
Coming out of the niche?

David Monniaux
CNRS / VERIMAG

November 1, 2010

Abstract
The strongest successes of static analysis so far have been, on the

one hand, sound analysis on safety-critical embedded systems, a rather
niche market, on the other hand static analysis for finding bugs in more
ordinary programs. Can the gap be bridged?

1 Introduction

In the 1970s, C.A.R. Hoare [6] and others argued that programs should be
proved correct before use, much like conjectures are proved before being used
as theorems. This view was not well-received in all quarters [4], and many
argued that formal proofs would not “scale up” from toy examples to real
applications: not only real applications are huge in comparison to, say, a
small sorting procedure (a common example for proof methods), but they
are also considerably less well-specified. In fact, building and maintaining a
comprehensive specification for a large program, even if possible, is a work
of the same order of magnitude as that of the program itself.

Four decades have passed, and the current state of affairs is that almost
no programs are proved correct. Some essential libraries and tools, such
as compilers (see e.g. the CompCert project [7]), or some crucial parts of
safety-critical embedded systems [11], are proved correct. Even with respect
to the minimal implicit specification that a program should not crash with
a division by zero, bad memory access or similar runtime errors, the only
examples known to us are again in safety-critical embedded systems.

We shall therefore see what is so special about safety-critical embedded
systems, then see how this is really a niche in computing. In light of these
facts, we shall then investigate what could be done with respect to both the
industry and the static analysis research field in order for static analysis to
break out of the niche.

1



2 Safety-critical systems

Critical computing systems are those, typically driving machinery or vehicles,
whose failure may result in unacceptable human losses. Examples of critical
systems include fly-by-wire controls on aircraft or on manned spacecraft,
radiation therapy equipment, nuclear power plant safety systems. To this
list we may add in the future steering-by-wire and brake-by-wire systems on
motor vehicles.

2.1 Fly-by-wire

The fly-by-wire controls on civilian airliners are currently one of the most
spectacular applications of formal methods, which is why we shall give them
special attention.

Let us first define “fly-by-wire”. In very light airplanes, there is a me-
chanical connection between the pilot and the control surfaces of the plane
(ailerons, elevators, rudder, etc.). On larger aircraft this mechanical connec-
tion must be supplemented by the aeronautical equivalent of power steering:
pressurized fluids that help the pilot push the surfaces; yet there is still a
direct correspondence between the position of the control yoke or pedals and
that of the surfaces. On fly-by-wire aircraft, this mechanical connection is
replaced by a fully electric one, with analog or digital computers controlling
the surfaces according to the pilot’s orders.

The benefits of fly-by-wire are manifold. Electrical connections are lighter
than mechanical ones, and may be easier to maintain. Computers, especially
digital ones, are flexible and can support advanced functions, such as pro-
tections against some forms of unsafe flights, or emergency maneuvers with
reaction times below those of human pilots. For instance, the plane can
automatically react to a stall — an insufficient airspeed, with possible dire
consequences — by making a quick dive to regain speed.1

Unfortunately, with benefits come dangers and costs. The more sophisti-
cated a system is, the likelier it contains bugs. Therefore, the use of software
in critical embedded systems is strongly regulated: civilian airliners sold on
the international market are to obey the DO-178B [10] standard on avionic

1Such an emergency dive maneuver appears to have been erroneously triggered twice on
an Airbus A330, Qantas flight 72, on 7 October 2008; some passengers were wounded. The
Australian air safety authorities suspect that a dysfunctional ADIRU (a unit processing
airspeed and inertial data) fed incorrect data into the fly-by-wire system, and that this
system, failing to detect that the data was incorrect, acted upon it [1].

2



software.2 This standard divides avionic software into five levels of critical-
ity, from A (safety-critical, with possible loss of life) to E (no importance for
safety). Fly-by-wire is at level A, and thus is governed by the most stringent
rules.

