
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proofs-as-programs for programmers

Pierre Corbineau and Jean-François MONIN

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 1 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Disordered summary

Target audience
Challenges
Conventional order
Contents
Unusual design decisions

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 2 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Target audience: software students

Practical motivation
Understand better software pieces

principled reasoning on programs
theoretical culture on semantics and notions of computation
(certified) compilation

But
Don’t expect anything about maths
don’t like, hate, are afraid of, not confident
Don’t teach math, but some skills in mathematical thinking
Science (including programming) = mixture of rigour and creativity

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 3 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Target audience: software students

Practical motivation
Understand better software pieces

principled reasoning on programs
theoretical culture on semantics and notions of computation
(certified) compilation

But
Don’t expect anything about maths
don’t like, hate, are afraid of, not confident
Don’t teach math, but some skills in mathematical thinking
Science (including programming) = mixture of rigour and creativity

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 3 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order

Coq’Art, SF, author’s first courses...
Propositional logic; first order quantifiers
Basic data: bool, nat; simple (recursive) programs
Induction on nat
Lists (monomorphic, polymorphic); tree-like data-structures
“Rich” data-types (e.g., sig types)
Inductive relations
Applications to

maths
Computer Science: program correctness
Computer Science: semantics
...

Exotic topics, e.g., Curry-Howard correspondence

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 4 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order

Coq’Art, SF, author’s first courses...
Propositional logic; first order quantifiers
Basic data: bool, nat; simple (recursive) programs
Induction on nat
Lists (monomorphic, polymorphic); tree-like data-structures
“Rich” data-types (e.g., sig types)
Inductive relations
Applications to

maths
Computer Science: program correctness
Computer Science: semantics
...

Exotic topics, e.g., Curry-Howard correspondence

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 4 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order

Coq’Art, SF, author’s first courses...
Propositional logic; first order quantifiers
Basic data: bool, nat; simple (recursive) programs
Induction on nat
Lists (monomorphic, polymorphic); tree-like data-structures
“Rich” data-types (e.g., sig types)
Inductive relations
Applications to

maths
Computer Science: program correctness
Computer Science: semantics
...

Exotic topics, e.g., Curry-Howard correspondence

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 4 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order

Coq’Art, SF, author’s first courses...
Propositional logic; first order quantifiers
Basic data: bool, nat; simple (recursive) programs
Induction on nat
Lists (monomorphic, polymorphic); tree-like data-structures
“Rich” data-types (e.g., sig types)
Inductive relations
Applications to

maths
Computer Science: program correctness
Computer Science: semantics
...

Exotic topics, e.g., Curry-Howard correspondence

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 4 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order

Coq’Art, SF, author’s first courses...
Propositional logic; first order quantifiers
Basic data: bool, nat; simple (recursive) programs
Induction on nat
Lists (monomorphic, polymorphic); tree-like data-structures
“Rich” data-types (e.g., sig types)
Inductive relations
Applications to

maths
Computer Science: program correctness
Computer Science: semantics
...

Exotic topics, e.g., Curry-Howard correspondence

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 4 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order

Coq’Art, SF, author’s first courses...
Propositional logic; first order quantifiers
Basic data: bool, nat; simple (recursive) programs
Induction on nat
Lists (monomorphic, polymorphic); tree-like data-structures
“Rich” data-types (e.g., sig types)
Inductive relations
Applications to

maths
Computer Science: program correctness
Computer Science: semantics
...

Exotic topics, e.g., Curry-Howard correspondence

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 4 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order, assessment

Good points
simple → complex
theory → applications

Drawbacks
slow: interesting things come late
mysterious interactions

Possible repair: make things closer to usual math
different interface
hide more
use more automation

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 5 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order, assessment

Good points
simple → complex
theory → applications

Drawbacks
slow: interesting things come late
mysterious interactions

Possible repair: make things closer to usual math
different interface
hide more
use more automation

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 5 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conventional order, assessment

Good points
simple → complex
theory → applications

Drawbacks
slow: interesting things come late
mysterious interactions

Possible repair: make things closer to usual math
different interface
hide more
use more automation

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 5 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Contract: don’t cheat

We don’t want students to cheat

We should not cheat as well (as much as possible)

The more explicit and transparent, the better
Use automation only when what happens is perfectly understood

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 6 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Contract: don’t cheat

We don’t want students to cheat

We should not cheat as well (as much as possible)

The more explicit and transparent, the better
Use automation only when what happens is perfectly understood

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 6 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Issues

Math-oriented people
Bizarre notations (e.g., function application)
Interesting theories come late
Why bother with Curry-Howard?

