
Proof Pearl: Faithful Computation and Extraction
of µ-Recursive Algorithms in Coq
Dominique Larchey-Wendling #

Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France

Jean-François Monin #

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, France

Abstract
Basing on an original Coq implementation of unbounded linear search for partially decidable predicates,
we study the computational contents of µ-recursive functions via their syntactic representation, and
a correct by construction Coq interpreter for this abstract syntax. When this interpreter is extracted,
we claim the resulting OCaml code to be the natural combination of the implementation of the
µ-recursive schemes of composition, primitive recursion and unbounded minimization of partial
(i.e., possibly non-terminating) functions. At the level of the fully specified Coq terms, this implies
the representation of higher-order functions of which some of the arguments are themselves partial
functions. We handle this issue using some techniques coming from the Braga method. Hence we
get a faithful embedding of µ-recursive algorithms into Coq preserving not only their extensional
meaning but also their intended computational behavior. We put a strong focus on the quality of
the Coq artifact which is both self contained and with a line of code count of less than 1k in total.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Type theory; Theory of computation → Functional constructs; Software and its
engineering → Formal methods; Software and its engineering → Functional languages; Theory of
computation → Higher order logic

Keywords and phrases Unbounded linear search, µ-recursive functions, computational contents,
Coq, extraction, OCaml

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.21

Supplementary Material Software: https://github.com/DmxLarchey/Murec_Extraction
archived at swh:1:dir:4d128568b56a17277c4f69ee1805e3910665f34f

Funding Dominique Larchey-Wendling: partially supported by NARCO (ANR-21-CE48-0011).

1 Introduction

The theory of µ-recursive functions is a well established and widely used model for representing
(partial) recursive functions of type Nk⇀N where Nk is the type of tuples of natural numbers
of arity k. It originates from primitive recursive functions, invented in the 1920s in the Hilbert
school (the modern denomination was coined by Rózsa Péter), which is the smallest class
of functions containing constant functions, the successor function, projections (of the i-th
argument), and closed under the schemes of composition and primitive recursion. Primitive
recursive schemes define provably total functional relations but do not cover all the spectrum
of computability, the Ackermann function giving the most popular counter-example.

Gödel defined the larger class of “general” recursive functions, developing ideas of
Herbrand, and Kleene [7] later proposed to augment the allowed primitive recursive schemes
with that of unbounded minimization of partial functions, giving the class of µ-recursive
functions, equivalent (extensionally) to that of general recursive functions, and of which
primitive recursive functions form a natural, strict sub-class.

© Dominique Larchey-Wendling and Jean-François Monin;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 21; pp. 21:1–21:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dominique.larchey-wendling@loria.fr
mailto:jean-francois.monin@univ-grenoble-alpes.fr
https://doi.org/10.4230/LIPIcs.ITP.2023.21
https://github.com/DmxLarchey/Murec_Extraction
https://archive.softwareheritage.org/swh:1:dir:4d128568b56a17277c4f69ee1805e3910665f34f;origin=https://github.com/DmxLarchey/Murec_Extraction;visit=swh:1:snp:ee2784b24e4616102a786668752538f64ad26aaf;anchor=swh:1:rev:52b860574c6d9787f80acd5b3d39095064b20140
https://anr.fr/Project-ANR-21-CE48-0011
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Faithful Computation and Extraction of µ-Recursive Algorithms

(∗∗ val ra_compute : recalg → nat list → nat ∗∗)
let rec ra_compute s v =

match s with
| Ra_zero → O
| Ra_succ → match v with y :: _ → S y

| Ra_proj i → vec_prj v i

| Ra_comp (s, svec) → ra_compute s
(
vec_map_compute (fun t → ra_compute t v) svec

)
| Ra_prec (s, s′′) → match v with y :: u →

prim_rec_compute
(
ra_compute s

) (
fun w n x → ra_compute s′′ (n :: x :: w)

)
u y

| Ra_umin s′ → umin_compute
(
fun n → ra_compute s′ (n :: v)

)
O

Figure 1 An OCaml interpreter for µ-algorithms.

