
Automatic Modular Abstractions for Linear Constraints

David Monniaux
VERIMAG∗

June 27, 2008

Abstract

We propose a method for automatically generating abstract transformers for static
analysis by abstract interpretation. The method focuses on linear constraints on
programs operating on rational, real or floating-point variables and containing linear
assignments and tests.

In addition to loop-free code, the same method also applies for obtaining least
fixed points as functions of the precondition, which permits the analysis of loops
and recursive functions. Our algorithms are based on new quantifier elimination and
symbolic manipulation techniques.

Given the specification of an abstract domain, and a program block, our method
automatically outputs an implementation of the corresponding abstract transformer.
It is thus a form of program transformation.

The motivation of our work is data-flow synchronous programming languages, used
for building control-command embedded systems, but it also applies to imperative and
functional programming.

1 Introduction

In program analysis, it is often necessary to prove or infer numerical properties of pro-
grams, for instance, in order to prove certain relationships between array indices, or to
prove the absence of overflows. Static program analysis by abstract interpretation obtains
properties of variables, or of relationships between variables, representable in an abstract
domain. Examples of “classical” numerical abstract domains for numerical properties in-
clude intervals Cousot and Cousot [1976] — to each variable x one attaches an interval
[xmin, xmax] — and convex polyhedra Cousot and Halbwachs [1978] — conjunctions of
inequalities a1x1 + · · ·+ anxn ≤ c are inferred.

For each implemented numerical domain and each program instruction, the static
analyzer must provide an abstract transfer function, which maps the property before the
instruction to a safe property after the instruction (for forward analysis; the reverse is
true of backward analysis). For instance, over the intervals, z=x+y is optimally abstracted
as zmax = xmax + ymax and zmin = xmin + ymin; the transfer functions for polyhedra are
more complex. While the designers of abstract interpreters generally strive so that the
output property is “optimal” (the interval [zmin, zmax] defined above is the least possible
one for the inclusion ordering), optimality is not preserved by composition. Consider, for
instance, y=x; z=x-y; with the precondition that x ∈ [0, 1]. The interval for z, obtained
from those for x and y by applying the rules of interval arithmetics, is [−1, 1]; yet, the
optimal interval is {0}. The reason for this loss of precision is that while the computation

∗VERIMAG is a joint laboratory of CNRS, Université Joseph Fourier and Grenoble-INP.

1

of the interval for z from those for x and y is locally optimal, it does not take into account
the relationship between x and y.

Our initial target application was programs written in synchronous data-flow languages
such as Lustre Caspi et al. [1987], Simulink or Scade Caspi et al. [2003]. In these
languages, operators are built out of elementary operators, introducing many intermediate
variables. Successions of small elementary operations may also occur when analyzing low-
level code, e.g. assembly Gopan and Reps [2007], Balakrishnan and Reps [2004] or Java
bytecode, and they hamper certain static analysis methods due to the reduced size of
the code window used for transfer functions Logozzo and Fähndrich [2008]. Analyzing
floating-point code at the assembly level may actually be easier than analyzing higher-level
programs, since the semantics of elementary floating-point operations are usually fairly
well-defined while the definition and compiling processes of higher-level languages may
leave significant leeway Monniaux [2008b]. It is therefore important, for such applications,
to be able to analyze program blocks as a whole and not as a succession of independent
operations.

In the above simple example, we could obtain better precision by using a relational
abstract domain linking the inputs and the outputs of the procedure. In general, though,
the code fragment may contain tests and loops (or, more generally, semantic fixed points),
which complicates the matter (see Sec. 3.4.3 for a short example whose semantics involves
a fixed point).

Ideally, for better precision, the analyzer should provide a (hopefully optimal) abstract
transfer function for each possible program block (fragment of code without loops). How-
ever, the designers of the analyzer cannot include a hand-coded function for each possible
program block to be analyzed, if only because the number of possible program blocks is
infinite. Also, the user might want to use abstract domains not pre-programmed in the
analyzer. We would like that abstract transfer functions be obtained automatically from
the definition of the abstract domain and the source code (or semantics) of the program
block.

In this article, we show how to automatically transform program blocks without loops
into an effective implementation of their optimal abstract transfer function. This optimal
transformer maps constraints on the block inputs to the tightest possible constraints on
the block output. This transformation is parametric in the abstract domain used: it
takes as inputs both the program block and a specification of the abstract domain, and
outputs the corresponding transfer function. The same method applies for both forward
and backward analysis by abstract interpretation, though, for the sake of simplicity, the
article focuses on forward analysis.

For short, our analysis considers the exact transition relation of loop-free program
fragments as an existentially quantified formula. From that formula, it is able to com-
pute the optimal abstract transformer for the fragment with respect to a user-specified
abstract domain, or even for the least invariant of the fragment in that abstract domain.
The user may specify any abstract domain in the wide class of template linear abstract
domains Colon et al. [2003].

Our method is based upon quantifier elimination in the theory of rational linear arith-
metic. It has long been known that this theory admitted quantifier elimination, but
algorithms remained mostly impractical. Recent improvements in SAT/SMT solving tech-
niques have made it possible to perform quantifier elimination on larger formulas Monniaux
[2008a].

We also show how to obtain transfer functions for loops, which are also optimal in
a certain sense (they compute the least inductive invariant representable in the abstract

2

domain).

In the beginning of the article, we focus on simple forward analysis of loop-free blocks,
then single loops (or single fixed points), for programs dealing with real or rational vari-
ables. The same methods apply to integer variables, at the expense of some added abstrac-
tion. We show in later sections how to deal with various constructions, including nested
loops and arbitrary control-flow graphs, recursive procedures and floating-point computa-
tions. Our focus was indeed, originally, synchronous data-flow programs operating over
real (for modeling) or floating-point (for execution) variables, but we realized that the
same technique could apply to a wider spectrum of languages.

Our analysis goes further than most constraint-based static analysis Sankaranarayanan
et al. [2005, 2004] in that it computes the general form of the optimal postcondition or least
inductive invariant as a function of the precondition parameters, not just for specific values
of those parameters. For a simple example, if the procedure is invoked on the interval
domain and the z := x + y operation, our transformation outputs zmin := xmin + ymin

and zmax := xmax + ymax. This is especially important since the function mapping the
input parameters to the output parameters may be non convex (a simple example is the
abstraction of the absolute value with respect to intervals from Sec. 3.2).

In the above case, the abstract transfer function is linear, but in general it is only
piecewise linear. It can be expressed as a simple executable program, consisting only of
tests and assignments (see an example at the end of Sec. 3.2). The analysis thus amounts
to a program transformation from the concrete to the abstract program. An advantage
of obtaining the abstract transfer functions in such a form is that it can be compiled
as an ordinary program and loaded back into the analyzer for maximal efficiency. The
abstract transfer function obtained by the analysis of a block may be retained for future
use, since it is valid in any context. An application of our transformation is therefore
modular interprocedural analysis.

We have so far considered analyzes where the constraints apply to program variables
at a given control point. It is also possible to consider relationships between variables
at two different control points, especially the entry and exit of procedures. This way, we
can also analyze programs with recursive procedures, including the famous McCarthy 91
function Manna and McCarthy [1969], Manna and Pnueli [1970].

Contrary to most analyzes of numerical properties based on abstract interpretation,
our analysis for loops does not use widening operators for finding over-approximations of
least fixed points. For instance, the set of reachable states at the start of a loop (a loop
invariant) is expressed as the least fixed point of the transition relation that contains
the input precondition. In widening-based analyzes, over-approximations of the set of
reachable states after 1, 2, 3, etc. loop iterations are computed, and the analyzer tries to
extrapolate these results in order to obtain some “candidate” for being a loop invariant.
For instance, an abstract analyzer based on intervals may obtain [1, 2], [1, 3], [1, 5], and,
because the lower bound of the interval stays stable and the upper bound is unstable, may
try [1,+∞[. If [1,+∞[is stable under the transition relation, then it is a safe invariant,
otherwise further widening is needed. Widenings are a major source of imprecision in
many static analyzers and their design is somewhat of a “black art”. While the soundness
of the transition relation and the stability test ensure that the analysis results are correct,
and the correct construction of the widening operator ensures termination, the quality of
the over-approximation obtained (whether it is close to the actual least invariant or far
from it) depends on various factors. In contrast, our method is guaranteed to yield least
inductive invariants.

In Sec. 2, we recall facts of formulas built out of linear inequalities. In Sec. 3.1 we

3

define the class of abstract domains that we consider. In Sec. 3.2, we show how we obtain
optimal abstract transformers as logical formulas, and in Sec. 3.3 how to compile these
formulas into executable functions. In Sec. 3.4 we show how the same process applies to
least inductive invariants. In Sec. 4 we show how to deal with various extensions to the
admissible domains and operations: how to allow infinite values for constraint parameters,
how to allow some class of non-convex domains, how to partition the state space, and how
to model floating-point computations using real numbers. In Sec. 5 we shall see how to
deal with recursive procedures and arbitrary control-flow graphs.

2 Linear formulas

We consider logical formulas built out of linear inequalities. A linear expression is a sum
a1v1 + · · ·+anvn where the ai ∈ Q and the vi are variables. Q denotes the field of rational
numbers, R the field of real numbers. A linear inequality is of the form l > 0 or l ≥ 0,
where l is a linear expression. Linear inequalities can always be scaled so that they use
only integer coefficients, as opposed to rationals. a ≤ b ≤ c is shorthand for a ≤ b∧ b ≤ c.
Unquantified formulas are built out of atomic formulas (linear inequalities) using logical
connectives ∧ and ∨. l = 0 means l ≥ 0 ∧ l ≤ 0. A formula is said to be in disjunctive
normal form (DNF) if it is written as a disjunction C1 ∨ · · · ∨Cn, where each of the Ci is
a conjunction Ai,1 ∧ · · · ∧ Ai,nj where the Ai,j are atomic formulas or negations thereof.
Quantified formulas are built out of the same, plus the universal and existential quantifiers
∀ and ∃.

