
An Abstract Analysis of the Probabilistic
Termination of Programs

David Monniaux
http://www.di.ens.fr/~monniaux

LIENS, 45 rue d’Ulm
75230 Paris cedex 5, France

Abstract. It is often useful to introduce probabilistic behavior in pro-
grams, either because of the use of internal random generators (proba-
bilistic algorithms), either because of some external devices (networks,
physical sensors) with known statistics of behavior. Previous works on
probabilistic abstract interpretation have addressed safety properties,
but somehow neglected probabilistic termination. In this paper, we pro-
pose a method to automatically prove the probabilistic termination of
programs using exponential bounds on the tail of the distribution. We
apply this method to an example and give some directions as to how
to implement it. We also show that this method can also be applied to
make unsound statistical methods on average running times sound.

1 Introduction

In this paper, we propose an analysis scheme for probabilistic programs, with
the goal of proving probabilistic termination and other probabilistic properties.

1.1 Goals

It is in general difficult to automatically prove liveness properties of programs;
nevertheless, the availability of probabilistic informations makes that task easier.
In this paper, we shall address the cases of termination where the probability of
taking a loop k times decreases at least exponentially with k. Such cases happen,
for instance, in waiting loops on hardware peripherals where the probability
that the busy peripheral will become ready over a period of time is a constant.
However, we address cases where the constant in the exponential is unknown.
Our analysis tries to derive automatically suitable constants for the exponential
bound.

An obvious application of this analysis is to prove that the probability of
non-termination is zero. Other applications include improvements on statistical
methods to derive average execution times.

Our analysis is explained on block-structured programs. A reason for this is
that the control-flow structure of a block-structured program is generally ap-
parent from its syntactic structure, whereas converting the program to a proba-
bilistic transition system would hide that structure. It is nevertheless possible to

http://www.di.ens.fr/~monniaux�

apply the method to a probabilistic transition system, considering it as a single
while loop, although the results may not be very satisfactory.

As usual with abstract interpretation, our analysis is sound, that is, any result
it gives is proven to be correct (provided that the implementation of the analysis
is correct, of course). On the other hand, because of the essential undecidability
of non-trivial program properties, our analyzer is forced to give non-optimal
results. Careful experimentation and heuristics may then improve the analysis.

1.2 Related Works

Several analyses have been proposed to prove the termination of non-
probabilistic programs. Generally speaking, proving the termination of a pro-
gram is done by showing that some value taken in a well-founded ordered set
decreases strictly as the program proceeds [7]. The problem is to detect the ap-
propriate value and the appropriate order. We follow this general principle by
showing that the probability that the loop count or execution time reaches k is
bounded by a strictly decreasing function of k whose limit is 0; the choice of an
exponential is natural since the distribution we wish to approximate is exactly
exponential in some simple cases (where the control graph of the program is a
Markov chain, as in §6.1).

We use the framework of abstract interpretation of probabilistic programs
defined in our earlier work [8]. However, that work did not address the problem
of probabilistic termination except perhaps in its most trivial cases (where there
exists a constant number of iterations after which the program always terminate,
regardless of the inputs). Here, we address a specific case (loops whose iteration
count or total execution time follow a distribution bounded from above by a
decreasing exponential) that was not addressed by our previous methods, yet is of
common practical interest. Nevertheless, the analysis described in this paper can
be “mixed” with the analysis described in [8]; both are likely to be implemented
in the same system.

1.3 Overview of the Paper

In section 2, we explain the probabilistic concrete semantics that we analyze. In
section 3, we explain how to apply abstract interpretation to such a semantics.
In section 4, we give a first abstract domain able to express properties such as
the exponential decrease of the tail of the distribution of an integer variable.
In section 5, we explain how to build a more complex, but much more precise
domain using elements of the former domain as building blocks. In section 6,
we show on a simple example what kind of results the analysis achieves, and
we explain how such an analysis can improve the mathematical soundness of
experimental average time estimations.

2 Concrete Semantics

We take the same concrete semantics as in earlier papers [5, 6, 8]. For the sake
of clarity and self-containedness, we shall summarize them here.

We shall express probabilities using measures [11, §1.18]. We shall begin by
a few classical mathematical definitions.

2.1 Measures

The basic objects we shall operate on are measures.

– P(X) is the power-set of X.
– A σ-algebra is a subset of P(X) that contains ∅ and is stable by countable

union and complementation (and thus contains X and is stable by countable
intersection).

– A set X with a σ-algebra σX defined on it is called a measurable space and the
elements of the σ-algebra are the measurable subsets. We shall often mention
measurable spaces by their name, omitting the σ-algebra, if no confusion is
possible.

– If X and Y are measurable spaces, f : X → Y is a measurable function if
for all W measurable in Y , f−1(W) is measurable in X.