In the context of mechanization, µ-recursive functions have been implemented and/or used
in several projects [13, 9, 2, 10]. Most of these developments are concerned with computability
theory (the S-n-m theorem, Rice’s theorem, Kleene’s normal form theorem, Hilbert’s tenth
problem) so they mainly focus on their extensional properties. On the contrary, in this proof
pearl, we mostly focus on the intentional contents of µ-recursive schemes. We call these
µ-algorithms and reserve the term “function” for the extensional notion.

Of course, µ-algorithms do not provide all the algorithmic means to compute values:
for instance, they lack course-of-values recursion, nested recursion, higher-order primitive
recursion, higher-order functions, and they are grounded on the very rudimentary datatype
natural numbers, hence, when e.g. computing with lists or trees, one must pass through
encoders and decoders. However, µ-recursive functions are universal in that they capture all
computable functions and, in comparison with other models with the same power, they have
the usual “referential transparency” advantage of functional languages over imperative ones,
which naturally makes them better suited to equational and compositional reasoning than,
say, Turing or Minsky (counter) machines.

In a contemporary approach, µ-algorithms can be described by an abstract syntax and
a simple interpreter providing the computation rules to be followed by each construct.
This abstract syntax can be implemented by the following type, where Ra_comp encodes
composition, Ra_prec encodes primitive recursion, Ra_umin encodes minimization, and
Ra_zero, Ra_succ and Ra_proj are obvious.

type nat = O | S of nat
type recalg = Ra_zero | Ra_succ | Ra_proj of nat | Ra_comp of recalg ∗ recalg list |

Ra_prec of recalg ∗ recalg | Ra_umin of recalg

A natural OCaml program for interpreting pieces of code written in the above language is
displayed in Figure 1. The arguments (s, svec) of Ra_comp stand respectively for (the source
code of) a n-ary function and a n-tuple of functions, whose output is expected to be fed as
inputs for (the interpreter of) s. The arguments (s, s′′) of Ra_prec stand respectively for
the result to be returned in the base case (the last argument is zero) and the function to
be applied in the step case (the last argument is a successor). For convenience, the tuple
⟨x1, . . . , xk⟩ of natural numbers representing the inputs of a µ-recursive algorithm is encoded
by a list in the reverse order [xk ; . . . ; x1], so that the driving argument n for primitive
recursion is the head of the list.

The functional implementations of µ-recursive schemes are straightforward: vec_prj for
projections, vec_map_compute for compositions, prim_rec_compute for primitive recursion
and umin_compute for µ-minimization.

D. Larchey-Wendling and J.-F. Monin 21:3

(∗∗ val vec_prj : α list → nat → α ∗∗)
let rec vec_prj u i = match u with

| x :: v → match i with O → x | S j → vec_prj v j

(∗∗ val vec_map_compute : (α → β) → α list → β list ∗∗)
let rec vec_map_compute f = function
| [] → []
| x :: v → f x :: vec_map_compute f v

(∗∗ val prim_rec_compute : (α → β) → (α → nat → β → β) → α → nat → β ∗∗)
let rec prim_rec_compute f g x = function
| O → f x

| S n → g x n (prim_rec_compute f g x n)

(∗∗ val umin_compute : (nat → nat) → nat → nat ∗∗)
let rec umin_compute f n = match f n with
| O → n

| S _ → umin_compute f (S n)