The Q-models (respectively, R-models) of a formula F are mappings m from the free
variables of F to Q (respectively, R) such that m verifies the formula; we then note m |= F .
F is said to be true if every assignment is a model (a model is a mapping from the set
of variables to Q or R), satisfiable if it has a model, and false or unsatisfiable otherwise.
Truth and satisfiability are equivalent if F has no free variables.

We say that two formulas F and G with the same free variables are equivalent, noted
F ≡ G, if they have the same models. Any formula is equivalent to a formula in disjunctive
normal form, which can be obtained by repeated application of distributivity: a∧ (b∨c) ≡
(a∧b)∨(a∧c). F is said to imply G, noted F V G, if all models of F are models of G. We
say that F and G are equivalent modulo assumptions T , noted F ≡T G, if F ∧T ≡ G∧T ;
we define similarly F VT G as F ∧ T V G ∧ T . Equivalences modulo assumptions are
often used when simplifying formulas. For instance, if we know that a certain program is
always used in a context where T

M= a < b holds, and program analysis, at some point,
generates the formula F

M= ∃x a ≤ x ≤ b, then this formula can be simplified to G
M= true.

The theory of linear inequalities admits quantifier elimination: for any formula F
with quantifiers, there exists a formula G without quantifiers such that G ≡ F . There
exist several algorithms that compute such a G from F . Ferrante and Rackoff [1975]
proposed a doubly exponential method [Bradley and Manna, 2007, Sec. 7.3], which
is too slow in practice; we have since proposed another algorithm that takes advantage
of the recent improvements in satisfiability testing technology. Monniaux [2008a] Our
algorithm also allows conversion to disjunctive normal form, and formula simplification
modulo assumptions.

4

3 Optimal Abstraction over Template Linear Constraint Do-
mains

3.1 Template Linear Constraint Domains

Let F be a formula over linear inequalities. We call F a domain definition formula if the
free variables of F split into n parameters p1, . . . , pn and m state variables s1, . . . , sm.
We note γF : Qn → P(Qm) defined by γF (~p) = {~s ∈ Qm | (~p,~s) |= F}. As an ex-
ample, the interval abstract domain for 3 program variables s1, s2, s3 uses 6 parameters
m1,M1,m2,M2,m3,M3; the formula is m1 ≤ s1 ≤M1 ∧m2 ≤ s2 ≤M2 ∧m3 ≤ s3 ≤M3.

In this section, we focus on the case where F is a conjunction L1(s1, . . . , sm) ≤ p1 ∧
· · · ∧Ln(s1, . . . , sm) ≤ pn of linear inequalities whose left-hand side is fixed and the right-
hand sides are parameters. Such conjunctions define the class of template linear constraint
domains Colon et al. [2003]. Particular examples of abstract domains in this class are:

• the intervals (for any variable s, consider the linear forms s and −s);

• the difference bound matrices (for any variables s1 and s2, consider the linear form
s1 − s2);

• the octagon abstract domain (for any variables s1 and s2, distinct or not, consider
the linear forms ±s1 ± s2) Miné [2001]

• the octahedra (for any tuple of variables s1, . . . , sn, consider the linear forms±s1 · · ·±
sn). Clarisó and Cortadella [2004]

Remark that γF is in general not injective, and thus one should distinguish the syntax
of the values of the abstract domain (the vector of parameters ~p) and their semantics
γF (~p). As an example, if one takes F to be s1 ≤ p1 ∧ s2 ≤ p2 ∧ s1 + s2 ≤ p3, then
both (p1, p2, p3) = (1, 1, 2) and (1, 1, 3) define the same set for state variables s1 and s2.
If ~u ≤ ~v coordinate-wise, then γF (~u) ⊆ γF (~v), but the converse is not true due to the
non-uniqueness of the syntactic form.

Take any nonempty set of states W ⊆ Qm. Take for all i = 1, . . . ,m: pi = sup~s∈W Li(~s).
Clearly, W ⊆ γF (p1, . . . , pm), and in fact ~p is such that γF (~p) is the least solution to this
inclusion. pi belongs in general to R ∪ {+∞}, not necessarily to Q ∪ {+∞}. (for in-
stance, if W = {s1 | s2

1 ≤ 2} and L1 = s1, then p1 =
√

2). We have therefore defined an
αF : P(Rm)→ {⊥}∪ (R∪{+∞})n, and (αF , γF) form a Galois connection: αF maps any
set to its best upper-approximation. The fixed points of αF ◦γF are the normal forms. For
instance, s1 ≤ 1∧s2 ≤ 1∧s1 +s2 ≤ 2 is in normal form, while s1 ≤ 1∧s2 ≤ 1∧s1 +s2 ≤ 3
is not.

3.2 Optimal Abstract Transformers for Program Semantics

We shall consider the input-output relationships of programs with rational or real variables.
We first narrow the problem to programs without loops and consider programs consisting
in linear arithmetic assignments, linear tests, and sequences. Noting a, b, . . . the values of
program variables a, b . . . at the beginning of execution and a′, b′, . . . the output values, the
semantics of a program P is defined as a formula JP K such that (a, b, . . . , a′, b′, . . .) |= P if
and only if the memory state (a′, b′, . . .) can be reached at the end of an execution starting
in memory state (a, b, . . .):

Arithmetic Ja := L(a, b, . . .)+KKF
M= a′ = L(a, b, . . .)+K∧b′ = b∧c′ = c∧ . . . where K

is a real constant and L is a linear form, and b, c, d . . . are all the variables except a;

5

Tests Jif c then p1 else p2K
M= (c ∧ Jp1KF) ∨ (¬c ∧ Jp2KF);

Non deterministic choice Ja := randomK M= b′ = b ∧ c′ = c ∧ . . . , for all variables
except a;

Failure JfailK M= false;

Skip JskipK M= a′ = a ∧ b′ = b ∧ c′ = c ∧ . . .

Sequence JP1;P2KF
M= ∃a′′, b′′, . . . f1 ∧ f2 where f1 is JP1KF where a′ has been replaced

by a′′, b′ by b′′ etc., f2 is JP2KF where a has been replaced by a′′, b by b′′ etc.

In addition to linear inequalities and conjunctions, such formulas contain disjunctions
(due to tests and multiple branches) and existential quantifiers (due to sequential compo-
sition).

Note that so far, we have represented the concrete denotational semantics exactly. This
representation of the transition relation using existentially quantified formulas is evidently
as expressive as a representation by a disjunction of convex polyhedra (the latter can be
obtained from the former by quantifier elimination and conversion to disjunctive normal
form), but is more compact in general. This is why we defer quantifier elimination to the
point where we compute the abstract transfer relation.

Consider now a domain definition formula F
M= L1(s1, s2, . . .) ≤ p1∧· · ·∧Ln(s1, s2, . . .) ≤

pn on the program inputs, with parameters ~p and free variables ~s, and another F ′ M=
L′1(s

′
1, s

′
2, . . .) ≤ p′1 ∧ · · · ∧ L′n(s′1, s

′
2, . . .) ≤ p′n on the program outputs, with parame-

ters ~p′ and free variables ~s′. Sound forward program analysis consists in deriving a safe
post-condition from a precondition: starting from any state verifying the precondition,
one should end up in the post-condition. Using our notations, the soundness condition is
written

∀~s, ~s′ F ∧ JP K =⇒ F ′ (1)

The free variables of this relation are ~p and ~p′: the formula links the value of the parameters
of the input constraints to admissible values of the parameters for the output constraints.
Note that this soundness condition can be written as a universally quantified formula, with
no quantifier alternation. Alternatively, it can be written as a conjunction of correctness
conditions for each output constraint parameter: C ′

i
M= ∀~s, ~s′ F ∧ JP K =⇒ L′i(~s′) ≤ p′i.

Let us take a simple example: if P is the program instruction z := x + y, F
M=

x ≤ p1 ∧ y ≤ p2, F ′ M= z ≤ p′1, then JP K M= z′ = x + y, and the soundness condition
is ∀x, y, z (x ≤ p1 ∧ y ≤ p2 ∧ z = x + y =⇒ z ≤ p′1). Remark that this soundness
condition is equivalent to a formula without quantifiers p′1 ≥ p1 + p2, which may be
obtained through quantifier elimination. Remark also that while any value for p′1 fulfilling
this condition is sound (for instance, p′1 = 1000 for p1 = p2 = 1), only one value is optimal
(p′1 = 2 for p1 = p2 = 1). An optimal value for the output parameter p′i is defined by
O′

i
M= C ′

i ∧ ∀q′i (C ′
i[q

′
i/p′i] =⇒ p′i ≤ q′i). Again, quantifier elimination can be applied; on

our simple example, it yields p′1 = p1 + p2.
If there are n input constraint parameters p1, . . . , pn, then the optimal value for each

output constraint parameter p′i is defined by a formula O′
i with n + 1 free variables

p1, . . . , pn, p′i. This formula defines a partial function from Qn to Q, in the mathemat-
ical sense: for each choice of p1, . . . , pn, there exist at most a single p′i. The values of
p1, . . . , pn for which there exists a corresponding p′i make up the domain of validity of
the abstract transfer function. Indeed, this function is in general not defined everywhere;
consider for instance the program:

6

if (x >= 10) { y = random; } else { y = 0; }

If F = x ≤ p1 and F ′ = y ≤ p′1, then O′
1 ≡ p1 < 10 ∧ p′1 = 0, and the function is defined

only for p1 < 10.
At this point, we have a characterization of the optimal abstract transformer corre-

sponding to a program fragment P and the input and output domain definition formulas
as n formulas (where n is the number of output parameters) O′

i each defining a function
(in the mathematical sense) mapping the input parameters ~p to the output parameter p′i.

