 Let f be a formula. Let env be an environment of valuators. Let us
suppose that H ≥ E+(env) pointwise. Then

JfKe+ .(H) ≥ E+(JfKt .env). (31)

Proof by induction similar to that of Th. 8. Also similarly we can guarantee
the soundness of the analysis of summations:

Theorem 10 The semantics of the summing operator satisfies:

E+(JΣfKt) = JΣfKe+ . (32)

6 Abstract Analysis

We shall see here more precisely how to apply abstract interpretation to that
backwards semantics.

6.1 General case

We compute safe approximations of JfKe+ by abstract interpretation. We intro-
duce an abstract semantics JfK]e+ which is an upper approximation of f :

∀env ∀env] env] ≥ env =⇒ JfK]e+ .env] ≥ JfKe+ .env. (33)

The computations for JfK]e+ will be done symbolically in an abstract domain
such as the ones described in [19,20].

– We shall assume that we have an abstract operation for “shift”. That is, we
have a monotone operation pre] such that

∀f, ∀T ∈ T , pre].f] ≥ T ∗.f]. (34)

This operation will be supplied by the abstract domain that we use. Then

∀env, ∀env], env] ≥ env =⇒ Jshift(f)K]e+ .env] ≥ Jshift(f)Ke+ .env. (35)

provided that

∀env, ∀env], env] ≥ env =⇒ JfK]e+ .env] ≥ JfKe+ .env.

– We shall approximate least fixpoints using a widening operator [9, §4.3]. A
widening operator O is a kind of abstraction of the least upper bound that
enforces convergence:
• fOg ≥ sup(f, g) (pointwise);
• For any ascending sequence (vn)n∈N, the sequence (un)n∈N defined in-

ductively by un+1 = unOvn is to be ultimately stationary.
Then the limit L] of the sequence defined by u0 = 0 and un+1 = unOf](un),
where f] is an upper approximation of f , is an upper approximation to the
least fixpoint of f . More precise upper approximations of the least fixpoint
of f can then be reached by iterating f] over L] using a so-called narrowing
operators [9, §4.3].

– We shall approximate greatest fixpoints using a limited iteration approach:
if f] is an upper approximation of f , then for any n ∈ N, f]n

(>) ≥ gfp f .

6.2 Partitioning in programs

In the case of programs, the state space is generally P×M , where P is the (finite)
set of program points and M the set of possible memory configurations. More
generally, P may be a kind of partitioning of the program. Non-probabilistic
analysis generally operates on abstractions of P(P × M) ' P × M → {0, 1}
' P → P(M). Given an abstraction of P(M) by a lattice L], one obtains a
pointwise abstraction of P → P(M) by P → L]. Elements of P → L] are just
vectors of |P | elements of L].

This approach can be directly extended to our measurable functions: we shall
abstract P ×M → I (where I = [0, 1] or I = [0,+∞]) by P → L] if L] is an
abstract domain for M → I.

The first problem is to get an abstraction of the operation used in the “shift”
construct:

F :
∣

∣

∣

∣

(P ×M → I)→ (P ×M → I)
h 7→ (l, m) 7→ supy∈Y

∑

(l′,m′)∈P×M T ((l,m), y; (l′,m′)) .h(l′,m′)
(36)

Let us take the following form for the program instructions: at program point
l, the executed instruction represented by T is the sequence:

1. a nondeterministic choice y is taken in the set Yl;
2. a random choice r is taken in set Rl according to distribution Rp;
3. the memory state is combined deterministically with the two choices to form

the new memory state using a function Fl : (M × Y)×Rl → M ;
4. depending on the memory state m, the program takes a deterministic jump

to program point J(l, m).

Let us note τl(l′) = {m | J(l, m) = l′} (the set of memory values m that lead
to program point l′ from program point l; τl(l′) is then essentially the condition
for a conditional jump). Then we can rewrite the transition equation as follows

(F.h)(l) = choice∗Yl
◦ random∗

Rl
◦ (Fl)∗p

(

∑

l′∈P

φ∗τll′ (h(l′, •))

)

(37)

using the following building blocks:

choice∗Yl
(h) = m 7→ sup

y∈Yl

h(m, y) (38)

random∗
Rl

(h) = m 7→
∫

h(m, r) dµRl(r) (39)

(Fl)∗p(h) = h ◦ Fl (40)

φ∗A(h) = h.χA (41)

The reasons for those notations are explained in earlier works on the linear
adjoint of Kozen’s denotational semantics for probabilistic programs [19].

