
Verification of Device Drivers and Intelligent Controllers: a
Case Study

David Monniaux
CNRS

Laboratoire d’informatique de l’École normale supérieure
45, rue d’Ulm

75230 Paris cedex 5, France
David.Monniaux@ens.fr

ABSTRACT
The soundness of device drivers generally cannot be verified
in isolation, but has to take into account the reactions of
the hardware devices. In critical embedded systems, inter-
faces often were simple “volatile” variables, and the interface
specification typically a list of bounds on these variables.
Some newer systems use “intelligent” controllers that han-
dle dynamic worklists in shared memory and perform direct
memory accesses, all asynchronously from the main proces-
sor. Thus, it is impossible to truly verify the device driver
without taking the intelligent device into account, because
incorrect programming of the device can lead to dire conse-
quences, such as memory zones being erased.

We have successfully verified a device driver extracted from
a critical industrial system, asynchronously combined with
a model for a USB OHCI controller. This paper studies this
case, as well as introduces a model and analysis techniques
for this asynchronous composition.

Categories and Subject Descriptors
D.2.4 [Software engineering]: Software/Program Veri-
fication—Correctness proofs, Formal methods, Validation;
D.4.5 [Operating systems]: Reliability—Verification; F.3.1
[Logics and meanings of programs]: Specifying and Ver-
ifying and Reasoning about Programs—Invariants, Mechan-

ical verification, Specification techniques

General Terms
Verification, Reliability

Keywords
Device driver, verification, USB, OHCI, asynchronous, di-
rect memory access, linked lists, parallelism

1. INTRODUCTION

EMSOFT 2007 Salzburg, Austria

Safety-critical systems consist of some application program
(control/command, surveillance...) and some system code.
Norms (such as DO-178B [12] for avionics) establish a hi-
erarchy of levels of safety requirements, depending on the
severity of the consequences of a failure of the system. Sys-
tems at the highest levels typically do not include a full
operating system, but rather a limited basic input/output
subsystem.

In the past, we have successfully verified the absence of run-
time errors in several classes of safety-critical programs [8, 4,
3]. These programs interfaced to the outside world through
memory-mapped input/output registers. Even if external
co-processors were used, such as for efficient digital signal
processing (DSP), they sent and received data through a
shared memory bank. No synchronization was needed; the
only hypothesis was that reads and writes of the data words
passed through such interfaces were atomic.1

Such systems could be verified with as simple an input/output
specification as: reads from integer registers can yield any
value in the corresponding integer type; reads from floating-
point DSP fields can yield any value in a certain user-specified
interval (because the DSP cannot output values outside this
interval). It is also possible to ask the analyzer to verify that
outputs are within certain bounds.

There is now growing pressure, even in safety-critical in-
dustries, to move from proprietary or specialized busses to
off-the-shelf components used in personal computers (such
as the Universal Serial Bus, USB) or derived from them
(such as the AFDX bus, derived from Ethernet). These
busses were originally not designed for safety-critical sys-
tems. Both the protocols and the host controllers (interface
circuits) used are orders of magnitude more complex than
the simple ones previously used:

• They implement features such as hot-plugging, plug-
and-play, dynamic reconfiguration etc. that are un-

1Atomicity is essential even for such a simple setup. If a
32-bit word is written to shared memory in such a way that
the write is split into two 16-bit writes, there is a chance
that the reader will see inconsistent data. For instance, if
a value goes from 0 to -1 (0xFFFFFFFF in hexadecimal,
2-complement), there may be a brief instant during which
the value may be 0xFFFF0000 or 0x0000FFFF. The same
applies if the read is non-atomic.



needed in most safety-critical systems, which have a
static design. Even if those features are unneeded and
unused, they result in complex initialization and pro-
gramming techniques.2

• They have higher bandwidth and thus implement effi-
cient transfer techniques: direct memory access (DMA)
and worklists. Thus, each host controller essentially
behaves like an asynchronous process modifying the
memory of the main system.