Another example: the absolute value function y := |x|, again with the interval abstract
domain. The semantics of the operation is (x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = −x); the
precondition is x ∈ [xmin, xmax] and the post-condition is y ∈ [ymin, ymax]. Acceptable
values for (ymin, ymax) are characterized by formula

G
M= ∀x xmin ≤ x ≤ xmax =⇒ ymin ≤ |x| ≤ ymax (2)

The optimal value for ymax is defined by G ∧ ∀y′max G[y′max/ymax] =⇒ ymax ≤ y′max.
Quantifier elimination over this last formula gives as characterization for the least, optimal,
value for ymax:

(xmin + xmax ≥ 0 ∧ ymax = xmax)∨
(xmin + xmax < 0 ∧ ymax = −xmin). (3)

We shall see in the next sub-section that such a formula can be automatically compiled
into code such as:

if (xmin + xmax >= 0) {
ymax = xmax;

} else {
ymax = -xmin;

}

3.3 Generation of the Implementation of the Abstract Domain

Consider formula 3, defining an abstract transfer function. On this disjunctive normal form
we see that the function we have defined is piecewise linear : several regions of the range of
the input parameters are distinguished (here, xmin + xmax < 0 and xmin + xmax ≥ 0), and
on each of these regions, the output parameter is a linear function of the input parameters.
Given a disjunct (such as ymax = −xmin ∧ xmin + xmax < 0), the domain of validity of the
disjunct can be obtained by existential quantifier elimination over the result variable (here
∃ymax (ymax = −xmin ∧ xmin + xmax < 0)). The union of the domains of validity of the
disjuncts is the domain of validity of the full formula. The domains of validity of distinct
disjuncts can overlap, but in this case, since O′

i defines a function in the mathematical
sense, the functions defined by such disjuncts coincide on their overlapping domains of
validity.

This suggests a first algorithm for conversion to an executable form:

1. Put O′
i into quantifier-free, disjunctive normal form C1 ∧ · · · ∧ Cn.

2. For each disjunct Ci, obtain the validity domain Vi as a conjunction of linear in-
equalities and solve for p′i (obtain p′i as a linear function vi of the p1, . . . , pn).

3. Output the result as a cascade of if-then-else and assignments, as in the example at
the end of Sec. 3.2.

7

Algorithm 1 ToITEtree(F, z, T): turn a formula defining z as a function of the other
free variables of F into a tree of if-then-else constructs, assuming that T holds.

D(= C1 ∧ · · · ∧ Cn)← QElimDNFModulo({}, F, T)
for all Ci ∈ D do

Pi ← QElimDNFModulo(z, F, T)
end for
P ← Predicates(P1, . . . , Pn)
if P = ∅ then

Ensure: ∃z F is always true
O ← Solve(D, z)

else
K ← Choose(P)
O ← IfThenElse(K,ToITEtree(F, z, T ∧K),ToITEtree(F, z, T ∧ ¬K))

end if

An if-then-else cascade may be inefficient, since identical conditions may have to be
tested several times. We could of course factor out all conditions and assign them to
Boolean variables, but then, some of the tests performed may actually not be needed. We
therefore propose an algorithm for building an if-then-else tree. The idea of the algorithm
is as follows:

• Each path in the if-then-else tree corresponds to a conjunction C of conditions (if
one goes through the “if” branch of if (a) and the “else” branch of if (b), then
the path corresponds to a ∧ ¬b).

• The formula O′
i is simplified relatively to C, a process that prunes out conditions

that are always or never satisfied when C holds.

• If the path is deep enough, then the simplified formula becomes a conjunction.
One then solves this conjunction to obtain the computed variable (here, ymax) as a
function.

Our algorithm ToITEtree(F, z, T) (Alg. 1) uses a function QElimDNFModulo
(~v, F, T) that, given a possibly empty vector of variables ~v, a formula F and a formula T ,
outputs a quantifier-free formula F ′ in disjunctive normal form such that F ′ ≡T ∃~v F and
no useless predicates are used. Predicates(F) returns the set of atomic predicates of F .
Solve(D, z) solves a minimal disjunction D of inequalities for variable z, assuming that
there is at most one solution for z for each choice of the other variables; one simple way
to do that is to look for any constraint of the form z ≥ L or z ≤ L and output z = L.
Choose(P) chooses any predicate in P (one good heuristic seems to be to choose the
most frequent in P1, . . . , Pn).

Let us take, as a simple example, formula 3. We wish to obtain ymax as a function of
xmin and xmax, so in the algorithm ToITEtree we set z

M= ymax. C1 is the first disjunct
xmin +xmax ≥ 0∧ymax = xmax, C2 is the second disjunct xmin +xmax < 0∧ymax = −xmin.
We project C1 and C2 parallel to ymax, obtaining respectively P1 = (xmin +xmax ≥ 0) and
P2 = (xmin + xmax < 0). We choose K to be the predicate xmin + xmax ≥ 0 (in this case,
the choice does not matter, since P1 and P2 are the negation of each other).

• The first recursive call to ToITEtree is made in the context of T
M= (xmin +xmax ≥

0). Obviously, F ∧ T ≡ (ymax = xmax) ∧ T and thus (∃ymaxF) ∧ T ≡ T .

8

QElimDNFModulo(ymax, F, T) will then simply output the formula “true”. It
then suffices to solve for ymax in ymax = xmax. This yields the formula for computing
the correct value of ymax in the cases where xmin + xmax ≥ 0.

• The second recursive call is made in the context of T
M= (xmin +xmax < 0. The result

is ymax = −xmin, the formula for computing the correct value of ymax in the cases
where xmin + xmax < 0.

These two results are then reassembled into an if-then-else statement, yielding the program
at the end of §3.2.

The algorithm terminates because paths of depth d in the tree of recursive calls cor-
respond to truth assignments to d atomic predicates among those found in the domains
of validity of the elements of the disjunctive normal form of F . Since there is only a
finite number of such predicates, d cannot exceed that number. A single predicate cannot
be assigned truth values twice along the same path because the simplification process in
QElimDNFModulo erases this predicate from the formula.

3.4 Least Inductive Invariants

We have so far considered programs without loops. We shall now see that not only can we
compute the optimal abstract post-condition of a block as a simple, executable function
of the parameters of the precondition, but we can also compute the parameters of the
least inductive invariant of a program block that is of the form specified by the abstract
domain.1 Beware that this least inductive invariant found in the abstract domain is in
general different from the least element of the abstract domain that includes the least
inductive invariant of the system (Fig. 1).

3.4.1 Stability Inequalities

Consider a program fragment: while (c) { p; }. We have domain definition formulas
F

M= L1(s1, . . . , sm) ≤ p1 ∧ · · · ∧ Ln(s1, . . . , sm) ≤ pn for the precondition of the program
fragment , and F ′ M= L′1(s1, . . . , sm) ≤ p′1 ∧ · · · ∧ L′n(s1, . . . , sm) ≤ p′n for the invariant.

Define G = JcK∧JpK. G is a formula whose free variables are s1, . . . , sm, s′1, . . . , s
′
m such

that (s1, . . . , sm, s′1, . . . , s
′
m) |= G if and only if the state (s′1, . . . , s

′
m) can be reached from

the state (s1, . . . , sm) in exactly one iteration of the loop. A set W ⊆ Qm is said to be an
inductive invariant for the head of the loop if ∀~s ∈ W,∀~s′ (~s, ~s′) |= G =⇒ ~s′ ∈ W . We
seek inductive invariants of the shape defined by F ′, thus solutions for ~p′ of the stability
condition:

∀~s, ~s′ F ′ ∧G =⇒ F ′[~s′/~s]. (4)

Not only do we want an inductive invariant, but we also want the initial states of the
program to be included in it. The condition then becomes

H
M= (∀~s, F =⇒ F ′) ∧ (∀~s, ~s′ F ′ ∧G =⇒ F ′[~s′/~s]) (5)

This formula links the values of the input constraint parameters p1, . . . , pn to acceptable
values of the invariant constraint parameters p′1, . . . , p

′
n. In the same way that our sound-

ness or correctness condition on abstract transformers allowed any sound post-condition,
1In order to specify the least invariant, we would have to quantify over all sets of states, then filter

those which are inductive invariants. This is second-order quantification, which we cannot handle. By
restricting ourselves to invariants of a certain shape, we replace it by first order quantification.

9

Figure 1: The least fixed point representable in the domain (lfp (α◦f◦γ)) is not necessarily
the least approximation of the least fixed point (α(lfp f)) inside the abstract domain. For
instance, if we take a program initialized by x ∈ [−1, 1] and y = 0, and at each iteration, we
rotate the point by 45◦, the least invariant is an 8-point star, and the best approximation
inside the abstract domain of intervals is the square [−1, 1]2. However, this square is not
an inductive invariant: no rectangle (product of intervals) is stable under the iterations,
thus there is no abstract inductive invariant.

whether optimal or not, this formula allows any inductive invariant of the required shape
as long as it contains the precondition, not just the least one.

The intersection of sets defined by ~p′1 and ~p′2 is defined by min(~p′1, ~p′2). More generally,
the intersection of a family of sets, unbounded yet closed under intersection, defined by
~p′ ∈ Z is defined by min{p′ | p′ ∈ Z}. We take for Z the set of acceptable parameters ~p′

such that ~p′ defines an inductive invariant and ∀~s, F =⇒ F ′; that is, we consider only
inductive invariants that contain the set I = {~s | F} of precondition states.