We shall abstract F as the composition of abstractions for:

– choice∗Yl
, nondeterministic choice;

– random∗
Rl

, probabilistic choice;
– Fl

∗
p, deterministic run (arithmetic operations and the like);

– φ∗A, test.

Since the function F is ω-upper-continuous, the least fixpoint of F is obtained
as the limit of Fn(0) (let us recall that this is the point-wise limit of a sequence
of functions from Ω to I). The expression of the iterates using a partition with
respect to P is as follows:

f (n+1)
1 = F1(f

(n)
1 , . . . , f (n)

|P |) (42)

...
... (43)

f (n+1)
|P | = F|P |(f

(n)
1 , . . . , f (n)

|P |) (44)

(45)

In terms of implementation, this means that we update in parallel the |P | ele-
ments of the vector representing the iterate. As noted by Cousot [8, §2.9], this
parallel update may be replaced by chaotic iterations or asynchronous iterations.
Chaotic iterations allow us to compute the iterations by taking into account the
recently updated elements. All these iteration strategies lead to the same limit
(the least fixpoint of F).

Let us consider for instance the following strategy:

f (n+1)
1 = F1(f

(n)
1 , . . . , f (n)

|P |)

f (n+1)
2 = F2(f

(n+1)
1 , . . . , f (n)

|P |)
...

...
f (n+1)
|P | = F|P |(f

(n+1)
1 , . . . , f (n)

|P |)

(46)

This strategy is itself a monotone operator whose least fixpoint is to be deter-
mined. It has an obvious abstract counterpart leading to an approximate fixpoint
in the usual way (§6.1).

7 Conclusion, Related Works and Discussion

We showed how to apply abstract interpretation techniques to check various
temporal properties of (nondeterministic) probabilistic programs, considered as
Markov decision processes (small-step semantics).

The most natural point of view on those processes is that the nondeter-
ministic decisions are taken as the program proceeds, taking into account the
current state as well as the previous ones. This how Markov decision processes
are usually studied [23] and this is the approach we took here.

It can be argued that this model is excessively pessimistic. Indeed, if nonde-
terminism is used to model the environment of an embedded system, then it is
excessive to assume that the behavior of this environment depends on the history
of the internal state of the system; only the part of this history observable from
the environment should be taken into account. This leads to the study of par-
tially observable Markov decision processes (POMDP); however, their effective
analysis is much more complex than that of fully observable processes [14].

Cleaveland’s work [6] focuses on the model where the nondeterministic choices
are taken after the probabilistic ones. This simplifies the theory to some extent,
since taking the product of the analyzed process with an nondeterministic “ob-
servation” process, such as a nondeterministic Büchi automaton, is then easy.
We have already proposed a Monte-Carlo method for such semantics [18].

The backwards analysis method we described is a generalization of the value
iteration method used in operational research to compute the value of Markov
decision processes. Our reachability analysis is related to the study of positive
bounded models [23, §7.2], where the reward 1 is granted the first time the process
runs through the set of states to consider. The liveness analysis is related to the
study of negative models [23, §7.3], where the reward −1 is granted the first time
the process leaves the set of states to consider.

Formal languages similar to the one we consider have been introduced by
other authors, such as quantitative game µ-calculus [10]. The differences between
our approach and this game calculus approach are threefold:

– We give a semantics in terms of traces, then prove its link with a seman-
tics in terms of expectation functions; quantitative µ-calculus only gives the
interpretation as expectation functions.

– While we prove a generic link between the semantics as an inequality valid
for any formula (or an equation for some class), de Alfaro proves an interpre-
tation for some specific formulas (reachability, liveness, deterministic Büchi
and Rabin trace properties). We conjecture that we can extend the equality
cases of this link.

– De Alfaro considers random two-player games while we consider random
single-player games. We mentioned briefly (§5.2) the differences between
Markov decision processes and two-player games. Such problems can model
questions such as the choice of an optimal strategy by the program so as to
minimize the probability of a problem for all possible environments.

A possible extension of these properties is discounted models [23, Ch. 6].
In these, the importance of the future decreases exponentially; for instance, λ-
discounted reachability would count passing through A for the first time at step
n as λn instead of 1 (of course, 0 < λ < 1). The theoretical study of those models
is considerably easier than that of non-discounted models, since the fixpoints to
study are the fixed points of contraction mappings in Banach spaces. While
the extension of the techniques exposed in this paper to discounted models is
easy (it suffices to add a multiplication by λ in the semantics of the “shift”
operation), the practical interest of such models in the checking of computer
programs remains to be seen.