– A positive measure is a function µ defined on a σ-algebra σX whose range
is in [0,∞] and which is countably additive. µ is countably additive if, tak-
ing (An)n∈N a disjoint collection of elements of σX , then µ (∪∞n=0An) =∑∞

n=0 µ(An). To avoid trivialities, we assume µ(A) < ∞ for at least one A.
The total weight of a measure µ is µ(X). µ is said to be concentrated on
A ⊆ X if for all B, µ(B) = µ(B ∩ A). We shall note M+(X) the positive
measures on X.

– A probability measure is a positive measure of total weight 1. A σ-finite
measure is a measure µ so that there exists a countable partition X =
t∞k=1Xk so that µ(Xk) < ∞ for all k. This is a technical condition that will
be met every time in our cases.

– Given two σ-finite measures measures µ and µ′ on X and X ′ respectively, we
note µ⊗ µ′ the product measure [11, definition 7.7], defined on the product
σ-algebra σX × σX′ . The characterizing property of this product measure is
that µ⊗ µ′(A×A′) = µ(A).µ′(A′) for all measurable sets A and A′.

Our semantics shall be expressed as continuous linear operators between
measure spaces.

2.2 Semantics of Arithmetic Operators

Let us consider an elementary program statement c so that [[c]] : X → Y , X and
Y being measurable spaces. We shall also suppose that [[c]] is measurable, which
is a purely technical requirement.

To [[c]] we associate the following linear operator [[c]]p:

[[c]]p :
∣∣∣∣
M+(X)→M+(Y)
µ 7→λW.µ([[c]]−1(W)) .

2.3 Random Inputs or Generators

An obvious interest of probabilistic semantics is to give an accurate semantics
to assignment such as x:=random();, where random() is a function that, each
time it is invoked, returns a real value uniformly distributed between 0 and
1, independently of previous calls.1 We therefore have to give a semantics to
constructs such as x:=random();, where random returns a value in a measured
space R whose probability is given by the measure µR and is independent of all
other calls and previous states.

We decompose this operation into two steps:

Xp
[[ρ:=random()]]

//

[[x:=random()]]

))(X ×R)p
[[x:=ρ]]

// Xp

The second step is a simple assignment operator, addressed by the generic se-
mantics for arithmetic operators. The first step is a product of measures:

[[ρ:=random()]] :
∣∣∣∣
Xp→ (X ×R)p

µ 7→µ⊗ µR
. (1)

In the rest of the paper, when dealing with random generators, we shall focus
on this product operation.

2.4 Tests and Loops

We restrict ourselves to test and loop conditions b so that [[b]] is measurable.
[[b]] is the set of environments matched by condition b. It is obtained inductively
from the set of environment matched by the atomic tests (e.g. comparisons):

– [[b1 or b2]] = [[b1]] ∪ [[b2]]
– [[b1 and b2]] = [[b1]] ∩ [[b2]]
– [[not b]] = [[b]]C

The semantics of tests is:

[[if c then e1 else e2]]p(µ) = [[e1]]p ◦ φ[[c]](µ) + [[e2]]p ◦ φ[[c]]C (µ) (2)

1 Of course, functions such as the POSIX C function drand48() would not fulfill such
requirements, since they are pseudo-random generators whose output depends on an
internal state that changes each time the function is invoked, thus the probability
laws of successive invocations are not independent. However, ideal random generators
are quite an accurate approximation for most analyses.

where φW (µ) = λX.µ(X ∩W). The semantics for the while loop is:

[[while c do e]]p(µ) =
∞∑

n=0

φ[[c]]C ◦ ([[e]]p ◦ φ[[c]])n(µ)

= φ[[c]]C

(∞∑
n=0

([[e]]p ◦ φ[[c]])n(µ)

)

= φ[[c]]C

(
lim

n→∞
(λµ′.µ + [[e]]p ◦ φ[[c]](µ′))n(λX.0)

)
(3)

Limits and infinite sums are taken according to the set-wise topology [3, §III.10].
We refer the reader to the extended version of [8] for the technical explanations
on continuity and convergence.

3 Abstract Semantics

We first give the vocabulary and notations we use for abstractions in general
(the reader is invited to consult [2] for further details). We then explain the
particular treatment of probabilistic semantics.

3.1 Summary of Abstraction

Let us consider a preordered set X] and a monotone function γX : X] → P(X).
x] ∈ X] is said to be an abstraction of x[⊂ X if x[⊆ γX(x]). γX is called
the concretization function. The triple 〈P(X), X], γX〉 is called an abstraction.
P(X) is the concrete domain and X] the abstract domain. Such definitions can
be extended to any preordered set X[besides P(X).