We deduce that p′i is uniquely defined by: p′i = min(∃p′1, . . . , p′i−1, p
′
i+1, . . . , p

′
n H)

which can be rewritten as

(∃p′1, . . . , p′i−1, p
′
i+1, . . . , p

′
n H) ∧ (∀~q′ H[~q′/~p′] =⇒ p′i ≤ q′i) (6)

The free variables of this formula are p1, . . . , pn, p′i. This formula defines a function (in the
mathematical sense) defining p′i from p1, . . . , pn. As before, this function can be compiled
to an executable version using cascades or trees of tests.

3.4.2 Simple Loop Example

To show how the method operates in practice, let us consider first a very simple example
(something happens is a nondeterministic choice):

int i=0;
while (i <= n) {
if (something_happens) {
i=i+1;

10

if (i == n) {
i=0;

}
}

}

Let us abstract i at the head of the loop using an interval [imin, imax]. For simplicity,
we consider the case where the loop is at least entered once, and thus i = 0 belongs to
the invariant. For better precision, we model each comparison x 6= y over the integers as
x >= y + 1 ∨ x <= y − 1; similar transformations apply for other operators. The formula
expressing that such an interval is an inductive invariant is:

imin ≤ 0 ∧ 0 ≤ imax ∧ ∀i∀i′ ((imin ≤ i ∧ i ≤ imax∧
(((i + 1 ≤ n− 1 ∨ i + 1 ≥ n + 1) ∧ i′ = i + 1)∨

(i + 1 = n + 1 ∧ i′ = 0) ∨ i′ = i)) =⇒ (imin ≤ i′ ∧ i′ ≤ imax)) (7)

Quantifier elimination produces:

(imin ≤ 0 ∧ imax ≥ 0 ∧ imax < n ∧ −imin + n− 2 < 0)∨
(imin ≤ 0 ∧ imax ≥ 0 ∧ imax − n + 1 ≥ 0 ∧ imax < n) (8)

The formulas defining optimal imin and imax are:

imin ≥ 0 ∧ imin ≤ 0 ∧ n > 0 (9)
(imax = 0 ∧ ∧n > 0 ∧ n < 2) ∨ (imax = n− 1 ∧ imax ≥ 1) (10)

We note that this invariant is only valid for n > 0, which is unsurprising given that we
specifically looked for invariants containing the precondition i = 0. The output abstract
transfer function is therefore:

if (n <= 0) {
fail();

} else {
iMin = 0;
if (n < 2) {
iMax = 0;

} else /* n >= 2 */
iMax = n-1;

}
}

The case disjunction n < 2 looks unnecessary, but is a side effect of the use of rational
numbers to model a problem over the integers. The resulting abstract transfer function
is optimal, but on such a simple case, one could have obtained the same using polyhedra
Cousot and Halbwachs [1978] or octagons Miné [2001].

Let us now consider the same program, simply replacing n by the constant 20. All
implementations of intervals (and thus of octagons and polyhedra, since we only have one
variable), will overshoot the imax = 19 target when using the traditional widening and
narrowing strategies: they will compute i ∈ [0, 0], then ∈ [0, 1], ∈ [0, 2] and widen to
[0,+∞[, and narrowing will not reduce the interval. Even if we replaced i == 20 by i
>= 20, narrowing would still fail to reduce the interval due to the nondeterministic choice

11

since the concrete transfer function f , mapping sets of states at the head of the loop to
sets of states at the next iteration, is expansive: for all set of states W , W ⊆ f(W). This
is a well-known weakness of the widening/narrowing approach, and the workaround is a
syntactic trick known as widening up to or widening with thresholds: for all variables,
the constants to which it is compared are gathered and used as widening steps [Blanchet
et al., 2003, Sec. 7.1.2]. This syntactic approach fails if tests are more indirect, whereas
our semantic approach is not affected.

3.4.3 Synchronous Data Flow Example: Rate Limiter

To go back to the original problem of floating-point data in data-flow languages, let
us consider the following library block: a rate limiter. When compiled into C, such
a block in inserted in a reactive loop, as shown below, where assume(c) stands for
if (c) {} else {fail();}:

while (true) {
...
e1 = random(); assume(e1 >= e1min && e1 <= e1max);
e2 = random(); assume(e2 >= e2min && e2 <= e2max);
e3 = random(); assume(e3 >= e3min && e3 <= e3max);
olds1 = s1;
if (random) {
s1 = e3;

} else {
if (e1 - olds1 < -e2) {
s1 = olds1 - e2;

}
if (e1 - olds1 > e2) {
s1 = olds1 + e2;

}
}
...

}

We are interested in the input-output behavior of that block: obtain bounds on the
output s1 of the system as functions of bounds on the inputs (e1, e2, e3). Note that in
this case, s1, e1, e2, e3 are streams, not single scalars. One difficulty is that the s1 output
is memorized, so as to be used as an input to the next computation step. The semantics
of such a block is therefore expressed as a fixed point.

We wish to know the least inductive invariant of the form s1min ≤ s1 ≤ s1max under the
assumption that e1min ≤ e1max ∧ e2min ≤ e2max ∧ e3min ≤ e3max. The stability condition
yields, after quantifier elimination and projection on s1max the condition s1max ≥ e1max ∧
s1max ≥ e3max. Minimization then yields an expression that can be compiled to an if-then-
else tree:

if (e1max > e3max) {
s1max = e1max;

} else {
s1max = e3max;

}

12

This result, automatically obtained, coincides with the intuition that a rate limiter
(at least, one implemented with exact arithmetic) should not change the range of the
signal that it processes. This program fragment has a rather more complex behavior if
all variables and operations are IEEE-754 floating-point, since rounding errors introduce
slight differences of regimes between ranges of inputs (Sec. 4.4, 6). Rounding errors in
the program to be analyzed introduce difficulties for analyzes using widenings, since in-
variant candidates are likely to be “almost stable”, but not truly stable, because of these
errors. Again, there exist workarounds so that widening-based approaches can still operate
[Blanchet et al., 2003, Sec. 7.1.4].

4 Extensions to the Admissible Domains and Operations

The class of domains and program constructs of the preceding section may seem too
limited. We shall see here a few extensions.

4.1 Infinities

Consider the interval abstract domain, defined by x ≤ p2 ∧ −x ≤ p1. The techniques
explained in Sec. 3.1 allow only finite bounds. Yet, it makes sense that p1 and p2 could be
equal to +∞ so as to represent infinite intervals. This can be easily achieved by a minor
alteration to our definitions. Each parameter pi is replaced by two parameters pb

i and
p∞i . p∞i is constrained to be in {0, 1} (if the quantifier elimination procedure in use allows
Boolean variables, then p∞i can be taken as a Boolean variable); p∞i = 0 means that pi is
finite and equal to pb

i , p∞i = 1 means pi = +∞. Li ≤ pi becomes (p∞i > 0) ∨ (Li ≤ pb
i),

Li < pi becomes (p∞i > 0) ∨ (Li < pb
i). After this rewriting, all formulas are formulas

of the theory of linear inequalities without infinities and are amenable to the appropriate
algorithms.

4.2 Non-Convex Domains

Section 3.1 constrains formulas to be conjunctions of inequalities of the form Li ≤ pi.
What happens if we consider formulas that may contain disjunctions?

The template linear constraint domains of section 3.1 have a very important property:
they are closed under (infinite) intersection; that is, if we have a family ~p ∈W , then there
exist p0 such that

⋂
~p∈W γF (~p) = γF (~p0) (besides, p0 = inf{~p | ~p ∈ W}). This is what

enables us to request the least element that contains the exact post-condition, or the least
inductive invariant in the domain: we take the intersection of all acceptable elements.

Yet, if we allow non-convex domains, there does not necessarily exist a least element
γF (~p) such that S ⊆ γF (~p). Consider for instance S = {0, 1, 2} and F representing unions
of two intervals ((−x ≤ p1 ∧ x ≤ p2) ∨ (−x ≤ p3 ∧ x ≤ p4)) ∧ p2 ≤ p3. There are two,
incomparable, minimal elements of the form γF (~p): p1 = p2 = 0 ∧ p3 = −1 ∧ p4 = 2 and
p1 = 0 ∧ p2 = 1 ∧ p3 = −2 ∧ p4 = 2.

We consider formulas F built out of linear inequalities Li(s1, . . . , sn) ≤ pi as atoms,
conjunctions, and disjunctions. By induction on the structure of F , we can show that
γF : (R ∪ {−∞})n → P(Rn) is inf-continuous; that is, for any descending chain (~pi)i∈I

such that limi ~pi = ~p∞, then γF (~pi) is decreasing and
⋂

i∈I γF (~pi) = γF (~p∞). The property
is trivial for atomic formulas, and is conserved by greatest lower bounds (∧) as well as
binary least upper bounds (∨).

Let us consider a set S ⊆ P(Rn), stable under arbitrary intersection (or at least,
greatest lower bounds of descending chains). S can be for instance the set of invariants of

13

a relation, or the set of over-approximations of a set W . γ−1
F (S) is the set of suitable domain

parameters; for instance, it is the set of parameters representing inductive invariants of
the shape specified by F , or the set of representable over-approximations of W . γ−1

F (S) is
stable under greatest lower bounds of descending chains: take a descending chain (~pi)i∈I ,
then γF (limi ~pi) = ∩iγF (~pi) ∈ S by inf-continuity and stability of S. By Zorn’s lemma,
γ−1

F (S) has at least one minimal element.
Let P [~p] be a formula representing γ−1

F (S) (Sec. 3.1 proposes formulas defining safe
post-conditions and inductive invariants). The formula G[~p] M= P [~p] ∧ ∀~p′ P [~p′] ∧ ~p′ ≤
~p =⇒ ~p ≤ ~p′ defines the minimal elements of γ−1(S).

