Small inversions for smaller inversions

Jean-François MONIN
Inversion, simple example

Even natural numbers

Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Basic usage

Lemma even_plus_left n m : even n → even (n + m) → even m.

IHen : even (n + m) → even m
enm : even (S (S (n + m)))

==
even m
Inversion

Purpose

Extract the information contained in a hypothesis H of type T
- where T is an inductive relation
- with some arguments having an inductive type

Expectations

- For each case (constructor), decompose H into ALL its components
- In particular, remove irrelevant cases

Essentially : (subtle) case analysis on H
- Simultaneous case analysis on H and its arguments
- game on dependent pattern-matching
Smaller inversion (part of the Braga method)

Joint work with Dominique Larchey Wendling [TYPES’18], [Proof&Computation II 2021]

Half of even numbers

Fixpoint half n (e: even n) {struct e} : nat :=
 match n return even n → nat with
 | 0 => λ _, 0
 | 1 => λ e, match even_inv e with end
 | S (S n) => λ e, S (half n (πeven e))
end e.

Projection: getting ONE STRUCTURALLY SMALLER component

Definition πeven n (e: even (S (S n))) : even n :=
 match e in even m return
 let n := match m with S (S n) => n | _ => n end in
 let G := match m with S (S n) => True | _ => False end in G → even n
 with
 | Ev2 n e => λ _, e
 | _ => λ fa, match fa with end
end I.
Reasoning on half

Easy (induction on e)
Lemma double_half : ∀ n e, half n e + half n e = n.

Less easy: induction on e and inversion on e’
Lemma half_pirr : ∀ n (e e’ : even n), half n e = half n e’.

e : even n
e’ : even (S (S n))

S (half n e) = half (S (S n)) e’
Unicity of e

Again: induction on e and inversion on e’

Lemma even_unique : \(\forall n \ (e \ e’ : \text{even } n), e = e’ \).

But proof unicity should not be overrated here

- The returned result (sort Set/Type) cannot depend on an argument of sort Prop
- Simple example: unbounded linear search algorithm (see ConstructiveEpsilon.v in the std lib)
More sophisticated inversions

- Even bounded natural numbers
- Half of even bounded natural numbers
- Proof unicity for $=$ and \leq in nat

Bounded natural numbers

Inductive $t : \text{nat} \rightarrow \text{Set} :=$

| FO $\{n\} : t (S\ n)$
| FS $\{n\} : t\ n \rightarrow t (S\ n)$.

Failures for standard inversion.
Inversion technologies

Standard tactic of Coq: fully automated [Cornes & Terrasse, 1995; Murthy?]
- Improved over the years, very impressive black box
- Lack of control
- Big underlying terms
- Failures with dependent inductive types

Small inversions: handcrafted [Monin 2010, Monin & Shi 2013]
- Flexible approach with several variants
- Developed for a big experiment with CompCert
- Attempts towards automation (Braibant, Boutillier)

TYPE’2022
- Made clearer with auxiliary inductive types
- Improvement needed for dependent types
Small inversions with auxiliary inductive types

Recipe

Given an inductive relation \(\text{rel} : T_x \rightarrow T_{y1} \rightarrow \ldots \text{ Prop} \) with “input” argument \(x : T_x \), define:

- For each input case (constructor \(C \)) in \(T_x \), an *auxiliary inductive relation* of type \(T_{y1} \rightarrow \ldots \text{ Prop} \) by copy and paste of relevant telescopes of \(\text{rel} \)
- *No recursion*

- A *dispatch function* \(\text{rel _disp} \) from \(x : T_x \) to \(T_{y1} \rightarrow \ldots \text{ Prop} \) by pattern matching on \(x \)

- Inversion lemma \(\text{rel _inv} : \text{rel} \rightarrow \text{rel _disp} \) (*easy proof*)

Usage

- Given a hypothesis \(R : \text{rel} (C \ldots) \text{ expr_1\ldots} \)
 perform \(\text{match rel_inv R with...} \)
- Boils down to the relevant *aux. inductive relation* corresponding to \((C\ldots) \)
Recipe