In order to ensure that a safety-critical system does not en-
counter runtime errors (“crashes”, invalid operations, arith-
metic overflows, invalid array or pointer accesses, data cor-
ruption caused by the intelligent controllers...), it is thus
necessary to verify not only the application code, but also
the device drivers, and even the device drivers composed
asynchronously with the “intelligent” host controllers.

We thus have verified the driver code interfacing a critical
system with a USB OpenHCI [6] host controller. OpenHCI,
or OHCI, is a specification for how USB 1.1 host controllers
should be programmed3 There exist a variety of chips, or
IP blocks,4 implementing that specification. The specifica-
tion leaves significant leeway as to possible behaviors of the
implementation.

The driver was imposed to us as a C program. It is not an
academic example, and uses many features that often cause
problems for software analysis, such as pointer address com-
putations and deeply linked data structures. However, this
driver is simpler than drivers found in general purpose op-
erating systems, since these have to handle dynamic recon-
figurations (e.g. plugging in a mouse in the middle of op-
erations). Since the embedded system targeted has a static
layout (peripherals are plugged into known positions), data
structures are simply and statically allocated in arrays. Still,
since the USB controller uses linked lists for its worklists, the
analysis had to cope with dynamic data structures (that is,
data structures were pointers are dynamically updated).

The OHCI specification is informal, written in English, and
we thus had to developed a formal model for it. Because we
intended the industrial end-users to be able to understand
and modify the specification, we also wrote this model in the
C language as an asynchronous process. This program, how-
ever, is not a software implementation of OHCI: since what
matters for verification is not to model precisely the behav-
iors of the system, but only a super-set of these behaviors,
we left out many aspects such as timing delays and band-
width constraints. Our host controller simulator often uses
non-deterministic choices (for instance, at any moment, the

2The one controller feature that caused us significant prob-
lem for verifying the driver we considered, the done queue,
was actually unused by the driver, but there was no way to
turn it off in the controller. Thus, needless, complexity in
the controller can result in much harder analysis.
3There exists another specification for USB 1.1 controllers,
known as UHCI, and a specification called EHCI for USB 2.0
controllers. Linux users may check for the {e,o,u}hci_hcd
kernel modules, where hcd stands for host controller driver.
4IP blocks are off-the-shelf designs for parts of a custom
microchip.

current transmission may be aborted and an error reported),
which would rule it out as a concrete simulator.

The interface between the controller and the driver does not
operate according to the principles of shared memory pro-
gramming that are usually advocated in the software engi-
neering literature. There are no mutual exclusion primitives
(e.g. semaphores, mutexes); there only exist coarse-grained
flags for blocking certain operations of the controller, but
the interface is designed so that these should be used min-
imally. The correctness of the system relies on the very
weak hypothesis that 32-bit aligned read and writes to non-
cacheable shared memory are atomic and not reordered.

2. SINGLE-THREAD ANALYSIS
We have extended the Astrée static analyzer in order to
perform that analysis. Astrée was initially designed solely
for single-threaded code; however, in order to adapt it for
the form of parallelism exhibited by the systems considered
in this paper, we leveraged several of the techniques already
used for single-threaded code. We shall thus describe briefly
the single-threaded analysis, and refer the reader to the bib-
liography for details.

Astrée [8, 4, 3] is a static analyzer originally designed for
verifying safety properties of large-scale critical control/command
programs as found in e.g. avionics. Such software contains
many floating-point computations and digital filters, but use
of pointers was limited to passing by reference and other sim-
ilar simple uses. Pointer computations (that is, computing
on addresses as arithmetic objects) were initially prohibited.

Astrée works as follows. It represents sets of memory states
using symbolic techniques (for instance, bounds on numeric
variables). A set of memory states (or, more generally, exe-
cution traces) S is abstracted by a symbolic value S], as long
as S ⊆ γ(S]). The collecting semantics of a program frag-
ment P maps a set of memory states S to another JSK(S).
The analyzer will not attempt to compute this semantics
exactly (because of undecidability or very large state space
issues) but rather to map an abstraction S] of the input
environment to an abstraction JSK](S]) of the output envi-
ronment.