For instance, consider ~p = (a, b, c, d), F
M= (−x ≤ a ∧ x ≤ b) ∨ (−x ≤ c ∧ x ≤ d),

representing unions of two intervals [−a, b] ∪ [−c, d]. We want upper-approximations of
the set {0, 1, 3}; that is P [~p] M= ∀x (x = 0 ∨ x = 1 ∨ x = 3 =⇒ F [~p, x]). We add the
constraint that −a ≤ b∧ b ≤ −c∧−c ≤ d, so as not to obtain the same solutions twice (by
exchange of (a, b) and (c, d)) or solutions with empty intervals. By quantifier elimination
over G, we obtain (a = 0 ∧ b = 1 ∧ c = −3 ∧ d = 3) ∨ (a = 0 ∧ b = 0 ∧ c = −1 ∧ d = 3),
that is, either [0, 0] ∪ [1, 3] or [0, 1] ∪ [3, 3].

4.3 Domain Partitioning

Non-convex domains, in general, are not stable under intersections and thus “best ab-
straction” problems admit multiple solutions as minimal elements of the set of correct
abstractions. There are, however, non-convex abstract domains that are stable under
intersection and thus admit least elements as well as the template linear constraint do-
mains of Sec. 3.1: those defined by partitioning of the state space. Consider pairwise
disjoint subsets (Ci)i∈I of the state space Qm, and abstract domains stable under inter-
section (Si)i∈I , Si ⊆ P(Ci). Elements of the partitioned abstract domain are unions⋃

i∈I si where si ∈ Si. If (
⋃

i si,j])j∈J is a family of elements of the domain, then⋂
j∈J

(⋃
i∈I si,j]

)
=

⋃
i∈I

⋂
j∈J si,j ; that is, intersections are taken separately in each Ci.

Take a family (Fi[~p])i∈I of formulas defining template linear constraint domains (con-
junctions of linear inequalities Li(s1, . . . , sn) ≤ pi) and a family (Ci)i∈I of formulas such
that for all i and i′, Ci ∧ Ci′ is equivalent to false and C1 ∨ · · · ∨ Cl is equivalent to true.
F = (C1 ∧ F1) ∨ · · · ∨ (Cl ∧ Fl) then defines an an abstract domain such that γF is a
inf-morphism. All the techniques of Sec. 3.1 then apply.

4.4 Floating-Point Computations

Real-life programs do not operate on real numbers; they operate on fixed-point or floating-
point numbers. Floating point operations have few of the good algebraic properties of real
operations; yet, they constitute approximations of these real operations, and the rounding
error introduced can be bounded.

In IEEE floating-point IEE [1985], each atomic operation (noting ⊕, 	, ⊗, �, √
f

for operations so as to distinguish them from the operations +, −, ×, /, √ over the
reals) is mathematically defined as the image of the exact operation over the reals by a
rounding function.2 This rounding function, depending on user choice, maps each real
x to the nearest floating-point value rn(x) (round to nearest mode, with some resolution
mechanism for non representable values exactly in the middle of two floating-point values),

2We leave aside the peculiarities of some implementations, such as those of most C compilers over the
32-bit Intel platform where there are “extended precisions” types used for some temporary variables and
expressions can undergo double rounding. Monniaux [2008b]

14

r−∞(x) the greatest floating-point value less or equal to x (round toward −∞), r+∞(x)
the least floating-point value greater or equal to x (round toward +∞), r0(x) the floating-
point value of the same sign as x but whose magnitude is the greatest floating-point value
less or equal to |x| (round toward 0). If x is too large to be representable, r(x) = ±∞
depending on the size of x

The semantics of the rounding operation cannot be exactly represented inside the
theory of linear inequalities.3 As a consequence, we are forced to use an axiomatic over-
approximation of that semantics: a formula linking a real number x to its rounded ver-
sion r(x).

Miné [2004] uses an inequality |r(x)− x| ≤ εrel · |x|+ εabs, where εrel is a relative error
and εabs is an absolute error, leaving aside the problem of overflows. The relative error is
due to rounding at the last binary digit of the significand, while the absolute error is due
to the fact that the range of exponents is finite and thus that there exists a least positive
floating-point number and some nonzero values get rounded to zero instead of incurring a
relative error.

Because our language for axioms is richer than the interval linear forms used by Miné,
we can express more precise properties of floating-point rounding. We recall briefly the
characteristics of IEEE-754 floating-point numbers. Nonzero floating point numbers are
represented as follows: x = ±s.m where 1 ≤ m < 2 is the mantissa or significand, which
has a fixed number p of bits, and s = 2e the scaling factor (Emin ≤ e ≤ Emax is the
exponent). The difference introduced by changing the last binary digit of the mantissa
is ±s.εlast where εlast = 2−(p−1): the unit in the last place or ulp. Such a decomposition
is unique for a given number if we impose that the leftmost digit of the mantissa is 1 —
this is called a normalized representation. Except in the case of numbers of very small
magnitude, IEEE-754 always works with normalized representations. There exists a least
positive normalized number mnormal and a least positive denormalized number mdenormal,
and the denormals are the multiples of mdenormal less than mnormal. All representable
numbers are multiples of mdenormal.

Consider for instance floating-point addition or subtraction x = ±a ± b. Suppose
that 0 ≤ x ≤ mnormal. a and b are multiples of mdenormal and thus a − b is exactly
represented as a denormalized number; therefore r(x) = x. If x > mnormal, then |r(x)−x| ≤
εrel.x. The cases for x ≤ 0 are symmetrical. We can therefore characterize r(x) − x
using linear inequalities through case analysis over x: Round+(a⊕ b, a + b) (respectively,
Round+(a	 b, a− b)) holds, where

Round+(r, x) M= (x ≤ mnormal ∧ r = x)
∨ (x > mnormal ∧ −εrel.x ≤ r − x ≤ εrel.x (11)

Round(r, x) M= (x = 0 ∧ r = 0)∨
(x > 0 ∧ r ≥ 0 ∧ Round+(r, x))∨

(x < 0 ∧ r ≤ 0 ∧ Round+(−r,−x)) (12)

To each floating-point expression e, we associated a “rounded-off” variable re, the
value of which we constrain using Round(re, e) or Round+(re, e). For instance, a expression
e = a⊕ b is replaced by a variable re, and the constraint Round+(re, a+ b) is added to the

3To be pedantic, since IEEE floating-point formats are of a finite size, the rounding operation could be
exactly represented by enumeration of all possible cases; this would anyway be impossible in practice due
to the enormous size of such an enumeration.

15

semantics. In the case of a compound expression e = ab + c, we introduce e1 = ab, and
we obtain Round+(re, re1 + c)∧Round(re1 , ab). If we know that the compiler uses a fused
multiply-add operator, we can use Round(re, ab + c) instead.

5 Complex control flow

We have so far assumed no procedure call, and at most one single loop. We shall see here
how to deal with arbitrary control flow graphs and call graph structures.

5.1 Loop Nests

In Sec. 3.4, we have explained how to abstract a single fixed point. The method can be
applied to multiple nested fixed points by replacing the inner fixed point by its abstraction.
For instance, assume the rate limiter of Sec. 3.4.3 is placed inside a larger loop. One may
replace it by its abstraction:

if (e1max > e3max) {
s1max = e1max;

} else {
s1max = e3max;

}
assume(s1 <= s1max);
/* and similar for s1min */

Alternatively, we can extend our framework to an arbitrary control flow graph with
nested loops, the semantics of which is expressed as a single fixed point. We may use the
same method as proposed by Gulwani et al. [2008, §2] and other authors. First, a cut set
of program locations is identified; any cycle in the control flow graph must go through at
least one program point in the cut set. In widening-based fixed point approximations, one
classically applies widening at each point in the cut set. A simple method for choosing a
cut set is to include all targets of back edges in a depth-first traversal of the control-flow
graph, starting from the start node; in the case of structured program, this amounts to
choosing the head node of each loop. This is not necessarily the best choice with respect
to precision, though [Gulwani et al., 2008, §2.3]; Bourdoncle [1992, Sec. 3.6] discusses
methods for choosing such as cut-set.

To each point in the cut set we associate an element in the abstract domain, pa-
rameterized by a number of variables. The values of these variables for all points in the
cut-set defines an invariant candidate. Since paths between elements of the cut sets cannot
contain a cycle, their denotational semantics can be expressed simply by an existentially
quantified formula. Possible paths between each source and destination elements in the
cut-set defined a stability condition (Formula 4). The conjunction of all these stability
conditions defines acceptable inductive invariants. As above, the least inductive invariant
is obtained by writing a minimization formula (Sec. 3.4).

Let us take a simple example:

i=0;
while(true) { /* A */
if (choice()) {
j=0;
while(j < i) { /* B */

16

/* something */
j=j+1;

}
i=i+1;
if (i==20) {
i=0;

}
} else {
/* something */

}
}

We choose program points A and B as cut-set. At program point A, we look for an
invariant of the form IA(i, j) M= imin,A ≤ i ≤ imax,A, and at program point B, for an
invariant of the form IB(i, j) M= imin,B ≤ i ≤ imax,B ∧ jmin ≤ j ≤ jmax∧ δmin ≤ i− j ≤ δmax

(a difference-bound invariant). The (somewhat edited for brevity) stability formula is
written:

∀j IA(0, j) ∧ ∀i∀j ((IB(i, j) ∧ j ≥ i ∧ (i + 1 ≤ 19∨
i + 1 = 20 ∨ i + 1 ≥ 21))⇒ If[i + 1 = 20, IA(0, j), IA(i + 1, j)])∧

∀i∀j (IA(i, j)⇒ IB(i, 0)) ∧ ∀i∀j ((IB(i, j) ∧ j < i)
⇒ IB(i, j + 1)) (13)

Replacing IA and IB into this formula, then applying quantifier elimination, we obtain
a formula defining all acceptable tuples (imin,A, imax,A, imin,B, imax,B, jmin, jmax, δmin, δmax).
Optimal values are then obtained by further quantifier elimination: imin,A = imin,B =
jmin = 0, imax,A = imax,B = 19, jmax = 20, δmin = 1, δmax = 19.