DO-178B contains a number of prescriptions [11]. For instance, the man-
ufacturer should provide the general specifications of the system, and demon-
strate that the executed code implements these specifications and nothing
more. Obviously, a program crashing with a runtime error (e.g. divide by
zero or array access out of bound) violates its specification, and thus the
manufacturer should demonstrate that execution errors never occur. The
manufacturer should also demonstrate that all hypotheses upon which the
safety of the system reside are fulfilled; for instance, if the system is supposed
to execute a task every 1 ms, then this task should be shown to always take
less than 1 ms. DO-178B does not impose any specific method for fulfilling
these prescriptions, except testing.

Aviation certification authorities tend to require that simple solutions be
used; complex or error-prone software designs need to be justified on grounds
that simpler designs would be infeasible. For these reasons, industrial pro-
gramming rules generally ban dynamic memory allocation, recursion and
complex usage of pointers in level A code.

So far, formal methods have been applied to fly-by-wire systems in the
following three directions:

1. Proof of absence of runtime errors. Since the absence of runtime errors
is implicit in avionic software specifications (and, indeed, in almost all
software specifications), and some major causes of runtime errors (e.g.
complex usage of pointers) are prohibited by coding rules, runtime
errors are an obvious target for verification.

The author knows of two commercial products able to analyze pro-
grams fully automatically and to produce an exhaustive list of possible
runtime errors (barring, of course, bugs in the analyzer): the Polyspace
Verifier3 and the Astrée analyzer4.

2DO-178B is an American standard; the same document as a European standard is
referred to as ED-12B. DO-178B is to be replaced soon by a new revision called DO-178C.

3The PolySpace Verifier was developed under the scientific leadership of the late Alain
Deutsch by PolySpace, a small company based near Grenoble, France. PolySpace is now
a unit of The Mathworks, best known for producing Matlab and Simulink.
http://www.polyspace.com/

4Astrée [3], with the final syllable pronounced similarly to the one in entrée, was de-
veloped at LIENS in Paris, a joint laboratory between the National center for scientific
research (CNRS) and École normale supérieure (ENS), by a group led by Patrick Cousot

3

http://www.polyspace.com/


2. Proof that the system fulfills functional properties, that is, properties
concerned with the correctness of the computations performed by the
program. Contrary to the absence of runtime errors, these properties
have to be explicitly stated, for they differ according to what the pro-
gram is supposed to be doing. For instance, one functional property of
a sorting program is that it produces a sorted output; another is that
its output is a permutation of its input.

Proving that functional properties hold is generally considered a harder
problem than proving the absence of runtime errors, if only because of
their variety and complexity. The analyzers listed above for runtime
error analysis are capable of a restricted form of verification of func-
tional properties, for they check that user-given assertions (provided
e.g. using the assert construct of the C language) are valid for all
executions. Yet, since they are not designed for such properties, they
are likely to provide false alarms on but the simplest of them.

Currently, the best approach for functional properties seems to be as-
sisted theorem proving, supplemented by efficient automated decision
procedures: ideally, simple properties are proved automatically, and
more complex properties need user intervention. An example of a plat-
form for such proofs is Frama-C 5

3. Proof that a given task always executes within a given time. If the de-
sign of a control system relies on a task being executed cyclically with
a period of, say, 1 ms, then the manufacturer should demonstrate that
this task always takes less than 1 ms (or, more realistically, less than
1 ms minus a margin of safety). Worst-case execution time (WCET)
analysis, given a piece of code, provides an upper bound on its execu-
tion time; an analysis is all the more precise that the upper bound it
provides is closer to the WCET.

WCET analysis is generally easy and precise for programs that do not
use function pointers or computed jumps, running on very simple ar-
chitectures where a given instructions takes a defined number of clock

and including the author. http://www.astree.ens.fr/
Later, development was also supported by INRIA, and the software was licensed for

commercial development to Absint GmbH of Saarbrücken, Germany.
http://www.absint.de/astree/

5Frama-C was developed at the Saclay center of the French Commissariat à l’énergie
atomique (CEA). Many plugins were however developed at other locations, especially at
the LRI joint laboratory between CNRS and Université Paris-Sud at Orsay, with support
from INRIA. http://www.frama-c.com/