Let us now consider two abstractions 〈P(X), X], γX〉 and 〈P(Y), Y], γY 〉 and
a function f : X → Y . f] is said to be an abstraction of f if

∀x] ∈ X] ∀x ∈ X x ∈ γX(x]) ⇒ f(x) ∈ γY (f](x])) (4)

More generally, if 〈X[, X], γX〉 and 〈Y [, Y], γY 〉 are abstractions and f [: X[→
Y [is a monotone function, then f] is said to be an abstraction of f [if

∀x[∈ X[∀x] ∈ X] x[v γX(x]) ⇒ f [(x[) v γX(f](x])) (5)

Algorithmically, elements in X] will have a machine representation. To any
program construct c we shall attach an effectively computable function [[c]]] so
that [[c]]] is an abstraction of [[c]]. Given a machine description of a superset of
the inputs of the programs, the abstract version yields a superset of the outputs
of the program. If a state is not in this superset, this means that, for sure, the
program cannot reach this state.

Let us take an example, the domain of intervals: if X] = Y] = T 3 where
T = {(a, b) ∈ Z ∪ {−∞, +∞} | a ≤ b} ∪ {⊥}, γ(a, b) = {c ∈ Z | a ≤ c ≤ b}
and γ induces a preorder vT over T and, point-wise, over X], then we can take
[[x:=y+z]]]((ax, bx), (ay, by), (az, bz)) = ((ay + az, by + bz), (ay, by), (az, bz)).

3.2 Turning Fixpoints of Affine Operators into Fixpoints of
Monotone Set Operators

Equation 3 shows that the semantics of loops are given as infinite sums or,
equivalently, as fixpoints of some affine operators. In non-probabilistic semantics,
the semantics of loops is usually the fixpoint of some monotone operator on the
concrete lattice, which get immediately abstracted as fixpoints on the abstract
lattice. The approximation is not so evident in the case of this sum; we shall
nevertheless see how to deal with it using fixpoints on the abstract lattice.

Defining µn recursively, as follows: µ0 = λX.0 and µn+1 = ψµn, with
ψ(ν) = µ + [[e]]p ◦ φ[[c]](ν), we can rewrite equation 3 as [[while c do e]]p(µ) =
φ[[c]]C (limn→∞ µn). We wish to approximate this limit in the measure space by
an abstract element.

We get this approximation by finding a subset L of P(M+(X)) that:

– contains any element of the sequence (µn),
– is stable by ψ,
– is topologically closed.

Then limn→∞ µn ∈ L.
Let us take N ∈ N. Let us note +] an abstraction of the sum operation on

measures, 0] an abstraction of the null measure and ψ](ν]) = W]+[[e]]]p◦φ]
[[c]](ν

]).

Let us take µ ∈ W]. By abstraction, µN ∈ γ(ψ]N (0])).
Let us suppose that we have an “approximate least fixpoint” operation lfp] :

(X] monotonic−−−−−−→ X]) → X]. By “approximate least fixpoint” we mean that if φ] is
an abstraction of φ, then lfp] φ] is an abstraction of lfp φ. The next sub-section
will explain how to implement such an operation using widening operators.

Let us consider L = γ
(
lfp] X] 7→ ψ]N (0]) t (W] +] [[e]]](φ]

[[c]](X)))
)
. L con-

tains µN and is stable by ψ.
We can therefore take:

[[while c do e]]](W]) = φ]

[[c]]C

(
lfp] X] 7→ ψ]N

(0]) t (W] +] [[e]]](φ]
[[c]](X)))

)
,

(6)

3.3 Approximation of Least Fixpoints

As noted before, we need an “approximate least fixpoint” operation lfp] :
(X] monotonic−−−−−−→ X]) → X]. We shall see here that such an operation can be
implemented using widening operators ([2]; see §4.4, 5.4 for the widening oper-
ators that we propose for our particular application).

A widening operator ∇ : X] ×X] → X] is such that

– for all x], y], x] t y] v x]∇y];
– for any ascending sequence (y]

n) and any x]
0, the sequence (x]

n) defined by
x]

n+1 = x]
n∇y]

n is ultimately stationary.

Informally, a widening operator is a kind of “convergence accelerator” for
ascending sequences of elements of the lattice; it allows obtaining in finite time
an over-approximation of the limit of the sequence (which can be reached in
infinite time).