The same example can be solved by replacing 20 by another variable n as in Sec. 3.4.2.

5.2 Procedures and Recursive Procedures

We have so far considered abstractions of program blocks with respect to sets of program
states. A program block is considered as a transformer from a state of input program
states to the corresponding set of output program states. The analysis outputs a sound
and optimal (in a certain way) abstract transformer, mapping an abstract set of input
states to an abstract set of output states.

Assuming there are no recursive procedures, procedure calls can be easily dealt with.
We can simply inline the procedure at the point of call, as done in e.g. Astrée Blanchet
et al. [2002, 2003], Cousot et al. [2005]. Because inlining the concrete procedure may
lead to code blowup, we may also inline its abstraction, considered as a nondeterministic
program. Consider a complex procedure P with input variable x and output variable
x. We abstract the procedure automatically with respect to the interval domain for the
postcondition (mz ≤ z ≤Mz); suppose we obtain Mz := 1000; mz := x then we can replace
the function call by z <= 1000 && z >= x. This is a form of modular interprocedural
analysis: considering the call graph, we can abstract the leaf procedures, then those
calling the leaf procedures and so on. This method is however insufficient for dealing with
recursive procedures.

17

In order to analyze recursive procedures, we need to abstract not sets of states, but
sets of pairs of states, expressing the input-output relationships of procedures. In the case
of recursive procedures, these relationships are the least solution of a system of equations.

To take a concrete example, let us consider McCarthy’s famous “91 function” Manna
and McCarthy [1969], Manna and Pnueli [1970], which, non-obviously, returns 91 for all
inputs less than 101:

int M(int n) {
if (n > 100) {
return n-10;

} else {
return M(M(n+11));

}
}

The concrete semantics of that function is a relationship R between its input n and its
output r. It is the least solution of

R ⊇ {(n, r) ∈ Z2 | (n > 100 ∧ r = n− 10)∨
(n ≤ 100 ∧ ∃n2 ∈ Z(n + 11, n2) ∈ R ∧ (n2, r) ∈ R)} (14)

We look for a inductive invariant of the form I
M= ((n ≥ A) ∧ (r − n ≥ δ) ∧ (r −

n ≤ ∆)) ∨ ((n ≤ B) ∧ (r = C)), a non-convex domain (Sec. 4.2). By replacing R by
I into inclusion 14, and by universal quantification over n, r, n2, we obtain the set of
admissible parameters for invariants of this shape. By quantifier elimination, we obtain
(C = 91) ∧ (δ = ∆ = −10) ∧ (A = 101) ∧ (B = 100) within a fraction of a second using
Mjollnir (see Sec. 6).

In this case, there is a single acceptable inductive invariant of the suggested shape. In
general, there may be parameters to optimize, as explained in Sec. 3.4. The result of this
analysis is therefore a map from parameters defining sets of states to parameters defining
sets of pairs of states (the abstraction of a transition relation). This abstract transition
relation (a subset of X × Y where X and Y are the input and output state sets) can be
transformed into an abstract transformer in X] → Y] as explained in Sec. 3.2. Such an
interprocedural analysis may also be used to enhance the analysis of loops Martin et al.
[1998].

6 Implementations and Experiments

We have implemented the techniques of Sec. 3 in quantifier elimination packages, including
Mathematica4 and Reduce 3.85 + Redlog6 in addition to our own package, Mjoll-
nir Monniaux [2008a].7

As test cases, we took a library of operators for synchronous programming, having
streams of floating-point values as input and outputs. These operators are written in a
restricted subset of C and take as much as 20 lines. A front-end based on CIL Necula

4http://www.wolfram.com/
5http://www.uni-koeln.de/REDUCE/
6http://www.algebra.fim.uni-passau.de/∼redlog/
7Source code and GNU/Linux/IA32 binaries of this implementation are available from http://

www-verimag.imag.fr/∼monniaux/download/automatic abstraction.zip.

18

http://www.wolfram.com/
http://www.uni-koeln.de/REDUCE/
http://www.algebra.fim.uni-passau.de/~redlog/
http://www-verimag.imag.fr/~monniaux/download/automatic_abstraction.zip
http://www-verimag.imag.fr/~monniaux/download/automatic_abstraction.zip

et al. [2002] converts them into formulas, then these formulas are processed and the cor-
responding abstract transfer functions are pretty-printed. Since for our application, it is
important to bound numerical quantities, we chose the interval domain.

For instance, the rate limiter presented in Sec. 3.4.3 was extracted from that library.
Since this operator includes a memory (a variable whose value is retained from a call to
the operator to the next one), its data-flow semantics is expressed using a fixed-point.
When considered with real variables, the resulting expanded formula was approximately
1000 characters long, and with floating point variables approximately 8000 characters long.
Despite the length of these formulas, they can be processed by Mjollnir in a matter of
seconds. The result can then be saved once and for all.

Analyzers such as Astrée Blanchet et al. [2002, 2003], Cousot et al. [2005] must
have special knowledge about such operators, otherwise the analysis results are too coarse
(for instance, the intervals do not get stabilized at all). The Astrée development team
therefore had to provide specialized, hand-written analyzes. In contrast, all linear floating-
point operators in the library were analyzed within a fraction of a second using the method
in the present article, assuming that floating-point values in the source code were real
numbers. If one considered instead the abstraction of floating-point computations using
real numbers from Sec. 4.4, computation times did not exceed 17 seconds per operator;
the formulas produced are considerably more complex than in the real case. Note that
this computation is done once and for all for each operator; a static analyzer can therefore
cache this information for further use and need not recompute abstractions for library
functions or operators unless these functions are updated.

Our analyzer front-end currently cannot deal with non-numerical operations and data
structures (pointers, records, and arrays). It is therefore not yet capable of directly dealing
with the real control-command programs that e.g. Astrée accepts, which do not consist
purely of numerical operators. We plan to integrate our analysis method into a more
generic analyzer. Alternatively, we plan to adapt a front-end for synchronous programming
languages such as Simulink, a tool widely used by control/command engineers.

The correctness of the methods described in this article does not rely on any par-
ticularity of the quantifier elimination procedure used, provided one also has symbolic
computation procedures for e.g. putting formulas in disjunctive normal form and simpli-
fying them. The difference between the various quantifier elimination and simplification
procedures is efficiency; experiments showed that ours was vastly more efficient than the
others tested for this kind of application. For instance, our implementation was able to
complete the analysis of the rate limiter of Sec. 3.4.3, implemented over the reals, in 1.4 s,
and in 17 s with the same example over floating-point numbers, while Redlog took 182 s
for the former and could not finish the latter, and Mathematica could analyze neither
(out-of-memory). On other examples, our quantifier elimination procedure is faster than
the other ones, or can complete eliminations that the others cannot Monniaux [2008a].

7 Related Works

There is a sizeable amount of literature concerning relational numerical abstract domains;
that is, domains that express constraints between numerical variables. Convex polyhedra
were proposed in the 1970s Halbwachs [1979], Cousot and Halbwachs [1978], and there
have been since then many improvements to the technique; a bibliography was gathered
by Bagnara et al. [2006]. Algorithms on polyhedra are costly and thus a variety of domains
intermediate between simple interval analysis and convex polyhedra were proposed Miné
[2001], Clarisó and Cortadella [2004], Sankaranarayanan et al. [2005]. All these domains

19

compute invariants using a widening operator Cousot and Cousot [1976], Cousot and
Halbwachs [1978], Cousot and Cousot [1992]. There is, however, no guarantee that the
resulting invariant is the best representable in the abstract domain, even with the use of
narrowing iterations; this is one difference with our proposal, which computes the best
representable inductive invariant.

Another difference is that these domains are designed to work with numerical values
for the input constraints, thus the computation must be done for every value of the input
constraints parameters. Using simple program transformations, they may also apply to
symbolic input constraints (constraint parameters being taken as extra variables), but in
general this will lead to bad results; for instance, the input-output relationship for the rate
limiter of Sec. 3.4.3 is not convex, while numerical abstract domains in the literature are
convex. In comparison the algorithm in this article can be run once to obtain a formula
that gives the best invariant depending on the input constraints, allowing modular analysis.

Several methods have been proposed to synthesize invariants without using widening
operators Colon et al. [2003], Cousot [2005], Sankaranarayanan et al. [2004]. In common
with us, they express as constraints the conditions under which some parametric invariant
shape truly is an invariant, then they use some resolution or simplification technique over
those constraints. Again, these methods are designed for solving the problem for one given
set of constraints on the inputs, as opposed to finding a relation between the output or
fixed-point constraints and the input constraints. In some cases, the invariant may also
not be minimal.

Bagnara et al. [2005a,b] proposed improvements over the “classical” widenings on lin-
ear constraint domains Halbwachs [1979]. Gopan and Reps [2006] introduced “lookahead
widenings”: standard widening-based analysis is applied to a sequence of syntactic re-
strictions of the original program, which ultimately converges to the whole programs; the
idea is to distinguish phases or modes of operation in order to make the widening more
precise. Gonnord and Halbwachs [2006] have proposed acceleration techniques for linear
constraints. These do not replace widenings altogether, but they alleviate the need for
some of the costly workarounds to the imprecision introduced by widenings, such as de-
layed widening [Blanchet et al., 2003, Sec. 7.1.3]. These address a different problem from
ours. On the one hand, neither improved widenings nor acceleration guarantee that the
inductive invariant obtained at the end is the least one (indeed, they can yield the top
element >). 8 Furthermore, the invariant that these methods obtain is not parametric in
the precondition, contrary to the one that our method obtains. On the other hand, im-
proved widenings work regardless of the form of the transition relation, which our method
constrains to be piecewise linear. Some of the cited methods operate on general polyhe-
dra, while our method constrains the shape of the polyhedra that are found to a certain
template.

