Efficient Generation of Correctness Certificates for
the Abstract Domain of Polyhedra*

Alexis Fouilhéf David Monniaux* Michaél Périn®

April 5, 2013

Abstract

Polyhedra form an established abstract domain for inferring runtime
properties of programs using abstract interpretation. Computations
on them need to be certified for the whole static analysis results to
be trusted. In this work, we look at how far we can get down the
road of a posteriori verification to lower the overhead of certification
of the abstract domain of polyhedra. We demonstrate methods for
making the cost of inclusion certificate generation negligible. From a
performance point of view, our single-representation, constraints-based
implementation compares with state-of-the-art implementations.

In static analysis by abstract interpretation [6], sets of reachable states,
which are in general infinite or at least very large and not amenable to
tractable computation, are over-approximated by elements of an abstract
domain on which the analyzer applies forward (resp. backward) steps
corresponding to program operations (assignments, tests...) as well as
“joins” corresponding to control points with several incoming (resp. outgoing)
edges. When dealing with numerical variables in the analyzed programs, one
of the simplest abstract domains consists in keeping one interval per variable,
and the forward analysis is known as interval arithmetic. Interval arithmetic
however does not keep track of relationships between variables. The domain
of convex polyhedra (7| tracks relationships of the form), a;x; > b where
the a; and b are integer (or rational) constants, the x; are rational program
variables, and < is <, < or =.

The implementor of an abstract domain faces two hurdles: the implemen-
tation should be reasonably efficient and scalable; it should be reasonably
bug-free. As an example, the Parma Polyhedra Library (PPL) [1], version 1.0,
which implements several relational numerical abstract domains, comprises

*This work was partially supported by ANR project |“VERASCO”| (INS 2011).

TUniversité Joseph Fourier / VERIMAG; VERIMAG]|is a joint laboratory of Université
Joseph Fourier, CNRS| and |Grenoble-INP.

*CNRS / VERIMAG

http://www-verimag.imag.fr/~monniaux/
http://www-verimag.imag.fr/~perin/
http://verasco.imag.fr/
http://www-verimag.imag.fr/
http://www.ujf-grenoble.fr/
http://www.ujf-grenoble.fr/
http://www.cnrs.fr/
http://www.grenoble-inp.fr/

260,000 lines of C++; despite the care put in its development, it is probable
that bugs have slipped through. The same applies to the APRON library [11].

Such hurdles are especially severe when the analysis is applied to large-
scale critical programs (e.g. in the ASTREE system [5], targeting avionics
software). For such systems, normal compilers may not be trusted, result-
ing in expensive post-compilation checking procedures, and prompting the
development of the COMPCERT certified compiler [12]: this compiler is pro-
grammed, specified and proved correct in CoQ [21]. We wish to extend this
approach to obtain a trusted static analyzer; this article focuses on obtaining
a trusted library for convex polyhedra, similar in features to the polyhedra
libraries at the core of PPL and APRON.

One method for certifying the results of a static analysis is to store
the invariants obtained by an untrusted analyzer at (roughly) all program
points, then check that they are inductive using a trusted checker: each
statement is then a Hoare triple that must be checked. Unfortunately, storing
invariants everywhere proved impractical in the ASTREE analyzer due to
memory consumption; we then opted to recompute them. Our (future)
analyzer will thus store invariants only at loop heads, and thus, for control
programs consisting of one huge control loop plus small, unrolled, inner loops,
will store only a single invariant. It will then enter a checking phase which
will recompute, in a trusted fashion, all intermediate invariants. Efficiency is
thus important.

The main contribution of our article is an efficient way of implementing
a provably correct abstract domain of polyhedra. Efficiency is two-fold:

1. In proof effort: most of the implementation consists in an untrusted
oracle providing certificates of the correctness of its computations;
only a much smaller certificate checker, consisting in simple algorithms
(multiplying and adding vectors, replacing a variable by an expression),
needs to be proven correct in the proof assistant.

2. In execution time: the expensive parts of the computations (e.g. linear
programming) are inside the untrusted oracle and may use efficient pro-
gramming techniques unavailable in parts that need formal proofs. We
do not compute certificates as an afterthought of polyhedral computa-
tions: close examination of the algorithms implementing the polyhedral
operators revealed that they directly expose the elements needed to
build certificates. Simple bookkeeping alleviates the need to rebuild
them after the fact. The overhead of making the operators certifying
is thus very limited. This contrasts with earlier approaches 4] based
on a posteriori generation of witnesses, which had to be recomputed
from scratch using linear programming.