Another possible extension is the computation of averages not only on the
space of the program, but also on the time: computing the average value of a
certain function as long as the program is running. Since this property is the
quotient of two summing properties, there is no obvious method to evaluate it
iteratively.

Another possible direction is the study of continuous time probabilistic sys-
tems. As usual with continuous-time systems, some kind of reduction to discrete
time processes is to be done [12,13].

References

1. Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science, June 1998. CS-TR-98-1601.

2. Christel Baier, Edmund M. Clarke, Vasiliki Hartonas-Garmhausen, and Marta
Kwiatkowska. Symbolic model checking for probabilistic processes. In P. Degano,
R. Gorrieri, and A. Marchetti-Spaccamela, editors, Automata, Languages and Pro-
gramming (ICALP ’97), volume 1256 of LNCS. Springer, 1997.

3. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic
systems. In FST TCS 95: Foundations of Software Technology and Theoretical
Computer Science, volume 1026 of Lecture Notes in Computer Science, pages 499–
513. Springer-Verlag, 1995.

4. C.Baier, M.Kwiatkowska, and G.Norman. Computing probability bounds for linear
time formulas over concurrent probabilistic systems. Electronic Notes in Theoret-
ical Computer Science, 21, 1999.

5. Edmund M. Clarke, Jr, Orna Grumberg, and Doron A. Peled. Model Checking.
MIT Press, 1999.

6. Rance Cleaveland, Scott A. Smolka, and Amy E. Zwarico. Testing preorders for
probabilistic processes. In Werner Kuich, editor, Automata, Languages and Pro-
gramming, 19th International Colloquium, volume 623 of Lecture Notes in Com-
puter Science, pages 708–719, Vienna, Austria, 13–17 July 1992. Springer-Verlag.

7. C. Courcoubetis and M. Yannakakis. Markov decision processes and regular events.
In Proc. ICALP’90, volume 443 of LNCS, pages 336–349. Springer, 1990.

8. Patrick Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes.
Thèse d’état ès sciences mathématiques, Université scientifique et médicale de Gre-
noble, Grenoble, France, 21 mars 1978.

9. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to
logic programs. J. Logic Prog., 2-3(13):103–179, 1992.

10. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. In
STOC’01, 33rd Annual ACM Symposium on Theory of Computing. ACM, 2001.

11. Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reability.
Technical Report R90-13, Swedish Institute of Computer Science, December 1990.

12. Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston.
Verifying quantitative properties of continuous probabilistic timed automata. Tech-
nical Report CSR-00-6, University of Birmingham, School of Computer Science,
March 2000.

13. Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston.
Verifying quantitative properties of continuous probabilistic timed automata. In
C. Palamidessi, editor, CONCUR 2000 - Concurrency Theory 11th International
Conference, number 1877 in LNCS. Springer, 2000.

14. Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Efficient
dynamic-programming updates in partially observable markov decision processes.
Technical Report CS-95-19, Brown University, 1995.

15. A. McIver. Reasoning about efficiency within a probabilistic µ-calculus. In Proc.
of PROBMIV, pages 45–58, 1998. Technical Report CSR-98-4, University of Birm-
ingham, School of Computer Science.

16. David Monniaux. Abstract interpretation of probabilistic semantics. In Seventh
International Static Analysis Symposium (SAS’00), number 1824 in Lecture Notes
in Computer Science, pages 322–339. Springer Verlag, 2000. Extended version on
the author’s web site.

17. David Monniaux. An abstract analysis of the probabilistic termination of programs.
In 8th International Static Analysis Symposium (SAS’01), number 2126 in Lecture
Notes in Computer Science, pages 111–126. Springer Verlag, 2001.

18. David Monniaux. An abstract Monte-Carlo method for the analysis of probabilistic
programs (extended abstract). In 28th Symposium on Principles of Programming
Languages (POPL ’01), pages 93–101. Association for Computer Machinery, 2001.

19. David Monniaux. Backwards abstract interpretation of probabilistic programs. In
European Symposium on Programming Languages and Systems (ESOP ’01), num-
ber 2028 in Lecture Notes in Computer Science, pages 367–382. Springer Verlag,
2001.

20. David Monniaux. Abstraction of expectation functions using gaussian distribu-
tions. In Lenore D. Zuck, Paul C. Attie, Agostino Cortesi, and Supratik Mukhopad-
hyay, editors, Verification, Model Checking, and Abstract Interpretation: VMCAI
’03, number 2575 in Lecture Notes in Computer Science, pages 161–173. Springer
Verlag, 2003.