Gaubert et al. [2007], Gawlitza and Seidl [2007] proposed replacing the usual widen-
ing/narrowing iteration techniques by a policy iteration (or strategy iteration) approach.
Their approach converges on a fixed point, but not necessarily the least one. Their idea is
to replace computing the least fixed point of a complex abstract operator (the point-wise
minimum of a family of simpler operators) by a sequence of least fixed point computations
for these simple operators. Their technique anyway needs to compute these latter least
fixed points, and it is possible that our method can help in that respect.

Techniques using quantifier elimination for generating nonlinear invariants for pro-
grams using nonlinear arithmetic have also been proposed Kapur [2004] and shown capa-
ble of producing optimal invariants parameterized by input constraints Monniaux [2007].

8There exist exact acceleration techniques but these rather apply to discrete automata.

20

Quantifier elimination in the theory of real closed fields is, however, a very costly tech-
nique. Experimentally, the formulas generated by common implementations tend to grow
huge (due to difficult simplifications) and both time and space requirements grow very
fast with the number of variables. This is why we considered the linear case in the present
article.

Gulwani et al. [2008] have also proposed a method for generating linear invariants over
integer variables, using a class of templates. The methods described in the present article
can be applied to linear invariants over integer variables in two ways: either by abstract-
ing them using rationals (as in examples in Sec. 3.4.2, 5.1), either by replacing quantifier
elimination over rational linear arithmetic by quantifier elimination over linear integer
arithmetic, also known as Presburger arithmetic. Quantifier elimination over Presburger
arithmetic is however very expensive Fischer and Rabin [1974]. Gulwani et al. instead
chose to first consider integer variables as rationals, so as to be able to compute over
rational convex polyhedra, then bound variables and constraint parameters so as to model
them as finite bit vectors, finally obtaining a problem amenable to SAT solving. Program
variables are finite bit vectors in most industrial programming languages, and parameters
to useful invariants over integer variables are often small, thus their approach seems jus-
tified. We do not see, however, how their method could be applied to programs operating
over real or floating-point variables, which are the main motivation for the present article.

The idea of producing procedure summaries Sharir and Pnueli [1981] as formulas map-
ping input bounds to output bounds is not new. Rugina and Rinard [2005], in the context
of pointer analysis (with pointers considered as a base plus an integer offset), proposed a
reduction to linear programming. This reduction step, while sound, introduces an impre-
cision that is difficult to measure in advance; our method, in contrast, is guaranteed to
be “optimal” in a certain sense. Rugina and Rinard’s method, however, allows some non-
linear constructs in the program to be analyzed. Martin et al. [1998] proposed applying
interprocedural analysis to loops.

Seidl et al. [2007] also produce procedure summaries as numerical constraints. Our
procedure summaries are implementations of the corresponding abstract transformer over
some abstract domain, while theirs outputs a relationship between input and output con-
crete values. Their analysis considers a convex set of concrete input-output relationships,
expressed as a simplices, a restricted class of convex polyhedra. This restriction trades
precision for speed: the generator and constraint representations of simplices have approx-
imately the same size, while in general polyhedra exponential blowup can occur. Tests
by arbitrary linear constraints cannot be adequately represented within this framework.
Seidl et al. [2007, Sec. 4] propose deferring those constraints using auxiliary variables; this,
however, loses some precision. Their analysis and ours are therefore incomparable, since
they make different choices between precision and efficiency.

Lal et al. [2005] proposed an interprocedural analysis of numerical properties of func-
tions using weighted pushdown automata. The “weights” are taken in a finite height
abstract domain, while the domains we consider have infinite height.

In earlier works we have proposed a method for obtaining input-output relationships
of digital linear filters with memories, taking into account the effects of floating-point
computations Monniaux [2005]. This method computes an exact relationship between
bounds on the input and bounds on the output, without the need for an abstract domain
for expressing the local invariant; as such, for this class of problems, it is more precise
than the method from this article. This technique, however, cannot be easily generalized
to cases where the operator block contains tests.

21

8 Conclusion and Future Work

Writing static analyzers by hand has long been found tedious and error-prone. One may of
course prove an existing analyzer correct through assisted proof techniques, which removes
the possibility of soundness mistakes, at the expense of much increased tediousness. In this
article, we proposed instead effective methods to synthesize abstract domains by automatic
techniques. The advantages are twofold: new domains can be created much more easily,
since no programming is involved; a single procedure, testable on independent examples,
needs be written and possibly formally proved correct. To our knowledge, this is the first
effective proposal for generating numerical abstract domains automatically, and one of the
few methods for generating numerical summaries. Also, it is also the only method so far
for computing summaries of floating-point functions.

We have shown that floating-point computations could be safely abstracted using our
method. The formulas produced are however fairly complex in this case, and we sus-
pect that further over-approximation could dramatically reduce their size. There is also
nowadays significant interest in automatizing, at least partially, the tedious proofs that
computer arithmetic experts do and we think that the kind of methods described in this
article could help in that respect.

We have so far experimented with small examples, because the original goal of this work
was the automatic, on-the-fly, synthesis of abstract transfer functions for small sequences
of code that could be more precise than the usual composition of abstract of individual in-
structions, and less tedious for the analysis designer than the method of pattern-matching
the code for “known” operators with known mathematical properties. A further goal is
the precise analysis of longer sequences, including integer and Boolean computations. We
have shown in Sec. 4.3 how it was possible to partition the state space and abstract each
region of the state-space separately; but naive partitioning according to n Booleans leads
to 2n regions, which can be unbearably costly and is unneeded in most cases. We think
that automatic refinement and partitioning techniques Jeannet [2003] could be developed
in that respect.

References

Roberto Bagnara, Patricia M. Hill, Elena Mazzi, and Enea Zaffanella. Widening operators
for weakly-relational numeric abstractions. In Static Analysis (SAS), volume 3672 of
LNCS, pages 3–18. Springer, 2005a. DOI: 10.1007/11547662 3.

Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. Precise widening
operators for convex polyhedra. Sci. Comput. Program., 58(1-2):28–56, 2005b. DOI:
10.1016/j.scico.2005.02.003.

Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The Parma Polyhedra Library,
version 0.9, 2006. URL http://www.cs.unipr.it/ppl.

Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86 executables. In
Compiler Construction (CC), volume 2985 of LNCS, pages 5–23. Springer, 2004. DOI:
10.1007/b95956.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embedded software. In The

22

http://arxiv.org/abs/cs.PL/0412043
http://arxiv.org/abs/cs.PL/0412043
http://dx.doi.org/10.1007/11547662_3
http://www.cs.unipr.it/Publications/Abstracts/Q399
http://www.cs.unipr.it/Publications/Abstracts/Q399
http://dx.doi.org/10.1016/j.scico.2005.02.003
http://www.cs.unipr.it/ppl
http://www.cs.wisc.edu/wpis/papers/cc04.pdf
http://dx.doi.org/10.1007/b95956
http://www.di.ens.fr/~rival/njones.pdf
http://www.di.ens.fr/~rival/njones.pdf

Essence of Computation: Complexity, Analysis, Transformation, number 2566 in LNCS,
pages 85–108. Springer, 2002. DOI: 10.1007/3-540-36377-7 5.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-
toine Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical
software. In Programming Language Design and Implementation (PLDI), pages 196–
207. ACM, 2003. DOI: 10.1145/781131.781153.

François Bourdoncle. Sémantique des langages impératifs d’ordre supérieur et in-
terprétation abstraite. PhD thesis, École polytechnique, Palaiseau, 1992.

Aaron R. Bradley and Zohar Manna. The Calculus of Computation: Decision Procedures
with Applications to Verification. Springer, October 2007.

Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. LUSTRE: a declarative
language for real-time programming. In Principles of Programming Languages (POPL),
pages 178–188. ACM, 1987. DOI: 10.1145/41625.41641.

Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis, and
Peter Niebert. From Simulink to Scade/Lustre to TTA: a layered approach for
distributed embedded applications. SIGPLAN notices, 38(7):153–162, 2003. DOI:
10.1145/780731.780754.

CAV05. Computer Aided Verification (CAV), number 4590 in LNCS, 2005. Springer. DOI:
10.1007/b138445.

Robert Clarisó and Jordi Cortadella. The octahedron abstract domain. In Static Analysis
(SAS), number 3148 in LNCS, pages 312–327. Springer, 2004.

Michael Colon, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant generation
using non-linear constraint solving. In Computer Aided Verification (CAV), number
2725 in LNCS, pages 420–433. Springer, 2003.

Patrick Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In VMCAI05, pages 1–24. DOI:
10.1007/b105073.

Patrick Cousot and Radhia Cousot. Abstract interpretation and application to logic pro-
grams. J. of Logic Programming, 13(2–3):103–179, 1992.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of pro-
grams. In Proceedings of the Second International Symposium on Programming, pages
106–130. Dunod, Paris, France, 1976.

Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Principles of Programming Languages (POPL), pages 84–96.
ACM, 1978. DOI: 10.1145/512760.512770.

Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, David
Monniaux, and Xavier Rival. The ASTRÉE analyzer. In Programming Languages and
Systems (ESOP), number 3444 in LNCS, pages 21–30, 2005.

ESOP07. Programming Languages and Systems (ESOP), volume 4421 of LNCS, 2007.
Springer. DOI: 10.1007/978-3-540-71316-6.