A second contribution is a complete implementation of the abstract
domain of polyhedra in a purely constraints-based representation. Most

libraries used in static analysis, including PPL and APRON, use a double
description: a polyhedron is both an intersection of half-spaces (constraints)
or the convex hull of vertices, half-lines and lines (generators), with frequent
conversions. Unfortunately, the generator representation is exponential in
the number of constraints, including for common cases such as hypercubes
(e.g. specification of ranges of inputs for the program). We instead chose
to represent the polyhedra solely as lists of constraints, with pruning of
redundant ones. Our implementation uses sparse matrices of rational numbers
and uses efficient techniques for convex hull [20] and emptiness testing by
linear programming [9].

We applied our library to examples of polyhedral computations obtained
by running the PAGAI static analyzer [10] on benchmark programs. Despite
a common claim that implementations based on the double representation
are more efficient than those based on constraints only, our library reaches
performance comparable to the APRON library together with the high-level
of trust brought by our Coq certificate checker.

The remainder of this paper is organized as follows. After having stated
the conventions we are using , we define correctness criteria for the
operators of the abstract domain , which all reduce to inclusion properties
for which certificates are presented as Farkas coefficients (also known as
Lagrange multipliers) . Such certificates may also be cheaply generated
for the convex hull . Both forward step and convex hull operations reduce
internally to a form of projection. Some design choices of our implementation
are then described , including how to keep the representation size of
the polyhedra reasonable. Last before conclusion (§7]), an experimental
evaluation and accompanying results are presented .

1 Definitions and Notations

In the remainder of this article, we use the following notations and definitions.

1. C: a linear constraint of the form @ - £ < b where @ is a vector of
rational constants, b is a rational and & € Q™ is the vector of the
analyzed program variables. Such a linear constraint, or constraint for
short, can be viewed as a half-space in an n-dimensional space. We
write C & @- & > b for the complementary half-space.

2. P: a convex polyhedron, not necessarily closed, represented as a set of
constraints. We call “size of the representation of P” the number of
constraints that P is made of.

def o

3. satisfaction: saying that point ¢ of Q" satisfies a constraint C' = @-& < b
means that @ -4y < b. By extension, a point ¥ satisfies (or is in)
polyhedron P if it satisfies all of its constraints. We write this: Sat P 4.

Given that a constraint C' can be regarded as polyhedron with only
one constraint, we also write: Sat C' 4.

4. Given our focus on the abstract domain of polyhedra we shall adopt
the following vocabulary.

(a) The order relation on polyhedra C is geometrical inclusion.
(b) The least upper bound LI is the convex hull.

(¢) The greatest lower bound M is geometrical intersection.

We will further distinguish the definition of abstract domain operators
from their actual implementation, which can have bugs. The imple-
mented version of the operators will be written with a hat: E, 0 and 11
implement the ideal operators C, LI and M, respectively.

5. inclusion: a polyhedron P is included in a polyhedron P» (noted P C Ps)
if and only if
V:lj, Sat P :ljé Sat Py gj (1)

Inclusion for constraints C; 4 ap - < by and Cy 4 o -Z < byisa
special case which is easy to decide: C7 C C5 holds if and only if there
exists k£ > 0 such that k-d; = ds and k- by < by. This latter case is
thus proven correct directly inside CoQ.

2 Correctness of the Abstract Domain Operators

Let us now see what needs to be proven for the implementation of each
operator of an abstract domain so that the correctness of its result can be
established.

Inclusion test P; E P=PChH
Convex hull Pl C PlﬂPg and P2 C PlﬂPg

Intersection VZ,Sat P, ¥ A Sat Py # = Sat P[P, 7.
For now, we will assume a naive implementation of the intersection:
P;11P; is the union of the constraints of P; with these of Py, which
trivially satisfies the desired property.

Assignment in a forward analysis, x := e amounts to intersection by the
equality constraint 2/ = e (where 2’ is a fresh variable), projection of
and renaming of x’ to :BE] When analyzing backward, assignment is
just substitution.