Let us suppose we have a monotonic φ : X → X and an abstraction of
it φ] : X] → X]. Let us define x]

0 = ⊥ and x]
n = x]

n∇φ](x]
n). Since ∇ is a

widening operator, x]
n is ultimately stationary. Let us call L] its limit. We have

L] = L]∇φ](L]). Since ∇ is a widening operator, φ](L]) v L]∇φ](L]) = L]. Let
us apply γ (monotonic) to both sides of the inequality: γ ◦φ](L]) v γ(L]). Since
φ] is an abstraction of φ, φ◦γ(L]) v γ ◦φ](L]). It follows that φ(γ(L])) v γ(L]).
By Tarski’s theorem [2, §4.1], lfp φ =

d
φ(x)vx x and thus lfp φ v γ(L]). γL] is

thus an upper approximation of the least fixpoint of φ, obtained by a finite
computation using the widening operator.

4 Basic Abstract Domain and Abstract Operations

We wish to represent sets of (sub)probability measures symbolically. In this
section, we give a basic abstract domain expressing exponentially decreasing
tails of probabilistic distributions on integers. This abstract domain is not very
satisfactory by itself (it is very crude when it comes to loops), but is a basis for
the definition of a more complex domain (section 5).

4.1 Abstract Domain

Let V be the set of variables. Each element of the abstract domain E is a tuple
of coefficients. Those coefficients will represent three kinds of known facts on the
measures:

– an upper bound W on their total weight;
– upper bounds on the intervals of probable variation for the integer variables:

for any variable v, the probability that v is outside [av, bv] is 0; of course, ab

and/or bv can be infinite (av ≤ bv);
– for each integer variable v, some data Cv on its exponential decreasing:

either none or a pair (αv, βv) ∈ R+× [0, 1[meaning that the probability that
variable v is k is bounded by αvβk

v .

γE(W, (av, bv)v∈V , (Cv)v∈V) is the set of all measures matching the above
conditions. We shall note µ(condition) for the application of the measure µ to the
set of environments matching condition condition. The three conditions above
then get written as:

µ ∈ γE(W, (av, bv)v∈V , (Cv)v∈V) ⇐⇒

µ(true) ≤ W
∀v ∈ V µ(v /∈ [av, bv]) = 0
∀v ∈ V Cv = (αv, βv) ⇒ ∀k ∈ Z µ(v = k) ≤ αvβk

v

(7)

4.2 Arithmetic Operations

We do not provide an abstract operator for each of the basic operations that a
program may encounter; for instance, we say nothing of multiplication. In cases
that are not described, we just apply interval propagation [1] and set Cv = none
for every modified variable v. In some case, we shall provide only for some cases,
while some others can be handled by using the symmetry of the operation and
reverting to a described case.

We focus on the operations that will be most useful for our analysis goals
(number of iterations taken in a loop, number of used CPU cycles). For instance,
we consider the case of the arithmetic plus since it will be used to count loop
iterations or program cycles, whereas multiplication is of little use for such tasks.

Arithmetic Plus We define here the abstract operation (W, (av, bv)v∈V ,
(Cv)v∈V) 7→ (W ′, (a′v, b′v)v∈V , (C ′v)v∈V) = z := x+y]

p.(W, (av, bv)v∈V , (Cv)v∈V).
The distribution after applying an arithmetic plus obeys the following con-

volution equation:

([[x+y]]p.µ)(z = t) =
∑

k∈Z
µ(x = k ∧ y = t− k). (8)

Let us suppose that µ ∈ γE(W, (av, bv)v∈V , (Cv)v∈V); we want to produce
(W ′, (a′v, b′v)v∈V , (C ′v)v∈V) so that ([[x+y]]p.µ ∈ γE(W ′, (a′v, b′v)v∈V , (C ′v)v∈V).

Obviously we can take W ′ = W , a′z = ax + ay, b′z = bx + by, and b′v = bv and
C ′v = Cv for all v 6= z.

We therefore have four cases:

– Cx = none and Cy = none, then C ′z = none;
– Cx = none and Cy = (αy, βy). We then have µ(x = k ∧ y = t− k) ≤ αyβt−k

y

if k ∈ [ax, bx] µ(x = k ∧ y = t − k) = 0 otherwise. Inequality 8 then yields
P (x + y = t) ≤ αy

∑bx

k=ax
βt−k

y .

Let α′z = αyβ−bx
y

βbx−ax+1
y −1

βy−1 and β′z = βy. In particular, if bx = ax (variable
x is actually a constant), then α′z = αyβ−bx

y .
Then ([[x+y]]p.µ)(z = t) ≤ α′zβ

′
z
t. If α′z = ∞, we take C ′z = none else we take

C ′z = (α′z, β
′
z).

– Cx = (αx, βx) and Cy = none; this is mutatis mutandis the previous case.
– Cx = (αx, βx) and Cy = (αy, βy); we then apply the previous cases and take

the greatest lower bound of both.