4

http://www.astree.ens.fr/
http://www.absint.de/astree/
http://www.frama-c.com/


cycles: it boils down to counting clock cycles in all basic blocks and
combining the results by integer linear programming (ILP). The task
is however made considerably more complex by features of modern
architectures such as pipelines and caches: the number of cycles for
performing an instruction depends on the state of these components.
An architecture may exhibit timing anomalies: a suboptimal execu-
tion time for an instruction may have the beneficial effect of speeding
up later instructions. Furthermore, the most commonly used cache re-
placement policies may produce domino effects: whether or not some
data was in the cache at some instant may have long-lasting conse-
quences.

Absint’s aiT tool analyzes WCET for a variety of architectures.6

2.2 Critical assessment: a niche market

The success stories of formal methods and especially static analysis by ab-
stract interpretation on fly-by-wire software are enlightening, since all cur-
rently successful automatic methods rely on some important peculiarities of
such critical programs and the organizations that produce them.

First of all, the stringent requirements of certification make avionic man-
ufacturers natural customers for techniques that could lighten their burden.
Not only do they have to develop programs with no bugs, but they also have
to convince authorities of this absence of bugs. In contrast, most regular
software products contain many bugs, and their producers often run “bug
tracking” systems with thousands of entries. They have to select which bugs
should be treated first, according to priority criteria such as the practical
consequences of the bug (e.g. loss of data, crash of computer, or minor user
interface problem) and the number of customers impacted. We have heard
anecdotes that such software companies are uninterested in static analysis,
even analysis that provides no false positives and actual error traces, because
it would only add new bugs of unclear priority to their already considerably
long lists.

Formal methods tend to perform poorly in the presence of dynamic con-
trol flow (computed jumps, virtual functions, etc.) and complex uses of
pointers. If an analyzer cannot obtain a precise result on the possible tar-
gets of a jump, then, for soundness, it has to assume that a very large set of
targets may be possible, and to follow the control flow to all these targets.

6aiT was developed by Absint in collaboration with Reinhard Wilhelm’s group at the
University of Saarlandes, Saarbrücken, Germany. http://www.absint.de/ait/

5

http://www.absint.de/ait/


Similarly, if an analyzer cannot compute a precise result on the possible tar-
gets of a write to memory, it has to assume that a very large set of targets
may be touched by the write, thus losing information about many memory
locations. Sound analysis methods for runtime errors therefore tend to be
well-adapted to programs that use pointers sparingly, e.g. for implementing
call-by-reference, but tend to perform poorly on programs manipulating dy-
namic data structures with nontrivial invariants — but such manipulations
anyway tend to be prohibited by coding guidelines for critical systems.

WCET analysis suffers from similar drawbacks. Cache analysis relies
crucially on knowing the addresses of code and data being accessed. In a
critical system, usually, the program is loaded at a fixed address, with no
dynamic loading, dynamic linking or dynamic code generation; thus one
has few difficulties with code references. Assuming that all variables are
statically allocated (fixed addresses) or on the stack, and that pointers are
only used for call-by-reference, again as usual in critical systems, then the
only difficulties are arrays accesses.

Most difficulties in WCET analysis arise from the architecture (pipelines,
caches, busses) [12]. A first difficulty is obviously that the bigger the cache or
the pipeline, the more states the system has, even after abstraction, thus the
costlier the analysis, in both time and space. A more profound problem is
that hardware architectures are generally optimized for the “average case”7,
which is not the same as optimizing for the worst case. On an architecture
optimized for the average case, the performance of a code fragment may
decrease significantly in some rare conditions (for instance, for some specific
configurations of data in cache and pipeline when the fragment is started).
Because these conditions are rare, the “average” execution time is barely
impacted, but the WCET is. The “average” case is what matters in almost all
software applications, including soft real time (e.g. audio or video decoding).
WCET only matters for hard real time, and rigorous WCET analysis is
needed only for critical systems.