The analysis must not “forget” some reachable states, thus
the soundness condition

JP K ◦ γ(S]) ⊆ γ ◦ JP K](S]). (1)

This inclusion relation reads as follows: if one starts in a
state abstracted by S] (a symbolic representation of a set
of initial states) and executes the program P , then, for all
possible states s′ reachable at the end of the execution of
P , s′ should be abstracted by JP K](S]), the result of the
symbolic (or “abstract”) execution of P over S]. We say
that a state s is abstracted by S], noted s ∈ γ(S]), if the
symbolic set of states denoted by S] contains s. For instance,
if S] includes an interval constraint x ∈ [a, b], then any s

abstracted S] must verify s(x) ∈ [a, b], where s(x) is the
value of variable x in state s.

The analyzer also flags for any “abstractly reachable” state
that results in a runtime error or other violation of user-
specified assertions; warnings are then issued. Since the



analysis is not exact, false alarms — warnings about prob-
lems that cannot happen in reality — may be issued. These
are inevitable, because it is impossible for any analysis method
to be both sound (warn about all possible problems) and
complete (no false alarms), barring hypothesis such as a fi-
nite state space (and not a large one, because of complexity
reasons).

Most of the complexity inside the Astrée analyzer concerns
the analysis of floating-point computations, which is outside
the scope of this paper The tool was later extended to be
able to analyze programs doing pointer arithmetic. Pointers
are modeled as base + offset, where the base is a tag for a
variable in the source code, and the offset is counted from
the start of the memory block containing the variable. This
is important, since many of the structures used by the driver
and controller are in a single very large compound variable
mapped in a non-cacheable memory space.

Offsets are analyzed using non relational abstract domains:
intervals [m, M ] and congruences a + bZ; the former model
the bounds of the pointer and the second the stride (if a
pointer addresses 16-byte structures, the stride will be 16).
A special domain representing finite sets of integers is used
to abstract irregular access patterns (accesses that do not
have a well-defined stride). Offsets may also be constrained
using relational domains, e.g. octagons [10].

For better analysis of controllers, we added a domain that
keeps track, for each integer variable, which bits of this vari-
able can be 0 or 1; this is because hardware features are often
turned on and off by single bits inside command or status
words and the analysis has to take these into account.

The analyzer implements dynamic trace partitioning [9]: in-
stead of analyzing a code fragment for all possible input
states, it splits the input states according to some predicates
(the number of iterations in a loop, the value of a variable, or
an arbitrary test) and analyzes the code fragment separately
in each context. Consider the following program

if (condition) {
a;

} else {
b;

}
c;

Partitioning traces on the first step means that the continua-
tion c of the test will be analyzed separately in each context,
as though the program were:

if (condition) {
a;
c;

} else {
b;
c;

}

Partitioning is useful in many circumstances where a com-
plex, often specialized, relational domain would be useful.
Earlier work on Astrée described examples where analysis
of floating-point computations is much simpler if one e.g.

partitions one test, such as the sign of a variable. [9][sec. 1]
A common occurrence is when one has a pointer, or an ar-
ray index, that may point to a variety of locations that each
verify a local invariant: that is, there exists for all values
of i a certain relationship between, say, x[i] and y[i], but
this relationship is not true if one takes x[i] and y[j] for
i 6= j. If we do not partition, then our numeric abstract do-
main must reflect this relationship. By partitioning accord-
ing to the value of i, we can use a much simpler numeric
domain. [9, sec. 4.2] This partitioning feature was important
for the analysis of parts of the driver that perform updates
to parts of data structures that have strong relationships,
e.g. pointers defining the beginning and the end of the same
data block: if p points to a structure with two fields begin

and end, then it is better to perform the analysis for all pos-
sible points-to values of p and keep relationships between
p->x and p->y.