4.3 Random Generation

We define here the abstract operation (W, (av, bv)v∈V , (Cv)v∈V) 7→
(W ′, (a′v, b′v)v∈V , (C ′v)v∈V) = ρ := random]

p.(W, (av, bv)v∈V , (Cv)v∈V).
Let us recall that ρ:=randomp.µ = µ⊗µR where µR is the distribution of the

generator. Let us note WR the total weight of µR (it can be less than 1, see §5.3).
We take W ′ = WR.W , and for any variable v except ρ, a′v = av and b′v = bv; if
Cv = (αv, βv) then C ′v = (WR.αv, βv), else C ′v = none. If the generator has an
integer output and is bounded in [aR, bR], then a′ρ = aR and b′ρ = bR. C ′ρ = none.

4.4 Flow Control

As with preceding operations, we only define the cases that will be actually used
for our analysis goals. Other cases are handled by simple interval propagation
and setting Cv to none for every modified variable v.

Least Upper Bound We define here the abstract operation
((W, (av, bv)v∈V , (Cv)v∈V), (W ′, (a′v, b′v)v∈V , (C ′v)v∈V)) 7→ (W ′′, (a′′v , b′′v)v∈V ,
(C ′′v)v∈V) noted as (W, (av, bv)v∈V , (Cv)v∈V) t] (W ′, (a′v, b′v)v∈V , (C ′v)v∈V).

Given (W, (av, bv)v∈V , (Cv)v∈V) and (W ′, (a′v, b′v)v∈V , (C ′v)v∈V), we want
(W ′′, (a′′v , b′′v)v∈V , (C ′′v)v∈V) so that γE(W, (av, bv)v∈V , (Cv)v∈V) ∪ γE(W ′,
(a′v, b′v)v∈V , (C ′v)v∈V) ⊆ γE(W ′′, (a′′v , b′′v)v∈V , (C ′′v)v∈V) with little loss of pre-
cision. Let us take W ′′ = max(W,W ′) and for all v:

– a′′v = min(av, a′v) and b′′v = max(bv, b′v)
– if Cv = (αv, βv) and C ′v = (α′v, β′v) then we take β′′v = max(βv, β′v) and

α′′v = max(αvβ
a′′v
v , α′vβ′v

a′′v).β′′v
−a′′v .

– if Cv = none or C ′v = none then C ′′v = none.

Widening As noted before (§3.3), we need some widening operators to approx-
imate least fixpoints.

We shall define here the abstract operation
((W, (av, bv)v∈V , (Cv)v∈V), (W ′, (a′v, b′v)v∈V , (C ′v)v∈V)) 7→ (W ′′, (a′′v , b′′v)v∈V ,
(C ′′v)v∈V) noted as (W, (av, bv)v∈V , (Cv)v∈V)∇E(W ′, (a′v, b′v)v∈V , (C ′v)v∈V).

(W, (av, bv)v∈V , (Cv)v∈V)∇E(W ′, (a′v, b′v)v∈V , (C ′v)v∈V) should be higher
than (W, (av, bv)v∈V , (Cv)v∈V) tE (W ′, (a′v, b′v)v∈V , (C ′v)v∈V). We also require
the sequence defined inductively by µ′n+1 = µ′n∇µ]

n to be stationary, for any
sequence (µ]

n)n∈N. The main interest of such an operator is the computation of
least fixpoints (see §3.3.

We shall use a widening operator ∇R on the reals:

– x∇Ry = ∞ if x < y;
– x∇Ry = y otherwise.

Intuitively, using this operator means that if a sequence of real coefficients keeps
of ascending, we get an upper approximation of it using +∞.

Let us take W ′′ = max(W,W ′) and for all v:

– if av > a′v, a′′v = −∞ else a′′v = av;
– if bv < b′v, b′′v = +∞ else b′′v = av;
– two cases:

• If a′′v = +∞ or Cv = none or C ′v = none then C ′′v = none.
• Otherwise, if Cv = (αv, βv) and C ′v = (α′v, β′v) then we take β′′v =

exp(−(− ln βv)∇R(− ln β′v)) and α′′v = (αvβ
a′′v
v ∇Rα′vβ′v

a′′v)).β′′v
−a′′v . If

α′′v < ∞ then C ′′v = (α′′v , β′′v), otherwise C ′′v = none.

Addition We shall define here the abstract operation
((W, (av, bv)v∈V , (Cv)v∈V), (W ′, (a′v, b′v)v∈V , (C ′v)v∈V)) 7→ (W ′′, (a′′v , b′′v)v∈V ,
(C ′′v)v∈V) noted as (W, (av, bv)v∈V , (Cv)v∈V) +] (W ′, (a′v, b′v)v∈V , (C ′v)v∈V).