21. Jacques Neveu. Mathematical Foundations of the Calculus of Probabilities. Holden-
Day, 1965.

22. Jacques Neveu. Bases mathématiques du calcul des probabilités. Masson et Cie,
Éditeurs, Paris, 1970. Préface de R. Fortet. Deuxième édition, revue et corrigée.

23. Martin L. Puterman. Markov decision processes: discrete stochastic dynamic pro-
gramming. Wiley series in probability and mathematical statistics. John Wiley &
Sons, 1994.

24. Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD thesis, Massachusetts Institute of Technology, 1995. Technical report
MIT/LCS/TR-676.

25. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, vol. B, pages 135–191. Elsevier, 1990.

A Technical lemmas

Lemma 11 For all f , t0 and U1,

sup(Un)n≥2

∫

λ〈t1, . . .〉.f(〈t1, . . .〉) d[G(T, (Un)n∈N).t0]
= sup(Un)n≥2 Un does not depend on t0

∫

λ〈t1, . . .〉.f(〈t1, . . .〉) d[G(T, (Un)n∈N).t0]

Lemma 2. For all t0 inX,

E+(λt.χS(t0).V1(t) + χSC (t0).V2(t)).t0 = χS(t0).(E+(V1).t0)+χSC (t0).(E+(V2).t0).

Lemma 3. For any trace valuator f , for any g1 and g2 in R(f), for any A ⊆ Ω,
the function g3 defined by g3(t) = g1(t) if t0 ∈ A, g3(t) = g2(t) otherwise, belongs
to R(f).

Lemma 4. Let Y be an ordered set. Let φ : (X → I) → Y be a monotonic, ω-
upper-continuous function. Let K be a directed subset of X → I. Then φ(tK) =
⊔

f∈K φ(f).

Lemma 5. Let T1 and T2 be two complete lattices. Let α : T1 → T2 be an ω-
upper-continuous operator such that α(⊥) = ⊥. Let ψ1 : T1 → T1 and ψ2 :
T2 → T2 be two ω-upper-continuous operators such that ψ2 ◦ α = α ◦ ψ1. Then
α(lfp ψ1) = lfp ψ2.

B Ionescu Tulcea’s Theorem

The intuitive meaning of this theorem [21,22, proposition V-I-1] is as follows: if
(Et)t∈N is a sequence of measurable spaces and the (P 0,...,t

t+1)t∈N is a sequence of
transition probabilities, respectively from E0×Et to Et+1, then we can construct
a transition probability P from E0 to E1×E2× · · · such that for each x0 ∈ E0,
P (x0, ·) is the probability distribution on traces starting from x0 and following
the transition probabilities (Et)t∈N.

In an even more intuitive fashion: “knowing the starting probability mea-
sure, and the transition probabilities to the next states, we can construct the
corresponding probability measure on infinite traces”.

Theorem 12 (Ionescu Tulcea) Let (Et,Ft)t∈N be an infinite sequence of mea-
surable spaces and, for any t ∈ N, let P 0,...,t

t+1 be a transition probability relative

to the spaces
(

∏t
s=0 Es,

⊗t
s=0 Fs

)

and (Et+1,Ft+1). Then there exists for any
x0 ∈ E0 a unique probability Px0 on

(Ω,A) =
∏

t

(Et,Ft)

whose value for all measurable Cartesian product
∏

t Ft is given by:

Px0

[

∏

t

Ft

]

= χA0(x0)
∫

x1∈F1

P 0
1 (x0; dx1)

∫

x2∈F2

P 0,1
2 (x0, x1; dx2)

· · ·
∫

xT∈FT

P 0,...,T−1
T (x0, . . . , xT−1; dxT) (47)

as long as T is sufficiently great such that Ft = Et if t > T (the second member
is then independent of the chosen T). For any positive random variable Y on
(Ω,A) only depending on the coordinates up to T , we have:

∫

Ω
Y (ω′)Px0(dω′) =

∫

F1

P 0
1 (x0; dx1)

∫

F2

P 0,1
2 (x0, x1; dx2)

·
∫

xT∈FT

Y (x0, . . . , xT)P 0,...,T−1
T (x0, . . . , xT−1; dxT) (48)

Furthermore, for any positive random variable Y on (Ω,A),

x0 7→
∫

Y (ω′)Px0(dω′) (49)

is a positive random variable on (E0,F0).