Given an inductive relation \(\text{rel} : T x \rightarrow T y_1 \rightarrow \ldots \) \ Prop with “input” argument \(x : T x \), define:

- For each input case (constructor \(C \)) in \(T x \), an *auxiliary inductive relation* of type \(T y_1 \rightarrow \ldots \) \ Prop by copy and paste of relevant telescopes of \(\text{rel} \)

 No recursion

- A *dispatch function* \(\text{rel_disp} \) from \(x : T x \) to \(T y_1 \rightarrow \ldots \) \ Prop by pattern matching on \(x \)

- Inversion lemma \(\text{rel_inv} : \text{rel} \rightarrow \text{rel_disp} \) \ (easy proof)

Usage

- Given a hypothesis \(R : \text{rel} (C\ldots) \) \ expr_1\ldots

 perform \texttt{match rel_inv R with} ...

- Boils down to the relevant *aux. inductive relation* corresponding to \((C\ldots) \)
Explicit injectivity

When R occurs as an argument in the goal we need also the left inverse rel_back of rel_inv (trivial as well), and a proof of $R = \text{rel_back} (\text{rel_inv} R)$.

Then rewrite the occurrences of R with $\text{rel_back} (\text{rel_inv} R)$ before the pattern-matching on $\text{rel_inv} R$.

Improvement: built-in injectivity

- In the previous receipe, add a last argument of shape C...
- *Same code* for rel_disp and rel_inv
- Bonus: inline rel_disp in the statement of rel_inv
Basic small inversion on even [2021 talks]

Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.

Definition even_inv \{n\} (e : even n) :
 match n return Prop with
 | 0 => even0
 | 1 => even1
 | S (S n) => even2 n
end.

Proof. destruct e; constructor; assumption. Defined.

Definition even_back \{n\} (e : match n return Prop with...) : even n.
Proof... Defined.

Lemma even_inv_mono \{n\} (e : even n) : e = even_back (even_inv e).
Proof. destruct e; reflexivity. Qed.
Basic small inversion on even [2021 talks]

Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.

Definition even_inv {n} (e : even n) :
 match n return Prop with
 | 0 => even0
 | 1 => even1
 | S (S n) => even2 n
end.
Proof. destruct e; constructor; assumption. Defined.

Definition even_back {n} (e : match n return Prop with...) : even n.
Proof... Defined.

Lemma even_inv_mono {n} (e : even n) : e = even_back (even_inv e).
Proof. destruct e; reflexivity. Qed.
Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.

Definition even_inv {n} (e : even n) :
 match n return Prop with
 | 0 => even0
 | 1 => even1
 | S (S n) => even2 n
 end.
Proof. destruct e; constructor; assumption. Defined.

Definition even_back {n} (e : match n return Prop with...) : even n.
Proof... Defined.

Lemma even_inv_mono {n} (e : even n) : e = even_back (even_inv e).
Proof. destruct e; reflexivity. Qed.
Inductive even : ∀ n, Prop :=
 | Ev0 : even 0
 | Ev2 n : even n → even (S (S n)).

Inductive is_Ev0 : even 0 → Prop := is_Ev0_intro : is_Ev0 Ev0.
Inductive no_Ev1 : even 1 → Prop :=.
Inductive is_Ev2 n : even (S (S n)) → Prop :=
 is_Ev2_intro : ∀ (e : even n), is_Ev2 n (Ev2 n e).

Definition even_inv {n} (e : even n) :
 match n return even n → Prop with
 | 0 => is_Ev0
 | 1 => no_Ev1
 | S (S n) => is_Ev2 n
 end e.

Proof. destruct e; constructor. Defined.

(* Basic version *)

Inductive even0 : Prop := even0_Ev0 : even0.
Inductive even1 : Prop :=.
Inductive even2 n : Prop := even2_Ev2 : even n → even2 n.
Exercise: equality in nat with obvious UP

Inductive diag : nat → nat → Prop :=
| dia0 : diag 0 0
| diaS x y : diag x y → diag (S x) (S y).