Two cases are of particular interest:

– For all t ∈ Z, µ(v = t) ≤ αvβt
v, t /∈ [av, bv] ⇒ µ(v = t), t /∈ [a′v, b′v] ⇒ µ′(v =

t) and µ′(true) ≤ W ′.
Two cases:
• b′v < a′v; then let us take α′′v = max(αv,W ′.β−b′v

v) and β′′v = βv, then
µ + µ(t = v) ≤ α′′vβ′′v

t (see Fig. 1 for an example);
• otherwise, let us take α′′v = αv,W ′ + β

b′v
v and β′′v = βv, then µ + µ(t =

v) ≤ α′′vβ′′v
t.

µ]
1 +] µ]

2

µ]
2

µ]
1

1086420

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 1. Abstract addition of measures. Cx = (1, 0.3), ax = 3, bx = +∞,
W ′ = 0.7, C ′x = none, a′x = 0, b′x = 2. For the sake of readability, the dis-
crete distributions are extended to continuous ones. The near-vertical slopes are
artefacts of the plotting software replacing vertical slopes.

– For all t ∈ Z, t /∈ [av, bv] ⇒ µ(v = t), t /∈ [a′v, b′v] ⇒ µ′(v = t), where a′v > bv.
Let us take β′′v = (W/W ′)

1
b′v−bv and α′′v = W.β′′v

bv , then µ+µ(t = v) ≤ α′′vβ′′v
t

(see Fig. 2 for an example).

4.5 Machine Reals in our Abstract Domain

Our abstract domain makes ample use of real numbers: each coefficient αv or
βv is a priori a real number. A possible implementation of these coefficients is

µ]
1 +] µ]

2

µ]
2

µ]
1

1086420

1.2

1

0.8

0.6

0.4

0.2

0

Fig. 2. Abstract addition of measures. Cx = none, ax = 0, bx = 1, W = 1,
a′x = 2, b′x = 3, W ′ = 0.856.

machine reals (IEEE 754 or similar); another is rational numbers as quotients
of arbitrary-precision integers. We discuss here the possible consequences of the
use of machine reals for the implementation of those coefficients.

The use of machine reals leads to two implementation problems. The first
problem is that it is difficult to ascertain the loss of precision induced by machine
reals throughout computations: how can the user be convinced that the output
of the analyzer is sound? This can be worked around by using directed rounding
modes.

A more annoying problem, relevant in implementation, is the fact that ac-
crued imprecisions may lead to “drift”, especially when using directed rounding
modes. By “drift”, we mean that a sequence of real numbers that, mathemati-
cally speaking, should appear to be stationary may be strictly ascending in the
floating-point approximation. In that case, our widening operator on the reals
∇R (§4.4) may jump prematurely to +∞.

It may be desirable to consider that small changes in some real coefficients do
not indicate that the coefficient is actually changing but rather indicate some loss
of precision. We expect the current work on abstract domains for real numbers
[10] to provide better solutions to that problem.

5 Abstract Domain of Finite Sums

The preceding domain is not yet very suitable to handle random generation.
In this section, we lift it to the domain of its finite sums. This is similar to [8,
section 4].

5.1 Definition

We shall define another domain S and another concretization function γS . S
consists of finite tuples of elements of E or, more interestingly, of a reduced
product [2, §4.2.3.3] P of E and another domain D. For our subsequent ex-
amples, we shall use for P the product of E and the lattice of real intervals
(for real variables). γP is the concretization function for this reduced product:
γP (e], d]) = γE(e]) ∩ γD(d]).

As a running example we shall use for D the lifted domain of real intervals: to
each real variable v we attach an interval [av, bv], with possibly infinite bounds.
The probability that variable v is outside [av, bv] is zero.

Items of S are therefore finite tuples of elements of P . The concretization
function γS is defined as follows: µ ∈ γS(p]

1, ..., p
]
n) if and only if there exist

µ1 ∈ γP (p1), ..., µn ∈ γP (pn) so that µ =
∑n

k=1 µk.

5.2 Arithmetic Operations

Deterministic Operations Basic operations are handled by linearity: since
for any program construct P its semantics [[P]]p is a linear operator, it follows
that if µ ∈ γS(p]

1, ..., p
]
n) then [[P]]p.µ ∈ γS([[P]]]p.p

]
1, . . . , [[P]]]p.p

]
n).

The abstract operator is therefore constructed:

[[P]]]p(p
]
1, ..., p

]
n) = ([[P]]]p.p

]
1, . . . , [[P]]]p.p

]
n).

5.3 Random Operations

Let us consider a random generator G operating according to the distribution
µR. The semantics of the random operation is [[random]]p.µ = µ ⊗ µR (Equ. 1).
We shall suppose that our underlying domain P has an abstract operation ⊗].