Computer-oriented people
Requires too much patience
Amazing and funny things come late

Moreover, Coq’s feedback sometimes hard to understand

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 7 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two languages: formulae and scripts

Formulae
More or less familiar

Tactics
Collection of receipes
you face this typical situation, use that tactic.
Alternative: a little bit of proof-theory?
CIC is complex and subtle, cannot be a starting point.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 8 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two languages: formulae and scripts

Formulae
More or less familiar

Tactics
Collection of receipes
you face this typical situation, use that tactic.
Alternative: a little bit of proof-theory?
CIC is complex and subtle, cannot be a starting point.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 8 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Alternative: go fast

But carefully!

Expose interesting / challenging examples as soon as possible

RELY ON PROGRAMMERS INTUITIONS

trees, easy to visualize
(structural) recursive programs on them

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 9 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Alternative: go fast

But carefully!

Expose interesting / challenging examples as soon as possible

RELY ON PROGRAMMERS INTUITIONS

trees, easy to visualize
(structural) recursive programs on them

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 9 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Trees everywhere

Easy and common data structure
Abstract Syntax Trees
Proof trees
structured thinking
Typing rules
(Structured, big step, small step) Operational Semantics
All kinds of inductive definitions

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 10 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

This is consistent with Type Theory

Focus on functional programming,
not on proof-theory

Thank you Curry-Howard
Implication and universal quantification seen as types for functional
programs
Structural induction seen in the same way as structural recursion
Natural explanation of implication (>> truth tables)

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 11 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

First steps

Basic types
bool is not that good: interferences with logic
→ take another enumerated type (e.g., traffic colors)
binary trees and ASTs for simple arithmetic expressions

Functions
curryfied syntax
pattern-matching

Simple theorems and basic tactics
equalities: reflexivity and rewrite
introduction of hypotheses or variables, computation steps (cbn)
reasoning by case: destruct
induction on trees

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 12 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

First steps

Basic types
bool is not that good: interferences with logic
→ take another enumerated type (e.g., traffic colors)
binary trees and ASTs for simple arithmetic expressions

Functions
curryfied syntax
pattern-matching

Simple theorems and basic tactics
equalities: reflexivity and rewrite
introduction of hypotheses or variables, computation steps (cbn)
reasoning by case: destruct
induction on trees

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 12 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

First steps

Basic types
bool is not that good: interferences with logic
→ take another enumerated type (e.g., traffic colors)
binary trees and ASTs for simple arithmetic expressions

Functions
curryfied syntax
pattern-matching

Simple theorems and basic tactics
equalities: reflexivity and rewrite
introduction of hypotheses or variables, computation steps (cbn)
reasoning by case: destruct
induction on trees

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 12 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Smooth introduction to the proofs-as-program paradigm

Interactive development of functions

Proofs of implicational / universal theorems are functions

Reasoning by case = programming by case
Deep patterns can be useful (with refine)

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 13 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Smooth introduction to the proofs-as-program paradigm

Interactive development of functions

Proofs of implicational / universal theorems are functions

Reasoning by case = programming by case
Deep patterns can be useful (with refine)

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 13 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic example: traffic colors

Inductive tlcolor : Set :=
| Green : tlcolor
| Orange : tlcolor
| Red : tlcolor.

Definition next_col : tlcolor -> tlcolor :=
fun c =>

match c with
| Green => Orange
| Orange => Red
| Red => Green
end.

Lemma nextnextnext_id :
forall c:tlcolor, next_col (next_col (next_col c)) = c.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 14 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic example: traffic colors

Inductive tlcolor : Set :=
| Green : tlcolor
| Orange : tlcolor
| Red : tlcolor.

Definition next_col : tlcolor -> tlcolor :=
fun c =>

match c with
| Green => Orange
| Orange => Red
| Red => Green
end.

Lemma nextnextnext_id :
forall c:tlcolor, next_col (next_col (next_col c)) = c.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 14 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenging example 1, on binary trees

Fixpoint revt t : bintree :=
match t with
| L c => L c
| N l r => N (revt r) (revt l)
end.

Theorem revt_revt : forall t, revt (revt t) = t.

(for teachers) it is cheap!
much simpler as the corresponding result on lists
(for students)
try the same exercise in your favorite imperative/OO progr. lang.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 15 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenging example 1, on binary trees

Fixpoint revt t : bintree :=
match t with
| L c => L c
| N l r => N (revt r) (revt l)
end.

Theorem revt_revt : forall t, revt (revt t) = t.

(for teachers) it is cheap!
much simpler as the corresponding result on lists
(for students)
try the same exercise in your favorite imperative/OO progr. lang.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 15 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenging example 1, on binary trees

Fixpoint revt t : bintree :=
match t with
| L c => L c
| N l r => N (revt r) (revt l)
end.