(* small inversion : standard recipe with built-in injectivity *)
Inductive is_dia0 : diag 0 0 → Prop := ii00 : is_dia0 dia0.
Inductive is_diaS x y : diag (S x) (S y) → Prop :=
 iiSS : ∀ (d : diag x y), is_diaS x y (diaS x y d).
Inductive no_diag x y : diag x y → Prop := .

Definition diag_inv {x y} (d : diag x y) :
 match x, y return diag x y → Prop with
 | 0, 0 => is_dia0
 | S x, S y => is_diaS x y
 | x, y => no_diag x y
end d.

Proof. destruct d; constructor. Qed.
Inductive \texttt{diag} : nat \to nat \to \text{Prop} :=
| \texttt{dia0} : \texttt{diag} 0 0
| \texttt{diaS} x y : \texttt{diag} x y \to \texttt{diag} (S x) (S y).

(* small inversion : standard receipe with built-in injectivity *)
Inductive \texttt{is_dia0} : \texttt{diag} 0 0 \to \text{Prop} := \texttt{ii00} : \texttt{is_dia0} \texttt{dia0}.
Inductive \texttt{is_diaS} x y : \texttt{diag} (S x) (S y) \to \text{Prop} :=
 \texttt{iiSS} : \forall (d : \texttt{diag} x y), \texttt{is_diaS} x y (\texttt{diaS} x y d).
Inductive \texttt{no_diag} x y : \texttt{diag} x y \to \text{Prop} := .

Definition \texttt{diag_inv} \{x y\} (d : \texttt{diag} x y) :
 \text{match} x, y \text{ return} \texttt{diag} x y \to \text{Prop} \text{ with}
 | 0, 0 \to \texttt{is_dia0}
 | S x, S y \to \texttt{is_diaS} x y
 | x, y \to \texttt{no_diag} x y
 end d.
Proof. destruct d; constructor. Qed.
Simple explicit UIP in nat

Definition diag_refl \{x\} : diag x x.
 Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.

Definition eq_diag \{x\} \{y\} (e : x = y) : diag x y.
 Proof. case e. apply diag_refl. Defined.

Definition diag_back \{x\} : \forall y, diag x y \rightarrow x = y.
 Proof. induction x; destruct y; intro d; destruct (diag_inv d);
 [reflexivity | apply f_equal, (IHx _ d)]. Defined.

Lemma diag_back_isrefl \{x\} : \forall (d : diag x x), eq_refl = diag_back d.
 Proof. induction x as [| x IHx]; simpl; intro d; destruct (diag_inv d);
 [reflexivity | case (IHx d). cbn. reflexivity]. Qed.

Lemma diag_mono \{x\} \{y\} (e : x = y) : e = diag_back (eq_diag e).
 Proof. destruct e; destruct x as [| x]; simpl.
 + destruct (diag_inv dia0); reflexivity.
 + destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
 Qed.

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.
 Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.
Definition `diag_refl {x} : diag x x`.
Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.

Definition `eq_diag {x y} (e : x = y) : diag x y`.
Proof. case e. apply diag_refl. Defined.

Definition `diag_back {x} : ∀ y, diag x y → x = y`.
Proof. induction x; destruct y; intro d; destruct (diag_inv d);
[reflexivity | apply f_equal, (IHx _ d)]. Defined.

Lemma `diag_back_isrefl {x} : ∀ (d : diag x x), eq_refl = diag_back d`.
Proof. induction x as [| x IHx]; simpl; intro d; destruct (diag_inv d);
[reflexivity | case (IHx d). cbn. reflexivity]. Qed.

Lemma `diag_mono {x y} (e : x = y) : e = diag_back (eq_diag e)`.
Proof. destruct e; destruct x as [| x]; simpl.
+ destruct (diag_inv dia0); reflexivity.
+ destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
Qed.

Corollary `UIP_nat (x: nat) (e : x = x) : eq_refl = e`.
Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.
Simple explicit UIP in nat

Definition diag_refl \{x\} : diag x x.
 Proof. induction x as [| x IHx]; constructor. apply IHx. Defined.

Definition eq_diag \{x y\} (e : x = y) : diag x y.
 Proof. case e. apply diag_refl. Defined.