!Other polyhedra libraries distinguish invertible assignments (e.g. = := = + 1, more
generally 2 = A-Z with A an invertible matrix), which can be handled without projection,
from non-invertible ones (e.g. = := y + z). Because our library automatically keeps
a canonical system of equalities, which it uses if possible when projecting, no explicit
detection of invertibility is needed; it is subsumed by the canonicalization.

Projection if P, is the returned polyhedron for the projection of P, par-
allel to variables x;,, ..., x;, we check that P; E P, and that variables
Tiy, .-, Ti, do not appear in the constraints defining P.

Widening : no correctness check needed. Widening (V) is used to accel-
erate the convergence of the analysis to a candidate invariant. For
partial correctness of the analyzer, no property is formally needed of
the widening operator, since iterations stop when the inclusion test
reports that an inductive invariant has been obtained. There exist
formalizations of the widening operator suitable for proving the total
correctness of the analysis (that is, that it eventually converges to an
inductive invariant) [15] but we avoided this question by assuming
some large upper bound on the number of iterations after which the
analyzer terminates with an error message.

Remark that we only prove that the returned polyhedron contains the
polyhedron that it should ideally be (which is all that is needed for proving
that the results of the analysis are sound), not that it equals it: for instance,
we prove that the polyhedron returned by the convex hull operator includes
the convex hull, not that it is the true convex hull. The precision of our
algorithms (that is, the property that they do not return polyhedra larger
than needed) is not proved formally; it is however ensured by usual software
engineering methods (informally correct algorithms, comparing the output
of our implementation to that of other polyhedra libraries. . .).

3 A Posteriori Verification of the Inclusion Test

We shall now describe a way to ensure the correctness of the inclusion test.
Recall we represent polyhedra as sets of constraints only. Our certificate
for proving that a polyhedron P, composed of the constraints Cy,...,C,
satisfies a constraint C relies on the following trivial fact:

Lemma 1 If a point § satisfies a set of constraints {C1,...,Cy}, it satisfies
any linear positive combination Y - ; NiCi with \; > 0.

If we can find a constraint C’ that is a linear positive combination of C1,
...,C, and such that C' E C then it follows that P is included in C. Farkas’
lemma states that such linear combinations necessarily exist when inclusion
holds, which justifies our approach.

The motivation for a posteriori verification of inclusion results stems from
this formulation: while finding an appropriate linear combination requires
advanced algorithms, a small program checking that a particular set of A;’s
entails PC C can easily be proven correct in a proof assistant. We call
these \;’s the certificate for PC C.

3.1 A Certificate Checker Certified in Coq
Our certificate checker has CoQ type:

inclusion_checker (P; P, : Polyhedra) (cert : Cert) : Exception (P C P,)

where the type Polyhedra is a simple representation of a polyhedron as
a list of linear constraints and the type Cert is a representation for in-
clusion certificates. If a proof of PjE P, can be built from cert, then
the inclusion_checker returns it wrapped in the constructor VALUE. How-
ever cert might be incorrect due to a bug in C. Inthis case, the inclusion_checker
fails to build a proof of P; C P, and returns ERROR.

When extracting the OCAML program from the CoQ development, proof
terms are erased and the type of the checker function becomes that which
would have been expected from a hand-written OcAML function{]

inclusion_checker : Polyhedra — Polyhedra — Cert — bool

In reality, our implementation is slightly more complicated because the
untrusted part of our library, for efficiency reasons, operates on fast rational
and integer arithmetic, while the checker uses standard CoqQ types that
explicitly represent integers as a list of bits (see .

3.2 A Certificate-Generating Inclusion Test

Let us now go back to the problem of building a proof of P C C' by exhibiting
an appropriate linear combination. From [4], this can be rephrased as a pure
satisfiability problem in linear programming;:

(Vy,—'Sat (PI‘I@) y) = PCC

This problem can be solved by the simplex algorithm [§]. For this purpose,
the simplex variant proposed by [9], designed for SMT-solvers, is particularly
well-suited. This algorithm only implements the first of the two phases of
the simplex algorithm: finding a feasible point, that is a point satisfying
all the constraints of the problem. If there is no such point, a witness of
unsatisfiability is extracted as a set of mutually exclusive bounds on linear
terms and suitable Farkas coefficients X, in the same way that blocking clauses
for theory lemmas are obtained for use in SMT-solving modulo linear rational
arithmetic. Furthermore, this algorithm is designed for cheap backtracking
(addition and removal of constraints), which is paramount in SMT-solving
and also very useful in our application .