One of the most delicate issues in program analysis, and in
Astrée, is automatically inferring loop invariants. Consider
the following loop:

while (condition) {
code;

}

Leaving aside techniques such as loop unrolling and partitioning,
this loop is analyzed by computing an approximation of the set
of reachable states at the beginning of the loop, at point A:

A:
if (! condition) goto B:
code;
goto A;

B:

The exact set is the least fixpoint of X 7→ X0 ∪ JcodeK(X \
JconditionK). In order to compute an over-approximation of this
set, Astrée uses widenings. [7, sec. 4.3]. It chooses an ascending
sequence of abstract sets and test if these are invariants, using the
analysis as feedback (and stops once an invariant is obtained).

The output of the analyzer is a list of program locations and
possible runtime errors. Errors that are detected are:

• out-of-bounds array access;

• null pointer and incorrect pointer dereferencing;

• invalid pointer arithmetic;

• arithmetic overflow, division by zero, etc.

3. MODELING AND ANALYSIS OF PARAL-
LELISM

We describe the behavior of the controller as the disjunction of
many atomic actions, such as: writing a 32-bit word to shared
memory, loading a new pointer from shared memory, etc. Each
of these actions is active only if certain guard conditions are met,
such as: a bit in a control register is set, or two pointers are
different.

These actions represent a coarse over-approximation of what the
controller can actually do. In an actual controller, there exist
a variety of sequentiality constraints: some action is possible
only after another has taken place, as well as timing constraints:



because of bandwidth limitations, transfers cannot happen in-
stantly. However, a fine-grained model of the controller would
be difficult to write, difficult to decompose into atomic actions,
and would unduly complicate the analysis. Furthermore, it seems
very reasonable that the correctness of a driver does not depend
on fine timing constraints on an external device.

We group all atomic actions of the controller in a single atomic
action a, which is essentially the nondeterministic choice between
all possible actions constrained by the guards.

Let pi be the atomic steps of execution of the main program . A
trace of execution of the program composed with the controller is
a sequence of steps p1a∗p2a∗p3a∗; any number of a steps can be
performed between each atomic step of the main program. We
could analyze the program in this model, however this would be
very expensive.

As with many other parallel program analysis techniques, we im-
plement a form of partial order reduction. Program steps and
controller steps do not interfere unless the program touches the
shared memory. As a consequence, we only consider traces of the
form p1p2a∗p3a∗ where each a∗ precedes a step pi such that pi

reads or writes shared memory. The shared memory zones are
known from the documentation of the driver and can be specified
in the configuration file of the analyzer. It is possible to check
the correctness of these indications by checking that the controller
never reads or writes outside of its own private variables and the
indicated zones; however, this feature is not implemented in our
prototype.

Astrée analyzes the main program (application code and USB
driver) as though it were single-threaded, thus considering “p”
steps. However, before any memory access, it checks whether it
concerns shared memory. If so, the analyzer does the equivalent
of analyzing the following loop:
while(random_choice) { a }
through an approximate fixpoint computation, before analyzing p.

4. THE USB CONTROLLER AND DRIVER
Now that we have described the analysis, we shall now describe
the system to be analyzed, consisting of a controller and a driver.

4.1 OHCI Controller
We shall here summarize the most salient points of the OHCI
host controller specification. Each host controller communicates
with the main processor through several channels [6, §3.3.2]:

• a memory-mapped register bank

• a shared-memory area known as HCCA

• endpoint descriptors (ED) and transfer descriptors (TD),
making up linked lists (or even trees, in some sense),

• various zones for direct-to-memory (DMA) transfers, con-
taining the data read or written to USB devices.

The main difficulty, with respect to program analysis, are the
singly-linked lists of ED and TD. These lists are concurrently up-
dated by the driver and the host controller. An endpoint is some
kind of functions attached to devices (for instance, a USB sound
card will have an endpoint for transmitting sound samples, an-
other for mixer data, etc.). Endpoints can be of four types (con-
trol, bulk, interrupt, isochronous). Each endpoint is described by
an ED, and to each ED is attached a TD list as in Fig. 1.