Let us suppose that µR =
∑N

i=1 µi. Then µ ⊗ µR =
∑N

i=1 µ ⊗ µi thus if
µ ∈ γS([[P]]]p.p

]
1, . . . , [[P]]]p.p

]
n) then µ ⊗ µR ∈ γS([[P]]]p.p

]
1 ⊗] µ]

1, . . . , [[P]]]p.p
]
1 ⊗]

µ]
N , . . . , [[P]]]p.p]

n ⊗] µ]
1, . . . , [[P]]]p.p]

n ⊗] µ]
N).

As an example, let us consider the case of an uniform random generator in
[0, 1]. Let us “cut” it into N equal sub-segments: let us note µR the uniform
measure on [0, 1]. µR =

∑N
i=1 µi with µi(X) = µR(X ∩ [(i−1)/N ; i/N]). For the

abstraction of µ 7→ µ⊗µi over our example for the domain P : (e, (d1, . . . , dn)) 7→
(e, (d1, . . . , dn, [(i− 1)/N ; i/N]).

5.4 Flow Control

[[while c do e]]](W]) = φ]

[[c]]C
(lfp] X] 7→ W] t [[e]]](φ]

[[c]](X
]))).

Addition Addition is very simple:

(p1, . . . , pn) +] (p′1, . . . , p
′
n′) = (p1, . . . , pn, p′1, . . . , p

′
n′) (9)

Loops For accuracy reasons, we wish [[while b do e]]].(p]
1, . . . , p

]
n) to operate

separately on each component p]
1, . . . , p

]
n. We thus define an auxiliary function

H] so that [[while b do e]]].(p]
1, . . . , p

]
n) = (H].p]

1, . . . ,H
].p]

n). H] is defined
following equation 6:

H](W]) = φ]

[[c]]C
(lfp] X] 7→ merge(W] tW] +] [[e]]](φ]

[[c]](X)))).

where merge(p1, . . . , pn) = (p1 +] · · ·+] pn).
We construct the “approximate least fixpoint operation” lfp](f]) as follows:

we consider the sequence u]
0 = (0), u]

n+1 = u]
n∇P f](u]

n). All elements of the
sequences are 1-tuples of elements of P . If ∇P is a widening operator for the
domain P , then this sequence is stationary, and its limit is an approximation of
the least fixpoint of f].

Such a ∇P operator can be defined as follows: (e, d)∇P (e′, d′) =
(e∇Ee′, d∇Dd′) where ∇E is the widening operator defined at §4.4.

6 Examples and Applications

6.1 Proof of Probabilistic Termination

Let us consider the following program:

double x, y;
int k = 0;
do
{

x = uniform()+uniform();
y = uniform();
k++;

}
while(x < 1.4 || y < 0.2)

uniform() is assumed to be a random generator uniformly distributed in [0, 1].
In this simple case, the probability that the loop is taken is independent of the
input data and of the number of iterations done so far. Furthermore, we can
compute it mathematically (0.856), with our knowledge of the distribution of
the random variables and the computation of an integral.

Let us examine here what happens if we apply the above method, dividing the
random generator into N = 20 sub-segments of equal length (§5.3). At the end of
the first iteration, after the merge, the analyzer establishes that the probability
of reaching 1 iteration is less than 0.8805.2 Applying the last case of §4.4, we
obtain ak = 1, bk = 2, βk = 0.8805, αk ≈ 1.1357. After another iteration, we
obtain ak = 1, bk = 3, βk = 0.8805, αk ≈ 1.1357. The analyzer widens to ak = 1,
bk = ∞, βk = 0.8805, αk ≈ 1.1357, which is stable.

We have therefore established that the probability that k = x at the begin-
ning of the body of the loop is less than 0.8805k−1. That is of course not as good
as the exact computation, but still offers a reasonable bound.

6.2 Statistical Inference of Average Running Times

It is often needed to derive statistical facts such as average running times for
real-time systems. Results achieved by the preceding method can be too rough
to give precise estimates; nevertheless, they can help in making mathematically
accurate some experimental statistical results.

Intuitively, to get the average running time of a system, we should take a large
number n of random samples (xk)1≤k≤n for the input (distributed according to
the supposed or inferred distribution on the inputs of the system). Let us call
R(x) the running time on input x; we then hope to have an approximation of
the means R̄ by taking 1

n

∑n
k=1 R(xk).

Unfortunately, this method is not mathematically sound, essentially because
R is not bounded, or rather because we have no information as to the very large
values of R (the “tail” of the distribution). For instance, let us suppose that R
is 0 for 99.99% of the input values and V for 0.01% of the input values. With
90% probability, the experimental average obtained by the Monte-Carlo method
using 1000 samples will be 0, whereas the correct value is V/10000. As V can
be arbitrarily large, this means we cannot gain any confidence interval on the
result.