2We chose to replace the constructors VALUE and ERROR of the type Exception by
OcAML booleans instead of letting the extraction define an OCAML type “exception” with
two nullary constructors due to proof terms being erased.

Our approach to certificate generation differs from previous suggestions
[4] where inclusion is first tested by untrusted means, and, if the answer is
positive, a vector of Farkas coefficients is sought as the solution of a dual
linear programming problem with optimization, which has a solution, the
Farkas coefficients, if and only if the primal problem has no solution. Ours
uses a primal formulation without optimization.

3.3 From an Unsatisfiability Witness to an Inclusion Certifi-
cate

Inclusion certificates are derived from unsatisfiability witness in a way similar
to [18]. To illustrate how they are built as part of the inclusion test, a global
idea of the inner workings of the simplex variant from [9] is needed. We
insist on the following being a coarse approximation.

We aim at building, given P non-empty and C, an inclusion certificate
for PC C, otherwise said P A C having no solution. P is composed of n
constraints C', ..., C, of the form Z}l:l ai;-x; < b;, where i is the constraint

subscript. We refer to C S by < 2?21 ag; - v; as Cp.

Let us start by describing the organization of data. Each constraint C; is
split into an equation xj = > 1, a;; - ¥; and a bound 2} < b; where z; is a
fresh variable. For the sake of simplicity, in this presentation, a constraint
x; < b; is represented as l’; =x; A\ x; < b; ; the actual implementation avoids
introducing such extra variable. Therefore, each x uniquely identifies C; by
construction and the original variables z; are unbounded. We call basic the
variables which are defined by an equation (i.e. on the left-hand side, with
unit coefficient) and non-basic the others. Last, the algorithm maintains a
candidate feasible point, that is a value for every variable z and z;, initially
set to 0.

From this starting point, the algorithm iterates pivoting steps while
ensuring preservation of the invariant: the candidate feasible point always
satisfy the equations and the values of the non-basic variables always satisfy
their bounds (1). At each iteration and prior to pivoting, a basic variable
is chosen such that its value does not satisfy its bounds. Either there is
no such z}, and the candidate feasible point is indeed a solution of P A C,
thereby disproving P C C; or there is such a basic variable z}. In this case,
we shift its value to fit its bounds and we seek a non-basic variable 2], such
that its value can be adjusted to compensate the shift: through a pivoting
step, x} becomes non-basic, and], becomes basic. If there is no such z,
(because all the non-basic variables already have reached their bound), the
equation which defines x} exhibits incompatible bounds of the problem and
is of the form o} = 3, ,; A;j -2 (only 2’s appear in this equation: recall that
the x;’s are unbounded). We now show how to transform this unsatisfiability
result into an inclusion certificate.

Since we supposed that P is not empty, the unsatisfiability necessarily

involves Cy. Thus, (), which represents Cp, has a non-zero coefficient ¢ in
the equation. Without loss of generality, we suppose that the incompatible
bounds involve an upper bound on z} and that \g is positive. The above
equation can be rewritten so that xj, appears on the left-hand side:

n

T = E)\;- a:;
i=1

where the lower bound by < z and the upper bound >0 ; X, - 2} < ¥/

are such that b < by. Recall that the z’s were defined as equal to linear

terms [; S Z;‘Zl a;; - ¢ of the constraints C;. Let us now substitute the :Cg’s

by their definition, yielding

lo=Y_ Xl
j=1

Noting that C' is Iy < by (since Cp = by < lg is C), that Z?Zl)\9 -l; <band
that b’ < by, the)\;’s form an inclusion certificate for P C C.

4 A Posteriori Verification of the Convex Hull

We saw in [32| that the result of the convex hull of two polyhedra P; and P,
must verify inclusion properties with respect to both P; and P,. Comput-
ing P et Plan, then P, E P and P E P and then checking the certificates
would produce a certified convex hull result, at the expense of two extra in-
clusion tests. From a development point of view, this is the lightest approach.
However, careful exploitation of the details of [can save us the extra cost of
certificate generation, at the expense of some development effort.