In general, there is no need to alter the endpoint lists unless
a device is added or removed. In embedded systems of the kind
considered here, there is no “hotplugging” and in fact the position
on the busses of all devices is known at the design stage, thus the
endpoint list can safely be initialized once and for all.

TD TD TD

TailP

ED

HeadP

TD

Figure 1: Each TD points to the head and tail ele-

ments of its transmission list. The last element is a

“dummy”.

Each TD describes a chunk of data yet to be sent or received
by the controller. The TD lists are are modified whenever the
driver wishes to send or receive USB data. Because transmission
requests are a frequent event, the OHCI interface allows adding
new requests to the end of the TD lists with no mutual exclusion
mechanism, except the assumption that a 32-bit write is atomic.
Each ED has a pointer to the head and tail of the associated TD
list (Fig. 1). The last element of the list is a “dummy” element,
the controller never attempts transferring it. In order to add a
new request to the transmission list, one has to fill the required
information in the “dummy” tail TD, allocate a new “dummy”
TD, make the tail TD point to it, then advance the tail pointer
to the new “dummy” element through an atomic write.

The controller processes TDs in sequence. For each TD, it trans-
fers the corresponding data from or to main memory using direct
memory access (DMA), asynchronously from the main processor.
Each TD contains start and end address for a DMA data buffer.
The controller signals successful or unsuccessful completion by
positioning appropriate flags inside the TD. The controller trans-
fers completed TDs to a “done queue”, another singly-linked list:
the “next” field of the newly completed TD will point to the last
element moved to the done queue (obtained through the done
queue pointer), and the done queue pointer will then point to the
newly completed TD.

There exists two types of TD: generic TDs (16-byte long) and
isochronous TDs (32-byte long). Isochronous TDs are used for
isochronous endpoints, while generic TDs are used for the four
other types.

4.2 Main Program
The main program is of the following form:

driver_initialization();
device_initializations();
application_initialization();
while (TRUE) {

wait_for_clock();
application();
driver(); /* processing of TD lists */

}

After the driver and the USB controller are initialized, the driver
initializes the various devices through various types of control
messages, and checks whether they correctly respond. Then, the
system enters a synchronous loop.

At each clock tick, the driver monitors its various TD lists, possi-
bly detects errors, and initializes new TDs. Because this is a sen-
sitive embedded system, no dynamic memory allocation is used;
the various lists are allocated in arrays, and pointer arithmetic is
used to address the elements.



The only interaction of the application with USB is to read and
write elements in the data buffers. Since the layout of the system
is fixed, it knows exactly which endpoint sends which data and
can directly find the right buffer. These buffers are sent to the
devices or received from them using DMA. There are no function
calls from the application to the driver (and neither in the reverse
direction); we thus have been able to ignore the application when
analyzing the driver.

5. SPECIFICATION AND ANALYSIS
We wrote a 400-line simulation of a OHCI controller. This simu-
lation is essentially a series of non-deterministic choices between
the various atomic actions that can be performed. For the sake
of simplicity of design, and also of simplicity of communication
with industrial partners, this simulation is also written in C, but
makes liberal use of nondeterministic choice primitives. It would
thus not be usable as a concrete simulator of a controller, but
is suitable for analysis. The whole of the controller actions is
summarized in a single procedure. Because there are three con-
trollers in the system, there are three calls to that procedure,
passing different register areas as parameter.

The simulation works as follows: if the controller is busy trans-
ferring a data block, then it can choose between transferring the
next 32-bit word in the data block, signaling an error, or mov-
ing to the next data block (and thus the next TD). If the TD is
finished, then it can move to the next ED. Note that error sig-
naling is possible at any moment (it is always possible that the
controller signals a hardware malfunction, for instance some wire
could have been cut or unplugged), thus it would be impossible
to prove the correct transmission of data using this simulation.

The main program is given as C source code, approximately 3000
line long. The relationship between the driver and the controller
is specified in a configuration file: shared memory zones are listed,
with the name of the simulation procedure. The analysis concerns
both the initialization phases and the regular runtime.