On the other hand, if, using the analysis described in this paper, we can show
that the tail of the distribution decreases exponentially, we can get a confidence
bound. Let us note P (A) the probability of an event A. Let us suppose that our
analysis has established that the probability of running a loop at least k times
is less than α.βk. Let N ≥ 1. Let us run the program n times, stopping each
time when either the loop terminates or it has been executed N times. Let us
consider the random variable R where R(x), the number of iterations the pro-
gram takes when run on input x. We wish to determine R̄ =

∑∞
k=0 k.P (R = k).

To achieve this, we split the sum in two parts: R̄ = R̄≤N + R̄>N where
R̄≤N =

∑N
k=0 k.P (R = k) and R̄>N =

∑∞
k=N+1 k.P (R = k).

2 This result has been computed automatically by the Absinthe abstract interpreter
http://cgi.dmi.ens.fr/cgi-bin/monniaux/absinthe.

http://cgi.dmi.ens.fr/cgi-bin/monniaux/absinthe�

We wish to obtain an upper bound on R̄>N .

b∑

k=a

k.βk =
1

(β − 1)2
.
[
βb+1 ((b + 1)(β − 1)− β)− βa (a(β − 1)− β)

]
(10)

and thus
∞∑

k=a

kβk =
βa

(β − 1)2
. (β − a(β − 1)) (11)

Therefore R̄>N ≤ α. βN+1

(β−1)2 . (β − (N + 1)(β − 1)).

On the other hand, R̄<N can be estimated experimentally [9]. Let us consider
the random variable R∗: R∗(x) = 0 if R(x) > N and R∗(x) = R(x)/N if
R(x) < N ; this is a random variable whose range is a subset of [0, 1]. It is
therefore possible to apply to R∗ the various techniques known for estimating
the expectation of such random variables (such as Chernoff-Hoeffding bounds [4]
or simple Gaussian confidence intervals, using the Central Limit Theorem). We
then obtain R̄<N = N.R̄∗.

We therefore obtain a confidence upper bound on R̄ by adding together the
confidence intervals obtained on R̄≤N and R̄>N .

7 Conclusions and Future Work

We have proposed a method to analyze automatically the termination of certain
kinds of computer programs. This analysis outputs probabilistic invariants of
loops, especially on the distribution of the number of loop iterations done or the
number of program cycles used. The invariants obtained can be used in several
ways, including:

– proofs of probabilistic termination,
– proofs of soundness of experimental statistical methods.

The analysis is proved to be sound, as it is set in a framework of abstract
interpretation suitable for probabilistic programs. It has been partially imple-
mented in an automatic analyzer for a subset of the C programming language.
We plan to implement it fully in an analyzer for industrial embedded systems,
where it could serve as a quick method to validate active waiting loops and
similar constructs.

This analysis deals with a particular kind of probabilistic distributions, for
example typical of the running time of a program waiting for data with proba-
bilistic timings on a network. Other kinds of distributions, such as the normal
(Gaussian) one, are of particular interest when analyzing embedded systems —
for instance, to model error propagation. We plan to give analyses suitable for
such distributions.

References

1. P. Cousot and R. Cousot. Abstract intrepretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the 4th ACM Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, CA, January 1977.

2. Patrick Cousot and Radhia Cousot. Abstract interpretation and application to
logic programs. J. Logic Prog., 2-3(13):103–179, 1992.

3. J.L. Doob. Measure Theory, volume 143 of Graduate Texts in Mathematics.
Springer-Verlag, 1994.

4. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
J. Amer. Statist. Assoc., 58(301):13–30, 1963.

5. D. Kozen. Semantics of probabilistic programs. In 20th Annual Symposium on
Foundations of Computer Science, pages 101–114, Long Beach, Ca., USA, October
1979. IEEE Computer Society Press.

6. D. Kozen. Semantics of probabilistic programs. Journal of Computer and System
Sciences, 22(3):328–350, 1981.

7. Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change princi-
ple for program termination. In ACM Symposium on Principles of Programming
Languages, volume 28, pages 81–92. ACM press, January 2001.

8. David Monniaux. Abstract interpretation of probabilistic semantics. In Seventh
International Static Analysis Symposium (SAS’00), number 1824 in Lecture Notes
in Computer Science. Springer-Verlag, 2000. Extended version on the author’s web
site.

9. David Monniaux. An abstract Monte-Carlo method for the analysis of probabilistic
programs (extended abstract). In 28th Symposium on Principles of Programming
Languages (POPL ’01), pages 93–101. Association for Computer Machinery, 2001.

10. Éric Goubault. Static analyses of floating-point operations. In Static Analysis
(SAS ’01), Lecture Notes in Computer Science. Springer-Verlag, July 2001.

11. Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