Definition diag_back \{x\} : \(\forall y, \text{diag} x y \rightarrow x = y\).
 Proof. induction x; destruct y; intro d; destruct (diag_inv d);
 [reflexivity | apply f_equal, (IHx _ d)]. Defined.

Lemma diag_back_isrefl \{x\} : \(\forall (d : \text{diag} x x), \text{eq_refl} = \text{diag_back} d\).
 Proof. induction x as [| x IHx]; simpl; intro d; destruct (diag_inv d);
 [reflexivity | case (IHx d). cbn. reflexivity]. Qed.

Lemma diag_mono \{x y\} (e : x = y) : e = diag_back (eq_diag e).
 Proof. destruct e; destruct x as [| x]; simpl.
 + destruct (diag_inv dia0); reflexivity.
 + destruct (diag_inv (diaS x x diag_refl)) as [d]. case (diag_back_isrefl d); reflexivity.
 Qed.

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.
 Proof. rewrite (diag_mono e). apply diag_back_isrefl. Qed.
Definition **diag_refl** \(\{x\} : \text{diag} \ x \ x \).

Proof. induction \(x \) as \(\mid x \ \text{IH} \); constructor. apply \(\text{IH} \). Defined.

Definition **eq_diag** \(\{x \ y\} \ (e : x = y) : \text{diag} \ x \ y \).

Proof. case \(e \). apply **diag_refl**. Defined.

Definition **diag_back** \(\{x\} : \forall \ y, \text{diag} \ x \ y \rightarrow x = y \).

Proof. induction \(x \); destruct \(y \); intro \(d \); destruct \(\text{(diag_inv} \ d)\);

 [reflexivity \mid apply \ f_equal\, (\text{IH} \ _ \ d)]. Defined.

Lemma diag_back_isrefl \(\{x\} : \forall \ (d : \text{diag} \ x \ x), \text{eq_refl} = \text{diag_back} \ d \).

Proof. induction \(x \) as \(\mid x \ \text{IH} \); simpl; intro \(d \); destruct \(\text{(diag_inv} \ d)\);

 [reflexivity \mid case (\text{IH} \ d). cbn. reflexivity]. Qed.

Lemma diag_mono \(\{x \ y\} \ (e : x = y) : e = \text{diag_back} \ (\text{eq_diag} \ e) \).

Proof. destruct \(e \); destruct \(x \) as \(\mid x \); simpl.

 + destruct \(\text{(diag_inv} \ \text{dia0})\); reflexivity.

 + destruct \(\text{(diag_inv} \ (\text{diaS} \ x \ x \ \text{diag_refl})) \) as \([d] \). case \(\text{(diag_back_isrefl} \ d)\); reflexivity.

Qed.

Corollary UIP_nat \(x : \text{nat}\) \((e : x = x) : \text{eq_refl} = e \).

Proof. rewrite \(\text{(diag_mono} \ e)\). apply **diag_back_isrefl**. Qed.
Horribly simpler proof of UIP in nat along the same scheme...

Fixpoint diagTF (x y : nat) : Prop :=
 match x, y with
 | 0, 0 => True
 | S x, S y => diagTF x y
 | _, _ => False
end.

Definition diagTF_refl x : diagTF x x :=...

Definition eq_diagTF {x y} (e : x = y) : diagTF x y :=...

Definition diagTF_back {x} : ∀ y, diagTF x y → x = y :=...

Lemma diagTF_back_isrefl {x} : ∀ (d : diagTF x x), eq_refl = diagTF_back d.

Lemma diagTF_mono {x y} (e : x = y) : e = diagTF_back (eq_diagTF e).

Corollary UIP_nat (x: nat) (e : x = x) : eq_refl = e.
Proof. rewrite (diagTF_mono e). apply diagTF_back_isrefl. Qed.

... without diag and its inversion :(
Equality is too easy, what about \(\leq\)?