Before delving into the details, let us introduce some more notations for
the sake of brevity. In this section, a polyhedron P is regarded as a column
vector of the constraints C,...,C, it is composed of. This allows for a

matrix notation: P & {:E’ |A-# < g}, where the linear term of C; is the 7"
line of A and the constant of C; is the i*" component of b.

Then, an inclusion certificate, A1,..., \,, for PEC’ is a line vector A,
such that A - P = C and CCC’. Now, an inclusion certificate for PC P’

is a set of inclusion certificates Kl, . ,Kn, one for each constraint C] of P’.
Such a set can be regarded as a matrix F such that

FE| and F x PC P’

where the it line of F' x P is a constraint C such that C' C C’Z{ . We call A a
Farkas vector and F' a Farkas matriz.

4.1 A Convex Hull Algorithm on Constraints Representa-
tion

The convex hull P;U P, is the smallest polyhedron containing all line segments
joining P; to P». Thus, a point & of P; U Ps is the barycenter of a point
Z1 in P; and a point Z3 in P;. Exploiting this remark, [3] defined P; Ui P,
with P, = {Z | 4, - & < gz}, as the set of solutions of the constraints
A < b_i A Ag-z5 < b; AT =i tiFas s ANajtas =1A0< a1 A0 < ay
using 2n + 2 auxiliary variables #1, 23, a1, g where n = |Z] is the number
of variables of the polyhedron. Still following [3], the variable changes
T = aq - 21 and T, = g - 75 remove the non-linearity of the equation
=oa1-T1 + ag - Th.

The resulting polyhedron can regarded as the 3-block system S, be-
low. The auxiliary variables &}, %, a1, as are then projected out to stick
to the tuple ¥ of program variables. Therefore, the untrusted convex
hull operator U mainly consists in a sequence of projections: P Py o
;;";j Spar (T4, @, a1,) where

Alf’l S Odlbl

Agflz S a9 b2

Sba/r: - — ~

T=27 + Ty

al +az =1
0<m
0< ag

4.2 Instrumenting the Projection Algorithm

Projecting a variable & from a polyhedron P represented by constraints
can be achieved using Fourier-Motzkin elimination (e.g. [8]). This algorithm
partitions the constraints of P into three sets: Egk contains the constraints
where the coefficient of &}, is nil, Ejk contains those having a strictly positive
coefficient for Z} and E,, contains those which coefficient for Z is strictly
negative.

Then, the result Po; of the projection of T} from P is defined as

Pproj = proj P fk &of E%c U <map elszk (E;»rk X Eﬂ;k))

where E; x E= is the set of all possible pairs of inequalities, one element of
k Tk

each pair belonging to E;k and the other belonging to E:gk The elimz, func-
tion builds the linear combination with positive coefficients of the members
of a pair such that Ty has a zero coefficient in the result.

Ilustrating on an example, projecting x from

def

={y<1l}and Ef xE;, ={(2-2+y<2,-2—-y<1)}

From1-(2-24+y<2)+2 - (—z—y<1)=—y <4, weget Ppoj ={y <
1,—y <4}.

Note that every constraint C' of P, is either a constraint of P, or
the result of a linear combination with non-negative coefficients Ai, Ay of
two constraints C; and Cs of P, such that A\ - C7 + Xy - Co = C. 1t is
therefore possible, with some bookkeeping, to build a matrix F' such that
F x P = Pp,j. This extends to the projection of several variables: if

proj P T = Pyroj = F x P and proj Pproj &) = PI’)rOJ = F’ X Pproj, then
Pl =F"x P with F" = F/ x F.

Fourier-Motzkin elimination can generate a lot of redundant constraints,
which make the representation size of Po; unwieldy. In the worst case, the
n constraints split evenly into E;k and F , and thus, after one elimination,
one gets n?/4 constraints; this yields an upper bound of n? /4”7 where p is
the number of elimination steps. Yet, the number of true faces can only grow
in single exponential |17, §4.1]; thus most generated constraints are likely to
be redundant.

The algorithm inspired from [20], which we use in practice, adds these
refinements to Fourier-Motzkin elimination:

1. Using equalities when available to make substitutions. A substitution
is no more than a linear combination of two constraints, the coefficients
of which can be recorded in F. Note that there is no sign restriction
on the coefficient applied to an equality.