The main goal of the analysis is to prove that neither the driver
nor the controller will transfer data incorrectly (pointers outside
allowed memory ranges etc.). Such incorrect transfers could lead
to the driver and application crashing. The analysis, however,
does not verify that transfers are properly programmed: this
would involve modeling the devices, the USB protocol and is-
sues such as bandwidth, which is beyond the capabilities of our
analysis tool.

The main limitation to that approach is the difficulty of specifying
the controller as a set of atomic actions. The specification of the
controller given to us is an English-language technical manual.
As with other informal specifications, there are delicate issues,
such as the instant at which certain memory accesses take place,
that can be misunderstood. Thus, it is not obvious that the for-
mal specification (as a nondeterministic program) encompasses all
the behaviors permitted by the English specification (not count-
ing whether or not the actual hardware implementation of the
controller fits the English specification!).

We had to slightly alter the driver and host controller specifi-
cation so as to adapt them to what Astrée can handle. The
driver occasionally used goto’s in order to signal errors, in a way
that Astrée does not analyze precisely due to limitations in the
partitioning heuristics; we slightly rewrote the code (better par-
titioning could achieve the same results). In addition, Astrée,
though it can handle some untyped manipulations in programs
(such as: taking a pointer, storing it into an integer, then taking
the integer as a pointer), could not cope with the practice of the
OHCI specification of putting information is the two low-order
bits of pointers supposed to be aligned on 4-byte boundaries. We
removed that information and the associated bit-masking opera-
tions. Finally, we removed some “padding” in some data struc-
tures, which caused Astrée to introduce a great number of use-

less variables. We feel that neither of these changes substantially
altered the substance of the verification performed, and are just
the results of minor limitations of Astrée.

The main difficulty in the analysis of the system is the “done
queue”. In simple embedded contexts, such as the one we studied,
there will be typically one static pool of TD elements per ED,
and thus, a priori, all TD lists should be separate, leading to a
simple, non-relational, separation invariant: each ED points into
the corresponding TD pool, and each element in a TD pool may
point only into the same TD pool. However, the OHCI controller,
after completing the transmission of a TD, moves the TD to a
global “done queue”, breaking this separation: the “next” pointer
of the TD no longer points to the next TD in the processing list,
but to the last element inserted into the “done queue”, which may
be from a different ED. There still is a separation property, but it
is a complex, dynamic, one: at any moment, the set of elements
reachable from the list head associated with an ED is in a single
TD pool, but elements from that TD pool may also be in the
done queue. An element at the same memory location will move
from one queue to another. Ironically, the “done queue” is never
used by the driver that we were shown.

The driver submitted to us could however be proved correct (that
is, proved that it cannot exhibit runtime errors) even in the pres-
ence of the done queue. The analysis was incapable of inferring
complex dynamic separation properties, thus, due to the building
of the “done queue”, it confused 16-bit generic TDs and 32-bits
isochronous TDs: after a while, all TD pointers used by the driver
were deemed capable of pointing to most other used TD pointers.
It did not matter because all TD data structures had been padded
to the same alignment by the driver’s designers; thus, even if the
analysis took into account some spurious behaviors (processing of
16-bit TDs as though they were 32-bit), these did not introduce
false alarms.

Analysis is completed in 10 hours on a 2 GHz PC, using a few hun-
dred megabytes of memory (in comparison, disabling the “done
queue” results in an analysis time of 6 minutes). In either case,
there are no alarms, meaning no possible runtime errors, and
no false alarms. The absence of true alarms is not surprising:
even though the controller implements some sophisticated data
structures (dynamically rearranged linked lists), the driver has
a conservative, simple design, and has been well tested before.
We expect that more complex developments, with more transfer
modes, will need more advanced pointer analyses.

6. RELATED WORKS AND CONCLUSION
We have shown that it is possible to prove the absence of run-
time errors in simple (yet real) drivers that interact with active,
“intelligent” devices, even with shared pointer variables. To our
knowledge, all earlier works had focused either on toy systems,
either ignored the controller.