The more an architecture contains features meant to boost “average”
performance (deep pipelines, caches, prediction, speculative execution...),
the more likely it is to exhibit rare cases where performance is significantly
degraded, and the less possible it is to compute tight bounds on WCET. The
counter-intuitive consequence is that it may be preferable to use a simpler,
less “performant” architecture (performance being considered in the “average”
case), in lieu of a complex one, because the computed upper bound on the

7The word “average” here involves no rigorous definition from the theory of probabili-
ties, but rather an informal notion of amortized “typical” case.

6



WCET on the simpler architecture may be less than on the more complex ar-
chitecture. Architectures used for critical hard real-time systems should thus
ideally exhibit characteristics fairly different from those generally considered
desirable for other applications. Unfortunately, it is economically difficult,
even infeasible, to design an architecture specifically for critical systems.

Commonly found software / hardware architectures are designed for “av-
erage case” performance, not for ease of analysis or reproducibility. As an
example, due to various reasons [9], the result of floating-point computations
can depend on compiler optimizations and code unrelated to the computa-
tion. Some computer arithmetic experts even advocate that in the future,
standards could be relaxed so as to allow for better performance, at the ex-
pense of reproducibility of computations. When advised by the author that
lack of reproducibility greatly hindered debugging of “corner cases” as well
as formal proofs on critical systems, they answered that critical systems are
a “niche market”.

This summarizes the predicament of sound static analysis of programs:
it is, at present, only suitable for a niche market of critical systems where
safety, and more precisely provable safety, is paramount.

3 Coming out of the niche

The author, being involved in the development of the Astrée static analyzer,
considered founding a start-up company to commercialize this system. He
and colleagues chose against this, for they thought that the targeted market
was too small. Furthermore, each new client would likely bring new classes
of code, which would need specific developments (at least at the beginning —
one could hope that after a while, sufficient classes of code would be covered).
Costs would thus increase linearly with the number of clients. This contrasts
with the business model of off-the-shelf software companies (e.g. Microsoft),
which develop a single software for a large number of clients. Thus, the
company would probably have to charge the high prices usually associated
with custom software. Would prospective buyers be still interested? The
question was, and still is: how can program analysis be usable for a wider
range of applications?

Unsound analysis So far, the most successful answer has been to relax
the requirements of what static analyzers do. Instead of proving the absence
of specification violations, one can instead try to search for such violations,
without any guarantee that all of them would be found (and also without

7



guarantee that those found truly are violations). As notable examples of
such bug-finding tools, one can cite Dawson Engler’s work on the analysis of
system-level C code and that of his company, Coverity8.

Unsoundness can be deliberately incorporated into otherwise sound an-
alyzers so as to reduce the number of false alarms. We have mentioned that
imprecise results of pointer analysis could dramatically decrease the preci-
sion of all subsequent analysis: if we do not know where a pointer points
to, any write to this pointer will destroy useful information in the analyzer.
Thus, one can choose to be unsound with respect to pointer aliasing, as in
the Clousot9 tool.

Facilitation Another direction is to persuade the designers of systems that
could benefit from analysis to design them so as to facilitate it. With re-
spect to WCET, this means less complex pipelines, least-recently-used (LRU)
cache replacement policy, and avoidance of timing anomalies. [12] With re-
spect to software, this means high-level, strongly typed programming lan-
guages, avoidance of pointer arithmetic, avoidance of uselessly dynamic con-
trol flow, avoidance of shared-memory parallelism etc. In the case of code
generated from high-level languages (e.g. Scade or Simulink), it could also
be preferable to analyze the source code instead of the target code.

We are especially concerned about multi-threading, especially since cur-
rent multi-core architectures make it sound like a good idea. Shared-memory
multi-threading, with the usual mutual exclusion primitives, is notoriously
difficult to get right. Bugs in preemptive multi-tasking are often very hard
to reproduce, making debugging difficult. We suspect that, unless higher-
level languages or primitives are used, debugging and verification will be
increasingly hard as multi-threading is used massively.