23

http://dx.doi.org/10.1007/3-540-36377-7_5
http://arxiv.org/abs/cs.PL/0701193
http://arxiv.org/abs/cs.PL/0701193
http://dx.doi.org/10.1145/781131.781153
http://www.exalead.com/Francois.Bourdoncle/these.html
http://www.exalead.com/Francois.Bourdoncle/these.html
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.1145/780731.780754
http://dx.doi.org/10.1007/b138445
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI05.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/VMCAI05.shtml
http://dx.doi.org/10.1007/b105073
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/ISOP76.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/ISOP76.shtml
http://citeseer.ist.psu.edu/cousot78automatic.html
http://citeseer.ist.psu.edu/cousot78automatic.html
http://dx.doi.org/10.1145/512760.512770
http://hal.archives-ouvertes.fr/hal-00084293/en/
http://dx.doi.org/10.1007/978-3-540-71316-6

Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order theory of
real addition with order. SIAM Journal of Computation, 4(1):69–76, March 1975.

Michael J. Fischer and Michael O. Rabin. Super-exponential complexity of Presburger
arithmetic. In Complexity of Computation, number 7 in SIAM–AMS proceedings, pages
27–42. American Mathematical Society, 1974.

Stéphane Gaubert, Éric Goubault, Ankur Taly, and Sarah Zennou. Static analysis by
policy iteration on relational domains. In ESOP07, pages 237–252. DOI: 10.1007/978-
3-540-71316-6.

Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy iter-
ation. In ESOP07, pages 300–315. DOI: 10.1007/978-3-540-71316-6 21.

Laure Gonnord and Nicolas Halbwachs. Combining widening and acceleration in linear
relation analysis. In Static Analysis (SAS), volume 4134 of LNCS, pages 144–160.
Springer, 2006. DOI: 10.1007/11823230 10.

Denis Gopan and Thomas W. Reps. Lookahead widening. In Computer Aided
Verification (CAV), volume 4144 of LNCS, pages 452–466. Springer, 2006. DOI:
10.1007/11817963 41.

Denis Gopan and Thomas W. Reps. Low-level library analysis and summarization. In
Computer Aided Verification (CAV), volume 4590 of LNCS, pages 68–81. Springer, 2007.
DOI: 10.1007/978-3-540-73368-3 10.

Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. Program analysis
as constraint solving. In Programming Language Design and Implementation (PLDI).
ACM, 2008. DOI: 10.1145/1375581.1375616.

Nicolas Halbwachs. Détermination automatique de relations linéaires vérifiées par les
variables d’un programme. PhD thesis, Université scientifique et médicale de Grenoble,
1979.

IEEE standard for Binary floating-point arithmetic for microprocessor systems. IEEE,
1985. ANSI/IEEE Std 754-1985.

Bertrand Jeannet. Dynamic partitioning in linear relation analysis. application to the
verification of reactive systems. Formal Methods in System Design, 23(1):5–37, July
2003.

Deepak Kapur. Automatically generating loop invariants using quantifier elimination. In
ACA (Applications of Computer Algebra), 2004.

Akash Lal, Gogul Balakrishnan, and Thomas Reps. Extended weighted pushdown systems.
In CAV05, pages 343–357. DOI: 10.1007/11817963 32.

Francesco Logozzo and Manuel Fähndrich. On the relative completeness of bytecode
analysis versus source code analysis. In Compiler Construction (CC), volume 4959 of
LNCS, pages 197–212. Springer, 2008. DOI: 10.1007/978-3-540-78791-4 14.

Zohar Manna and John McCarthy. Properties of programs and partial function logic. In
Machine Intelligence, 5, pages 27–38. Edinburgh University Press, 1969.

24

http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TM-043.ps
http://www.lcs.mit.edu/publications/pubs/ps/MIT-LCS-TM-043.ps
http://dx.doi.org/10.1007/978-3-540-71316-6
http://dx.doi.org/10.1007/978-3-540-71316-6
http://dx.doi.org/10.1007/978-3-540-71316-6_21
http://hal.archives-ouvertes.fr/hal-00189614/en/
http://hal.archives-ouvertes.fr/hal-00189614/en/
http://dx.doi.org/10.1007/11823230_10
http://www.cs.wisc.edu/wpis/papers/cav06-widening.pdf
http://dx.doi.org/10.1007/11817963_41
http://www.cs.wisc.edu/wpis/papers/cav07.summarization.pdf
http://dx.doi.org/10.1007/978-3-540-73368-3_10
http://research.microsoft.com/users/sumitg/pubs/pldi08_cs.ps
http://research.microsoft.com/users/sumitg/pubs/pldi08_cs.ps
http://dx.doi.org/10.1145/1375581.1375616
http://www.cs.unm.edu/~kapur/mypapers/aca2004.pdf
http://www.cs.wisc.edu/wpis/papers/cav05-ewpds.pdf
http://dx.doi.org/10.1007/11817963_32
http://research.microsoft.com/~logozzo/publications/papers/cc08.pdf
http://research.microsoft.com/~logozzo/publications/papers/cc08.pdf
http://dx.doi.org/10.1007/978-3-540-78791-4_14

Zohar Manna and Amir Pnueli. Formalization of properties of functional programs. J.
ACM, 17(3):555–569, 1970. DOI: 10.1145/321592.321606.

Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. Analysis of
loops. In Compiler Construction (CC), volume 1383 of LNCS, pages 80–94. Springer,
1998.

Antoine Miné. The octagon abstract domain. In Reverse Engineering (WCRE), pages
310–319. IEEE, 2001. DOI: 10.1109/WCRE.2001.957836.

Antoine Miné. Relational abstract domains for the detection of floating-point run-time
errors. In Programming Languages and Systems (ESOP), volume 2986 of LNCS, pages
3–17. Springer, 2004.

David Monniaux. Compositional analysis of floating-point linear numerical filters. In
CAV05, pages 199–212. DOI: 10.1007/b138445.

David Monniaux. A quantifier elimination algorithm for linear real arithmetic. In LPAR
(Logic for Programming, Artificial Intelligence, and Reasoning), LNCS. Springer, 2008a.

David Monniaux. Optimal abstraction on real-valued programs. In Static analysis (SAS),
number 4634 in LNCS, pages 104–120. Springer, 2007. DOI: 10.1007/978-3-540-74061-
2 7.

David Monniaux. The pitfalls of verifying floating-point computations. ACM
Transactions on programming languages and systems, 30(3):12, 2008b. DOI:
10.1145/1353445.1353446.

George C. Necula, Scott McPeak, Shree P. Rahul, and Westley Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In Compiler Con-
struction (CC), volume 2304 of LNCS, pages 209–265. Springer, 2002. DOI: 10.1007/3-
540-45937-5 16.

Radu Rugina and Martin Rinard. Symbolic bounds analysis for pointers, array indices,
and accessed memory regions. ACM Trans. on Programming Languages and Systems
(TOPLAS), 27(2):185–235, 2005. DOI: 10.1145/349299.349325.

Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constraint-based linear-
relations analysis. In SAS, number 3148 in LNCS, pages 53–68. Springer, 2004.

Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Scalable analysis of lin-
ear systems using mathematical programming. In VMCAI05, pages 21–47. DOI:
10.1007/b105073.

Helmut Seidl, Andrea Flexeder, and Michael Petter. Interprocedurally analysing linear
inequality relations. In ESOP07, pages 284–299. DOI: 10.1007/978-3-540-71316-6 20.

Micha Sharir and Amir Pnueli. Two approaches to inter-procedural data-flow analysis. In
Program Flow Analysis: Theory and Application. Prentice-Hall, 1981.

VMCAI05. Verification, Model Checking and Abstract Interpretation (VMCAI), number
3385 in LNCS, 2005. Springer. DOI: 10.1007/b105073.

25

http://dx.doi.org/10.1145/321592.321606
http://www.di.ens.fr/~mine/publi/article-mine-ast01.pdf
http://dx.doi.org/10.1109/WCRE.2001.957836
http://arxiv.org/abs/cs.PF/0703077
http://arxiv.org/abs/cs.PF/0703077
http://hal.archives-ouvertes.fr/hal-00084291/en/
http://dx.doi.org/10.1007/b138445
http://hal.archives-ouvertes.fr/hal-00262312/en/
http://hal.archives-ouvertes.fr/hal-00148608/en/
http://dx.doi.org/10.1007/978-3-540-74061-2_7
http://dx.doi.org/10.1007/978-3-540-74061-2_7
http://hal.archives-ouvertes.fr/hal-00128124/en/
http://dx.doi.org/10.1145/1353445.1353446
http://www.cs.berkeley.edu/~necula/Papers/cil_cc02.pdf
http://www.cs.berkeley.edu/~necula/Papers/cil_cc02.pdf
http://dx.doi.org/10.1007/3-540-45937-5_16
http://dx.doi.org/10.1007/3-540-45937-5_16
http://www.cag.lcs.mit.edu/~rinard/paper/toplas05SymbolicBoundsAnalysis.pdf
http://www.cag.lcs.mit.edu/~rinard/paper/toplas05SymbolicBoundsAnalysis.pdf
http://dx.doi.org/10.1145/349299.349325
http://www-step.stanford.edu/papers/sas04.html
http://www-step.stanford.edu/papers/sas04.html
http://www-step.stanford.edu/papers/svmcai05.html
http://www-step.stanford.edu/papers/svmcai05.html
http://dx.doi.org/10.1007/b105073
http://dx.doi.org/10.1007/978-3-540-71316-6_20
http://dx.doi.org/10.1007/b105073

	Introduction
	Linear formulas
	Optimal Abstraction over Template Linear Constraint Domains
	Template Linear Constraint Domains
	Optimal Abstract Transformers for Program Semantics
	Generation of the Implementation of the Abstract Domain
	Least Inductive Invariants
	Stability Inequalities
	Simple Loop Example
	Synchronous Data Flow Example: Rate Limiter

	Extensions to the Admissible Domains and Operations
	Infinities
	Non-Convex Domains
	Domain Partitioning
	Floating-Point Computations

	Complex control flow
	Loop Nests
	Procedures and Recursive Procedures

	Implementations and Experiments
	Related Works
	Conclusion and Future Work
	References