Theorem revt_revt : forall t, revt (revt t) = t.

(for teachers) it is cheap!
much simpler as the corresponding result on lists
(for students)
try the same exercise in your favorite imperative/OO progr. lang.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 15 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Funny example: functions returning a type,
dependent types

Definition waow : tlcolor -> Set :=
fun c =>

match c return Set with
| Green => nat
| Orange => tlcolor
| Red => tlcolor -> nat
end.

Definition waow_waow : forall c : tlcolor, waow c :=
fun c =>

match c return waow c with
| Green => 2
| Orange => Green
| Red => fun c' => match c' with Orange => 6 | _ => 1 end
end.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 16 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Predicate = dependent type, Curry-Howard at work
Lemma nextnextnext_id :

forall c:tlcolor, next_col (next_col (next_col c)) = c.
Proof.

refine (fun c => _).
refine (match c with (* Reasoning by case ([destruct c]) *)

| Green => _
| Orange => _
| Red => _
end).

all:exact refl_equal.
Qed.

Definition id_nextnextnext_pgm :
forall c, c = next_col (next_col (next_col c)) :=
fun c => match c with

| Green => eq_refl
| Orange => eq_refl
| Red => eq_refl
end.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 17 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Predicate = dependent type, Curry-Howard at work
Lemma nextnextnext_id :

forall c:tlcolor, next_col (next_col (next_col c)) = c.
Proof.

refine (fun c => _).
refine (match c with (* Reasoning by case ([destruct c]) *)

| Green => _
| Orange => _
| Red => _
end).

all:exact refl_equal.
Qed.

Definition id_nextnextnext_pgm :
forall c, c = next_col (next_col (next_col c)) :=
fun c => match c with

| Green => eq_refl
| Orange => eq_refl
| Red => eq_refl
end.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 17 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenging example 2: code optimization

Inductive aexp : Set :=
| Cst : nat -> aexp
| Apl : aexp -> aexp -> aexp
| Amu : aexp -> aexp -> aexp.

Fixpoint eval (a : aexp) : nat :=

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 18 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenging example 2 (cont’d):
syntactic simplification on ASTs

Apl
simpl0 / \ = a2 (* 0 + a2 = a2 *)

Cst a2
|
0

Amu Cst
simpl0 / \ = | (* 0 * a2 = 0 *)

Cst a2 0
|
0

simpl0 a = a in all other cases

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 19 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenging example 2 (cont’d):
correcness of the optimization

Use ad-hoc case analysis
Lemma eval_simpl0: forall a, eval (simpl0 a) = eval a.
Proof.

intro a.
refine (match a with

| Apl (Cst 0) a2 => _
| Amu (Cst 0) a2 => _
| a' => eq_refl (eval a')
end).

Fixpoint simpl_rec (a : aexp) :=

Lemma eval_simpl_rec: forall a, eval (simpl_rec a) = eval a.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 20 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Challenging example 2 (cont’d):
correcness of the optimization

Use ad-hoc case analysis
Lemma eval_simpl0: forall a, eval (simpl0 a) = eval a.
Proof.

intro a.
refine (match a with

| Apl (Cst 0) a2 => _
| Amu (Cst 0) a2 => _
| a' => eq_refl (eval a')
end).

Fixpoint simpl_rec (a : aexp) :=

Lemma eval_simpl_rec: forall a, eval (simpl_rec a) = eval a.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 20 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Absurd” hypotheses → contagious equalities

Explaining discriminate without black magic (nor large eliminations to
some extent).

Lemma absurd: 5 = 4 -> 15 = 12.

Lemma true_false_eq : true = false -> forall n1 n2 : nat, n1 = n2.

Lemma eq_eqnatb : forall n1 n2, eqnatb n1 n2 = true -> n1 = n2.

Then we can get discriminate using large eliminations, seen earlier in the waow
function.

Next step: (small) inversion

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 21 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Absurd” hypotheses → contagious equalities

Explaining discriminate without black magic (nor large eliminations to
some extent).

Lemma absurd: 5 = 4 -> 15 = 12.

Lemma true_false_eq : true = false -> forall n1 n2 : nat, n1 = n2.

Lemma eq_eqnatb : forall n1 n2, eqnatb n1 n2 = true -> n1 = n2.

Then we can get discriminate using large eliminations, seen earlier in the waow
function.

Next step: (small) inversion

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 21 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Absurd” hypotheses → contagious equalities

Explaining discriminate without black magic (nor large eliminations to
some extent).

Lemma absurd: 5 = 4 -> 15 = 12.