An early start Unfortunately, currently, verification generally comes as
an afterthought. This may be due to development methodologies that keep
a wall of separation between the design and testing teams, so that the biases
and lapses of the design group do not contaminate the testing group.10 Pro-
gram verification, being considered a new-fangled kind of testing, is therefore

8http://www.coverity.com/
9Clousot is a static checker for Microsoft’s “code contracts” framework [5], now available

commercially.
10When one designs a system, one tends to test it the way it is supposed to be used

according to one’s design, not according to what should be possible according to the
documentation. Thus, having an unrelated team perform final tests is likely to expose
bugs that would not have been exposed by a group closer to development.

8

http://www.coverity.com/
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx


performed very late in the development process.
By the time verification is performed, the design is therefore fixed. Bar-

ring a “smoking gun” bug, the system will not change because of analysis —
and such “smoking guns” are rare anyway: since most sound analysis tools
proceed by over-approximation, it is often difficult to obtain an execution
trace actually violating the specification. In fact, even if such a bug is found,
the system designers may prefer to leave it in as a known hazard rather than
design a workaround that could have adverse effects (for instance, one may
prefer to run the chance of a rare race condition rather than add a lock
which could possibly introduce a deadlock or other adverse effect). In such
a context, static analysis has limited interest.

We therefore advocate that static analysis should be used early on in the
system design. This would make it less costly to change the design, when a
simple change with no serious adverse effects for the efficiency or safety of
the system could ease analysis.

No magic bullet Some approach static analysis with unrealistic expec-
tations, then, inevitably, are disappointed and consider that it “does not
work”.

On one occasion, the author’s team was visited by a company that had
trouble maintaining some multi-threaded program. The system used shared
memory and locks, but some locks were removed for efficiency because “man-
ual analysis” had established they were not really needed. Unfortunately,
because of design and personnel changes over the course of years, the rea-
sons why the system worked, even if originally correct, were forgotten and
perhaps no longer valid. It seems unreasonable to expect that a fully auto-
mated analyzer could magically discover reasons why a multi-threaded sys-
tem should run safely, whereas an engineering team with access to original
design documentation is not able to.

In the current state of the art, program analyzers are not “push button”
solutions: often, some feedback from the user is needed to refine the analysis
and remove false alarms. Prospective users should thus be informed that
some amount of customization could be needed. Often, some modest changes
may bring dramatic improvements.

The need for examples As we explained before, it is our opinion that
analyzers should be developed with actual tests cases, preferably represen-
tative of the class of programs of interest. Unfortunately, it is surprisingly
difficult to obtain such examples. A company may be interested in an ana-

9



lyzer, but may be unwilling to release code samples to analyzer developers,
even under a non-disclosure agreement, for fear of intellectual property and
confidentiality issues. One solution to this problem is for the company to
prepare “representative” code cases — programs that are not in any pro-
duction device (or maybe old ones), but that are similar to those in actual
devices.

An obvious alternative is to run the analyzer on free or open-source
software. The Linux kernel, the GNU Compiler (gcc), etc. are favorite test
cases. One difficulty, however, is that these programs are generally written
in full C (complete with dynamic memory allocation and pointer arithmetic)
and thus a suitable analyzer is needed (it is no coincidence that successful
analyzes being reported on the Linux kernel are unsound). Furthermore,
these programs may not be representative of the intended targets: system
utilities typically make many string and memory manipulations, but very
little and trivial floating-point computation, which is the reverse of control
systems.

4 Better cooperation within the static analysis re-
search community

It is always very difficult to predict what avenues of technical or scientific
research will be fruitful. Here are however the directions that we consider
most promising for the next five years or so.

Convergence of analysis methods Currently, there are markedly dif-
ferent approaches to automatic analysis:

• Abstract interpretation by Kleene iterations, often accelerated with
widenings, as exemplified by Astrée.

• Predicate abstraction with CEGAR (counterexample guided abstrac-
tion refinement) [8].

• Construction of “candidate invariants” by heuristics, then bounded
model-checking in order to prove they truly are invariants, as exempli-
fied by the Boogie tool [2].

• Exact acceleration, in the cases where some invariants may be com-
puted directly from the form of the transition relation (Astrée uses
some form of this, for numerical filters).