2. Discarding trivially redundant constraints. The corresponding line F’
can be discarded just as well.

3. Discarding constraints proved redundant by linear programming, as in
95.2

Note that, since discarding a constraint only adds points to the polyhedron,
there is no need to prove these refinements to be correct or to provide
certificates for them. We could thus very easily add new heuristics.

4.3 On-the-Fly Generation of Inclusion Certificates

In order to establish the correctness of static analysis, the convex hull
operator should return a superset of the true convex hull; we thus need
proofs of Py T P U P, and P, C P; U P5. The converse inclusion is not needed
for correctness, though we expect that it holds; we will not prove it. A
certifying operator 0 must then produce for each constraint C of Py P, a
certificate Ay (resp. As) proving the inclusion of Py (resp. P,) into the single-
constraint polyhedron C'. The method we propose for on-the-fly generation
of a correctness certificate is based on the following remark.

10

For each constraint C of P, 0 P, the projection operator ﬁ“gj provides a
Vector A such that A x Sy = C, where S,,, is the system of constraints defined
in[§4.1] An examination of the certificate reveals that A can be split into three
parts (A17 Ag, A3) such that A1 refers to the constraints A;.7) < albl derived
from P ; Kg refers to the constraints As.7, < agb_é derived from P, and K3
refers to the barycenter part ¥ =) + 7, A a1 +a2=1AN0< a3 A 0 < as.
Let us apply the substitution o = [a;/1, as/0, &, /Z, @ /0], that characterizes
the points of P; as some extreme barycenters, to each terms of the equality
A x Sier = C'. This only changes S,,,.: Indeed, Ao = A since A is a constant
vector and C'o = C since none of the substituted variables appears in C' (due
to projection). We obtain the equality (below) where many constraints of
S0 became trivial.

A7 < by

ﬁ
A

=z
1=1
0<1
0<0

This equality can be snnphﬁed into Ay x (A7 < bl) +A0<1)=C
where A is the third coefficient of A3 This shows that A1 is a certlﬁcatl
for P, C C. The same reasoning with o = [ay /0, az/1, 7 /0, &, /Z) shows that
Xz is a certificate for P, C C.

5 Notes on the Implementation

The practical efficiency of the abstract domain operators is highly sensitive
to implementation details. Let us thus describe our main design choices.

5.1 Extending to Equalities and Strict Inequalities

Everything we discussed so far deals with non-strict inequalities only. The
inclusion test algorithm however complements such non-strict inequalities,
which yields strict ones. Adaptation could have been restricted to the simplex
algorithm on which the inclusion test relies, and such an enhancement is
described in [9]. We have however elected to add full support for strict
inequalities to our implementation. Once the addition of two constraints
has been defined, almost no further change to the algorithms we discussed
previously was needed.

Proper support and use of equalities was more involving. As [20] points
out, equalities can be used for projecting variables. Such substitutions do not

3The shift A of the bound is lost and will be computed again by our CoQ-certified
checker.

11

increase the number of constraints, contrary to Fourier-Motzkin elimination.
We ended up splitting the constraint set into a set of equalities, each serving
as the definition of a variable, and a set of inequalities in which these
variables have been substituted by their definitions. Minimization (see
was augmented to look for implicit equalities in the set of inequalities. Last,
testing inclusion of P in C was split into two phases: substituting in C' the
variables defined by the equalities of P and then using the simplex-based
method described earlier without putting the equalities of P in, which reduces
the problem size.

Inclusion certificates were adapted for equalities. If P C C, with C e
Z = b, cannot be proven using a linear combination of equalities, it is split
as {@-Z <b,a-¥>0b} and P is proven to be included in each separately.

5.2 Minimization

The intersection Pi(1P; is a very simple operation. As [62] described, a naive
implementation amounts to list concatenation. However, some constraints
of P| may be redundant with constraints of P,. Keeping redundant con-
straints leads to a quick growth of the representation sizes and thus of
computation costs. In addition, one condition for the good operations of
widening operators on polyhedra is that there should be no implicit equality
in the system of inequalities and no redundant constraint [2].

It is therefore necessary to minimize the size of the representation of
polyhedra, that is, removing all redundant constraints, and to have a system
of equality constraints that exactly defines the affine span of the polyhedron.
We call P, the result of the minimization on P. The correctness of the
result is preserved as long as Py, is an over-approximation of P, which
means P C Pyi,.