Lemma true_false_eq : true = false -> forall n1 n2 : nat, n1 = n2.

Lemma eq_eqnatb : forall n1 n2, eqnatb n1 n2 = true -> n1 = n2.

Then we can get discriminate using large eliminations, seen earlier in the waow
function.

Next step: (small) inversion

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 21 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Absurd” hypotheses → contagious equalities

Explaining discriminate without black magic (nor large eliminations to
some extent).

Lemma absurd: 5 = 4 -> 15 = 12.

Lemma true_false_eq : true = false -> forall n1 n2 : nat, n1 = n2.

Lemma eq_eqnatb : forall n1 n2, eqnatb n1 n2 = true -> n1 = n2.

Then we can get discriminate using large eliminations, seen earlier in the waow
function.

Next step: (small) inversion

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 21 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

“Absurd” hypotheses → contagious equalities

Explaining discriminate without black magic (nor large eliminations to
some extent).

Lemma absurd: 5 = 4 -> 15 = 12.

Lemma true_false_eq : true = false -> forall n1 n2 : nat, n1 = n2.

Lemma eq_eqnatb : forall n1 n2, eqnatb n1 n2 = true -> n1 = n2.

Then we can get discriminate using large eliminations, seen earlier in the waow
function.

Next step: (small) inversion

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 21 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic

No pressure to talk about
constructive / classical logic
negation

needed lemmas happen to be stated in a positive way
deal with “absurd” hypotheses in a positive way as well

conjunction, disjunction and existential quantifier
(not really needed)
truth
(not really needed)

Because
equalities, at the beginning
custom inductive types, later

are enough

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 22 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic

No pressure to talk about
constructive / classical logic
negation

needed lemmas happen to be stated in a positive way
deal with “absurd” hypotheses in a positive way as well

conjunction, disjunction and existential quantifier
(not really needed)
truth
(not really needed)

Because
equalities, at the beginning
custom inductive types, later

are enough

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 22 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic

No pressure to talk about
constructive / classical logic
negation

needed lemmas happen to be stated in a positive way
deal with “absurd” hypotheses in a positive way as well

conjunction, disjunction and existential quantifier
(not really needed)
truth
(not really needed)

Because
equalities, at the beginning
custom inductive types, later

are enough

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 22 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic

No pressure to talk about
constructive / classical logic
negation

needed lemmas happen to be stated in a positive way
deal with “absurd” hypotheses in a positive way as well

conjunction, disjunction and existential quantifier
(not really needed)
truth
(not really needed)

Because
equalities, at the beginning
custom inductive types, later

are enough

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 22 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Logic

No pressure to talk about
constructive / classical logic
negation

needed lemmas happen to be stated in a positive way
deal with “absurd” hypotheses in a positive way as well

conjunction, disjunction and existential quantifier
(not really needed)
truth
(not really needed)

Because
equalities, at the beginning
custom inductive types, later

are enough

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 22 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusions

7 years at M1 level (engineering school, ∼ 50 students/year)
Feedback was never bad and has improved to ”reasonably good” in the
recent years.

Show simple amazing things
We tried to introduce complex notions on simpl(e | istic) examples.

Rely on (functional) programmers intuition
Yet another reason to teach functional programming to scientists.

Don’t be afraid of inductive types
There is room for them next to numbers and other mathematical notions.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 23 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusions

7 years at M1 level (engineering school, ∼ 50 students/year)
Feedback was never bad and has improved to ”reasonably good” in the
recent years.

Show simple amazing things
We tried to introduce complex notions on simpl(e | istic) examples.

Rely on (functional) programmers intuition
Yet another reason to teach functional programming to scientists.

Don’t be afraid of inductive types
There is room for them next to numbers and other mathematical notions.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 23 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusions

7 years at M1 level (engineering school, ∼ 50 students/year)
Feedback was never bad and has improved to ”reasonably good” in the
recent years.

Show simple amazing things
We tried to introduce complex notions on simpl(e | istic) examples.

Rely on (functional) programmers intuition
Yet another reason to teach functional programming to scientists.

Don’t be afraid of inductive types
There is room for them next to numbers and other mathematical notions.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 23 / 23

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusions

7 years at M1 level (engineering school, ∼ 50 students/year)
Feedback was never bad and has improved to ”reasonably good” in the
recent years.

Show simple amazing things
We tried to introduce complex notions on simpl(e | istic) examples.

Rely on (functional) programmers intuition
Yet another reason to teach functional programming to scientists.

Don’t be afraid of inductive types
There is room for them next to numbers and other mathematical notions.

P. Corbineau and J-F. Monin Proofs-as-programs for programmers July 2, 2024 23 / 23