10



Often, tools implement only one of them (with the exception of exact
acceleration tools, often coupled with Kleene iterations), whereas some com-
munications would probably improve the situation. For instance, a common
issue with CEGAR using Craig interpolants is that the predicates that they
find may be not general enough (e.g. x = 1∧y = 1 followed by x = 2∧y = 2
etc. instead of x = y); this is not so surprising, since they are based on fi-
nite abstract traces and thus infer predicate suitable for suppressing spurious
counterexample traces of a given length, but not necessarily of any length.
In contrast, the whole idea of the abstract union and widening operators is to
generalize conditions in the hope that they will be suitable for an unbounded
number of iterations.

We thus expect to see more work in the direction of combined approaches.
As an example, we have proposed recently a method for finding optimal
invariants in certain lattices (“traditional” abstract interpretation) using a
method not based on Kleene iterations, in which bounded model checking
has an essential role.

Standardized test cases The satisfiability modulo theory (SMT) re-
search community has a standard format for analysis problems (SMT-LIB11).
For all the criticism one could raise against this standard (e.g. SMT-solvers
being optimized to solve the standard problems and not actual problems
from real-life use), it allows comparisons between implementations. In con-
trast, the static analysis community often makes comparisons impossibles:
the test cases are often proprietary, badly identified, the properties being
checked are often not clearly listed, as well as the precision of the results;
furthermore, the implementations are often unavailable. In short, the bench-
marks typically given at the end of static analysis publications are often little
meaningful. This contrasts with the standard practice in other fields of sci-
ence, where claims have to be independently verifiable to be admissible for
publication.

It seems more difficult to build a repository of analysis test cases than of
SMT formulas. One reason is that the SMT decision problem is well-defined,
whereas the problem of obtaining a “nice” invariant is not. This difficulty
can be circumvented by providing reachability or co-reachability properties,
thus obtaining a well-defined decision problem.

The “rich models” project12 is a step in this direction. There are, however,
considerable difficulties in such an endeavor: for once, the definitions of the

11http://www.smtlib.org/
12http://www.richmodels.org/

11

http://www.smtlib.org/
http://www.richmodels.org/


memory model and associated semantics depends on the source language
(e.g. C is not the same as Java). Perhaps it would be sensible to begin with
the least delicate language features, that is, arithmetic and basic control flow
(even though, even with arithmetic, there are difficulties such as finite-word
integer arithmetic and floating-point).

Open platforms We have emphasized the need to test analyzers on actual
program examples. However, in order for an analyzer to run on real-life C
or Java code, it has to embark a compiler front-end: a parser (or byte-code
reader) and a type analysis. Furthermore, it also needs some pointer analysis,
and, for Java, a class analysis (in the case of C, pointers are very commonly
used, if only to implement call by reference; Java enforces object orientation).
In short, before being able to test a new idea on, say, numerical abstractions,
one has to expend many man-months13 developing a basic analysis platform.

We thus think that the static analysis research domain would benefit from
the availability of some analysis platforms, capable of operating on real-life
code (C, Java or other industrial languages), under a free license.

5 Conclusion

If we (as in, the static analysis research community) want to have our meth-
ods and tools accepted by a larger segment of the industry, we need to make
some efforts:

• On collaboration: open platforms, open benchmarks, more integration.

• On education of industry professionals, who seem to oscillate between
the rejection of static analysis as some academic fantasy on the one
hand, or expect it as a magic bullet on the other hand.

• Obviously, on science.

Otherwise, we might get stuck in the niche of safety-critical systems, which
is not so large.

References

[1] Aviation occurrence investigation AO-2008-070, interim factual report
no 2: In-flight upset 154 km west of Learmonth, WA, 7 october 2008.
ATSB (Australian Transport Safety Bureau), November 2009.

13We know that they are somewhat mythical, but still...