The importance of checking device drivers in addition to higher
level code has been recognized by practitioners from industry.
According to Microsoft, in 2003, 85% of recently failures in Win-
dows XP came from the drivers [13]; it is also reported that for
certain kinds of errors (lock/unlock), Linux device drivers contain
as much as seven times the rate of errors as the main kernel code
[5].

There exist two different approaches towards the issue of bugs
in device drivers. The one that we considered is program verifi-
cation: the analysis tool outputs sound results; that is, assum-
ing sound modeling of the hardware, if the analysis tool lists no
possible runtime errors, none can happen at runtime. However,
soundness often comes at a steep price: the analysis may be too
costly, or it may refuse to run on some programs. As a conse-
quence, bug-finding methods have been proposed: the goal is not
to prove the absence of errors in the system, but to efficiently find
some of the existing bugs.



Bug-finding methods typically exclude parts of the system (other
threads, intelligent devices...) that are difficult to analyze; even
with single-threaded code, these techniques might be unsound.
The point is to obtain, in practice, lists of warnings that, for the
most part, are “true” warnings, corresponding to problems that
can really happen, as opposed to problems that cannot happen
but are warned against as the result of the imprecision of the
analysis. This list, however, needs not be exhaustive; that is, it
is acceptable that some true errors may be ignored, if trying to
find them all would come at the expense of listing many “false”
warnings. Such techniques target non-critical code such as the
operating system and the applications typically used on personal
computers, where some infrequent crashes and other dysfunctions
are accepted. Bug-finding tools should thus concentrate on the
“low-hanging fruit” first. Bug-finding methods have been pro-
posed for device drivers:

• The Slam group at Microsoft develops tools based on model-
checking of boolean abstractions. [2] Initially, the boolean
abstraction contains only the control-flow of the driver and
boolean variables, and then it can be refined using addi-
tional predicates. The tool verifies that the device drivers
interact correctly with the application programming inter-
face (API) of the operating system; that is, issues like never
freeing the same buffer twice, or locking and unlocking the
same lock in alternation (but not locking it twice in a row).
It does not model “intelligent” external devices — it does
not model concurrency with shared memory at all —, it
models integers as Z “ideal integers” and not a fixed-width
bit vectors and can miss errors due to overflow, and does
not check memory safety at all — in fact it assumes that
the code contains no“wild pointers”. Thus, not only is their
tool unsound, but also it ignores the issue that we model in
this paper, that is, the interaction between a device driver
and an asynchronous device. This tool is, however, capable
of scaling up to real-life system, and is now used commer-
cially as the Static Driver Verifier.

• Some less formalized, more ad-hoc techniques have been
applied with great success for finding bugs in Linux and
OpenBSD kernel code [5]. Techniques used may be statis-
tical, may attempt detecting “inconsistent” usage, etc.

Because the verification of C programs, with all the pointer arith-
metic, is difficult, some have advocated replacing C with a “safe
subset” (e.g. MISRA C [1]) or some type-safe language related to
it (e.g. CCured [11]). Both of these approaches are largely de-
feated by the way that hardware controllers are designed. These
approaches essentially advocate getting rid of “unsafe” constructs,
either in a heuristic way (industrial “safe subset” guidelines) or in
a more formal way, founded in program semantics. The foremost
unsafe constructs are the juggling of pointers, with unsafe con-
versions to and from arithmetic types, pointer arithmetic, etc.;
however, these are largely imposed by the hardware design.

The object of this paper is a verification technique. The goal is
to prove the absence of errors in critical code, and finding bugs
is only a secondary objective. Critical code tends to be simpler
than desktop or server operating systems, and to be operated in
a more constrained environment. For instance, the layout of the
system is generally fully known at the design stage and thus no
dynamic “hotplug” facility is needed. One of the bugs listed in a
Windows driver [2, §6] occurs if a connector is unplugged at the
same time that the operating system performs a close request;
this example is emblematic of race conditions that may be diffi-
cult to reproduce and occur in rarely exercised code paths. Such
complexities are avoided if there is simply no code for dynamic
reconfiguration, no dynamic data structures, etc. Critical code is
written according to stringent guidelines [12]; also, because there
are fewer cases to test, the code will probably have been thor-
oughly tested; therefore there is little hope of finding many bugs
if the analysis tool is applied at the end of the development pro-
cess (but a bug-finding tool may come handy to speed up testing

and development). Thus, the goal of the verification tool is to
find the very last bugs, and to prove the absence of bugs.