First, we check whether P has points in it using the simplex algorithm
from If P is empty, L is returned as the minimal representation. The
certificate is built from the witness of contradictory bounds returned by
the simplex algorithm. It is a linear combination which result is a trivially
contradictory constraint involving only constants (e.g. 0 < —1) and which,
in other words, has no solution.

The next step is implicit equality detection. It buildsona-& < b A @-& >
b= a-&=>b Forevery C< = G.Z <bof P (by definition PCC<), we
test whether PC C2 L > b. If the inclusion holds, the certificate of the
resulting equality is composed of a linear combination yielding CZ and a
trivial one, 1-C<, yielding C<. Once this is done, the representation of P
can be split into a system of equalities P. and a system of inequalities P;
with no implicit equality. P. is transformed to be in echelon form using
Gaussian elimination, which has two benefits. First, redundant equations
are detected and removed. Second, each equation can now serve as the
definition of one variable. The so-defined variables are then substituted in F;,

12

yielding P/. Although our implementation tracks evidence of the correctness
of this process, it should be noted that the uses of equalities decribed above
are standard practice.

At this point, if redundancy remains, it is to be found in P/ only. It
is detected using inclusion tests: for every C' € P/, if P/ \ {C}C P/, C is
removed. Removing a constraint is, at worst, an over-approximation for
which no justification needs to be provided.

All that we describe above involve many runs of the simplex algorithm.
The key point which makes this viable in practice is the following: they are
all strongly related and many pivoting steps are shared among the different
queries. We described the data representation used by the simplex
variant we use: it splits each constraint of P in linear term and bound
by inserting new variables. These variables can have both an upper and
a lower bound. Let us now illustrate the three steps of minimization on
constraint ¢ = @-Z < b, split as 2/ = @- 7 and & < b. The first step,
satisfiability, solves this very problem. Then, implicit equalities detection
checks whether 2 = @ - and 2’ < b is unsatisfiable. Last, redundancy
elimination operates on 2’ = d - Z and 2’ > b.

For all these problems, we only changed the bound on z’, without ever
touching either the constraint 2’ = @ - Z or the other constraints of P. These
changes can be done dynamically, while preserving the simplex invariant
(1 of , by making sure that the affected 2’ is a basic variable. This
remark, once generalized to a whole polyhedron, enables the factorization of
the construction of the simplex problem. Actually, it is only done once for
each minimization. It is also hoped that the feasible point of one problem is
close enough to that of the next problem, so that convergence is quick.

Minimization also plays an important role in the convex hull algorithm.
We mentioned that projection increases the representation size of
polyhedra and described some simple counter-measures from [20]. When
projecting a lot of variables, as is done for computing the convex hull of two
polyhedra, each redundant constraint can trigger a lot of extra computation.
Applying a complete minimization after the projection of each variable
mitigates this. More precisely, only the third of the steps described above is
used: projection cannot make a non-empty polyhedron empty and it cannot
reduce the dimension of a polyhedron, no implicit equality can be created.

5.3 A More Detailed Intuition on Bookkeeping

We mentioned in and [§4] that simple bookkeeping makes it possible to
build inclusion certificates. We now give a more precise insight on what is
involved, on the example of the projection.

The main change is an extension of the notion of constraint, which is
now a pair (f,C) of a certificate fragment and a linear constraint as we
presented them so far. A certificate fragment f is a list of pairs (n;, id;), n;

13

being a rational coefficient and ¢d; a natural number uniquely identifying
one constraint of P. The meaning of f is the following

> ni-Cig, = C, with Cig, € P and (n;, id;) € f

The elimg, function introduced in is extended to take two extended
constraints (fi,C1) and (f2,C2), and return an extended constraint (f,C).
Recall that the original elimz, chooses A1 and Ay such that the coefficient
of @), in the resulting C' is nil. The extended version returns (A1 - fi @ Ag -
f2, A1 - C1 4+ Ag - C3), where @ is the list concatenation operator and J; - f; is
a notation for:

map (fun (n,id) — (A\; - n,id)) f;

The certificate fragment keeps track of how a constraint was generated
from an initial set of constraints. For a single projection proj P ¥, the
fragments are initialized as [(1, id¢)] for every constraint C' before the actual
p