12



[2] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,
and K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Frank S. de Boer, Marcello M. Bonsangue, Su-
sanne Graf, and Willem P. de Roever, editors, FMCO (Formal Methods
for Components and Objects), volume 4111 of LNCS, pages 364–387.
Springer, 2005. ISBN 3-540-36749-7. doi: 10.1007/11804192_17.

[3] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In Programming Language
Design and Implementation (PLDI), pages 196–207. ACM, 2003. ISBN
1-58113-662-5. doi: 10.1145/781131.781153.

[4] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. So-
cial processes and proofs of theorems and programs. Communi-
cations of the ACM, 22(5):271–280, 1979. ISSN 0001-0782. doi:
10.1145/359104.359106.

[5] Manuel Fahndrich and Francesco Logozzo. Static contract checking
with abstract interpretation. presented at FoVeOOS, 2010. URL http:
//research.microsoft.com/apps/pubs/default.aspx?id=138696.

[6] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969. ISSN 0001-0782. doi:
10.1145/363235.363259.

[7] Xavier Leroy. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In Principles of Programming
Languages (POPL), pages 42–54. ACM, 2006. ISBN 1-59593-027-2. doi:
10.1145/1111037.1111042.

[8] Kenneth L. McMillan. Applications of Craig interpolants in model
checking. In TACAS (Tools and Algorithms for the Construction and
Analysis of Systems), volume 3440 of LNCS, pages 1–12. Springer, 2005.
ISBN 3-540-25333-5. doi: 10.1007/11494744_2.

[9] David Monniaux. The pitfalls of verifying floating-point computations.
Transactions on programming languages and systems (TOPLAS), 30(3):
12, May 2008. ISSN 0164-0925. doi: 10.1145/1353445.1353446. URL
http://hal.archives-ouvertes.fr/hal-00128124/en/.

13

http://www.worldcat.org/isbn/3-540-36749-7
http://dx.doi.org/10.1007/11804192_17
http://www.worldcat.org/isbn/1-58113-662-5
http://dx.doi.org/10.1145/781131.781153
http://www.worldcat.org/issn/0001-0782
http://dx.doi.org/10.1145/359104.359106
http://research.microsoft.com/apps/pubs/default.aspx?id=138696
http://research.microsoft.com/apps/pubs/default.aspx?id=138696
http://www.worldcat.org/issn/0001-0782
http://dx.doi.org/10.1145/363235.363259
http://www.worldcat.org/isbn/1-59593-027-2
http://dx.doi.org/10.1145/1111037.1111042
http://www.worldcat.org/isbn/3-540-25333-5
http://dx.doi.org/10.1007/11494744_2
http://www.worldcat.org/issn/0164-0925
http://dx.doi.org/10.1145/1353445.1353446
http://hal.archives-ouvertes.fr/hal-00128124/en/


[10] DO-178B. Software considerations in airborne systems and equipment
certification (RTCA/DO-178B, EUROCAE ED-12B). RTCA, Inc., De-
cember 1992.

[11] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal
verification of avionics software products. In FM 2009: Formal Methods,
volume 5850 of LNCS, pages 532–546. Springer, 2009. ISBN 3642050891.
doi: 10.1007/978-3-642-05089-3_34.

[12] Reinhard Wilhelm, Sebastian Altmeyer, Claire Burguière, Daniel
Grund, Jörg Herter, Jan Reineke, Björn Wachter, and StephanWilhelm.
Static timing analysis for hard real-time systems. In VMCAI (Verifi-
cation, Model Checking, and Abstract Interpretation), volume 5944 of
LNCS, pages 3–22. Springer, 2010. ISBN 3642113192. doi: 10.1007/978-
3-642-11319-2_3.

14

http://www.worldcat.org/isbn/3642050891
http://dx.doi.org/10.1007/978-3-642-05089-3_34
http://www.worldcat.org/isbn/3642113192
http://dx.doi.org/10.1007/978-3-642-11319-2_3
http://dx.doi.org/10.1007/978-3-642-11319-2_3

	Introduction
	Safety-critical systems
	Fly-by-wire
	Critical assessment: a niche market

	Coming out of the niche
	Better cooperation within the static analysis research community
	Conclusion