Inversion performed “as if” \(\leq\) was defined as

\[
\text{Inductive le n : nat \to Prop :=}
\]
\[
| \text{le_e_0 : n = 0 \to n \leq 0} |
\]
\[
| \text{le_e_S m : n = S m \to n \leq S m} |
\]
\[
| \text{le_S m : n \leq m \to n \leq S m}. |
\]

Definition \text{eq_le n m (e : n = m) : n \leq m :=}
\[
\text{match e with eq_refl => le_n n end.}
\]

\[
\text{Inductive le_0 [n] : n \leq 0 \to Prop :=}
\]
\[
| \text{le_0_e : \forall e, le_0 (eq_le e).} |
\]

\[
\text{Inductive le_Sm [m n] : n \leq S m \to Prop :=}
\]
\[
| \text{le_Sm_e : \forall e, le_Sm (eq_le e)} |
\]
\[
| \text{le_Sm_S : \forall l, le_Sm (le_S n m l)}. |
\]

Lemma \text{le_inv \{n m\} (l : n \leq m) :}
\[
\text{match m with}
\]
\[
| O => le_0 |
\]
\[
| S m => @le_Sm m |
\]

end n l.
Equality is too easy, what about \leq?

Inversion performed “as if” \leq was defined as

\[
\text{Inductive } \text{le } n : \text{nat } \to \text{Prop } := \\
| \text{le}_\text{e}_0 : n = 0 \to n \leq 0 \\
| \text{le}_\text{e}_S \text{ m } : n = S \text{ m } \to n \leq S \text{ m} \\
| \text{le}_S \text{ m } : n \leq \text{m } \to n \leq S \text{ m}.
\]

Definition \text{eq}_\text{le } n \text{ m } (e : n = m) : n \leq m := \\
 \text{match e with } \text{eq}_\text{refl } \Rightarrow \text{le}_n n \text{ end.}

\text{Inductive } \text{le}_0 [n] : n \leq 0 \to \text{Prop } := \\
| \text{le}_0_e : \forall e, \text{le}_0 (\text{eq}_\text{le } e).

\text{Inductive } \text{le}_\text{Sm } [m \text{ n}] : n \leq S \text{ m } \to \text{Prop } := \\
| \text{le}_\text{Sm}_e : \forall e, \text{le}_\text{Sm} (\text{eq}_\text{le } e) \\
| \text{le}_\text{Sm}_S : \forall l, \text{le}_\text{Sm} (\text{le}_S n \text{ m } l).

Lemma \text{le}_\text{inv } \{n \text{ m}\} (l : n \leq m) : \\
 \text{match m with} \\
 | 0 \Rightarrow \text{le}_0 \\
 | S \text{ m } \Rightarrow \text{@le}_\text{Sm m} \\
 \text{end n l.}
Unicity of proofs of ≤

Lemma `eq_is_le_n {n} (e : n = n) : le_n n = eq_le e.
Proof. rewrite (UIP_refl_nat n e). reflexivity. Qed.

Lemma `lenn_unique {n} (l : n ≤ n) : le_n n = l.
Proof.
 destruct n; destruct (le_inv l); try apply eq_is_le_n. case (lt_irrefl _ l).
Qed.

Inductive is_le_S {n m} : n ≤ S m → Prop :=
| is_le_S_intro : ∀ l, is_le_S (le_S n m l).

Lemma `leS_is_le_S n m (lS : n ≤ S m) : n ≤ m → is_le_S lS.
Proof.
 destruct (le_inv lS) as [e | ll]; intro l; try constructor.
 exfalso; rewrite e in l; apply (lt_irrefl _ l).
Qed.

Fixpoint `le_unique {n m} (p : n ≤ m) : ∀ q, p = q.
Proof.
 destruct p as [| m p]; intro q; cbn.
 - destruct (lenn_unique q); reflexivity.
 - destruct (leS_is_le_S q p). apply f_equal, le_unique.
Qed.
The Braga method

Dominique Larchey-Wendling and Jean-François Monin.

In Klaus Mainzer, Peter Schuster, and Helmut Schwichtenberg, editors.

Proof and Computation II: From Proof Theory and Univalent Mathematics to Program Extraction and Verification.

Small inversions

http://home/jf/www/Proof/Small_inversions/2022/