Future work in that area should include:

• Better efficiency. The use of partitioning, which is very
costly, should be limited. Even though some partial order
reduction is already used, we think the number of interleav-
ings considered is still too large.

• Efficient relational pointer abstract domains (e.g. for ana-
lyzing dynamic linked lists) should also be developed. These
domains should be compatible with real-life low-level pro-
gramming language, e.g. allow pointer arithmetic. We ex-
pect that future work for analyzing such kind of mixed sys-
tems (driver and intelligent controller) should include some
better pointer shape analysis techniques than the ones that
we used.

From a software engineering point of view, we propose method-
ological changes in the development of checking of system software
used in safety-critical system. In our experience, it is never the
case, except for very simple programs, that analysis succeeds the
first time. The specification may be incorrect, the analyzer may
be imprecise; there may be abstract domains to add, or simply
some abstract transfer functions that can be made more precise.
When the analyzer issues warnings, one has to find their origin.
Of course, it is better in that circumstance if the analyzer supplies
backward analysis results (Astrée does not yet do so). However,
in practice, one also has to have an intuition of what the program
is doing, and the kind of invariants that it relies on, so as to be
able to check whether the analysis results fit expected behaviors
and to refine the analysis if necessary. This suggests that anal-
ysis should be performed in collaboration with the designers of
the embedded system, who presumably know well what should
happen, at the time when the system is designed. This contrasts
with the usual testing and bug-finding approaches, where gener-
ally the testers are kept separate from the developers so that they
can have a fresh mind and even attempt things that “should be
working”. However, in the case of program analysis, this separa-
tion is counter-productive; the verification team will essentially
have to reverse-engineer the program before attempting to refine
analysis.

7. REFERENCES
[1] MISRA-C:2004 Guidelines for the use of the C language in

critical systems, October 2004.
[2] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir

Levin, Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek,
Sriram K. Rajamani, and Abdullah Ustuner. Thorough
static analysis of device drivers. In EuroSys. ACM, 2006.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. Design and
implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In
The Essence of Computation: Complexity, Analysis,
Transformation, number 2566 in LNCS, pages 85–108.
Springer-Verlag, 2002.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. In PLDI, pages 196–207.
ACM, 2003.

[5] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An empirical study of operating
systems errors. In SOSP, pages 73–88. ACM, 2001.

[6] Compaq, Microsoft, National Semiconductor. OpenHCI
Interface Specification for USB, 1.0a edition, 2006.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation
and application to logic programs. J. Logic Prog.,
2-3(13):103–179, 1992.

[8] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier



Rival. The ASTRÉE analyzer. In ESOP, number 3444 in
Lecture Notes in Computer Science, pages 21–30, 2005.

[9] L. Mauborgne and X. Rival. Trace partitioning in abstract
interpretation based static analyzers. In ESOP, number
3444 in LNCS. Springer-Verlag, 2005.

[10] A. Miné. A few graph-based relational numerical abstract
domains. In M.V. Hermenegildo and G. Puebla, editors,
SAS, Lecture Notes in Computer Science 2477, pages
117–132. Springer-Verlag, September 2002.

[11] George C. Necula, Scott McPeak, and Westley Weimer.
Ccured: type-safe retrofitting of legacy code. In POPL ’02:
Proceedings of the 29th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
128–139. ACM Press, 2002.

[12] RTCA / EUROCAE. DO-178B / ED-12B: Software
Considerations in Airborne Systems and Equipment
Certification, 1992.

[13] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the reliability of commodity operating systems.
In SOSP, pages 207–222. ACM, 2003.