Though the above code is not very complicated, there are some subtle points making it a
not-so-trivial case study if we want to prove its correctness w.r.t. a formal specification. In
particular, as a purely functional piece of code, it seems reasonable to get it by extraction of
a Coq proof. However, unbounded minimization or µ-minimization of a (partial) function
f : N × N⇀N consists in the (partial) function µf : N⇀N such that µf(x) is the number n
for which f(n, x) is 0 and f(i, x) is defined and not equal to 0 for every number i less than n.
Although uniquely defined, it may not exist. For instance, µ-minimization of a constant
(non-zero) function (e.g. f(·, ·) = 1) is the nowhere defined function of type N⇀ N. Indeed,
as soon as µ-minimization is available, all the other constructs are contaminated and encode
possibly non-terminating functions. Altogether, not only ra_compute is clearly undefined on
some inputs (where computation does not terminate), but it relies on higher-order programs
such as vec_map_compute and prim_rec_compute which have to be themselves considered
as non-terminating since they are applied to possibly non-terminating arguments, all in a
nested recursive manner.

In a previous work [9], the first author showed that it is possible to derive a Coq term which
computes the same result as a given µ-recursive function. The latter was first transformed,
by bounding it using the folklore “fuel” technique, thus giving a primitive recursive (hence
terminating) algorithm, and then applying Constructive Epsilon, i.e. unbounded minimization
of inhabited and decidable predicates over N. Kleene used a comparable trick in order to
establish that every µ-recursive function can be obtained from the µ-minimization of some
primitive recursive function, i.e. the normal form theorem [8]. In his section “resource
bounded evaluation,” Carneiro [2] uses the same fuel trick in Lean to approximate partial
computable functions with primitive recursive ones, combined with a variant of Constructive
Epsilon he calls find.

Though this approach is sufficient for theoretical purposes such as studying the expressive
power of computational models,1 it is unsatisfactory from an algorithmic point of view: the
underlying calculation boils down to a systematic and heavy trial-and-error process that

1 Most of the textbook presentations of µ-recursive functions like e.g. [12, 1] focus on their extensional
meaning as set-theoretic partial functions, i.e., the relation between inputs and outputs, or so called
graph, but not on the calculations performed.

ITP 2023

21:4 Faithful Computation and Extraction of µ-Recursive Algorithms

is unfaithful to the intended behavior, unlike the intuitive OCaml code above. Directly
reasoning on the latter with extraction in mind is actually more demanding: we need to
express the computational counterpart of the desired specific program in a type-theoretic
framework where only total functions are allowed. In other words, we need to provide “generic”
partial termination certificates for (the Coq counterpart of) the above OCaml functions.

We show here how the Braga method [11], our trick to manage termination issues in
recursive programs, can be adapted in the present case study in order to satisfy the above
requirements. In a nutshell, the Braga method allows us to define functions of x whose
termination is provided by an additional domain argument d : Dx, of sort Prop, where D is
inductively defined and systematically derived from the shape of the desired program Pgm to
be extracted. In this way we can express a functional program

Fixpoint g x (d : Dx) {struct d} := . . . g x′ d′ . . .

where d′ : Dx′ is structurally smaller than d – the guard condition which ensures termination.
Then we can reason on the partial correctness properties of g before (and without) bothering
about termination (e.g., without defining a measure which, anyway, could not exist in all
cases). The domain D is typically the domain of an inductive input-output graph G, which is
nothing but a relational presentation of Pgm and can be seen as a complete characterization
of Pgm. In [11], G is also used in the Σ-type of g : ∀x, D x→ {y | Gxy} so that, after erasure,
the extracted OCaml program automatically satisfies this characterization as well as the
partial correctness properties which are derived from it.

In the case of µ-algorithms we need to go further than [11]. First, partial functions are
essential here whereas almost all examples considered in [11] turn out to be total functions.
Second, we already have a natural input-output graph: a relational semantics for the abstract
syntax of µ-algorithms. However, this semantics is naturally expressed as a combination
of partial functions, one for each construct of µ-algorithms. In order to mimic the original
formulation, we encode partial functions from Nk to N by total functions from Nk to N→Prop,
yielding a compact and crystal-clear specification. This semantics is detailed in section 4.2
and noted J.K. Looking back at the intended program above, we need to extend the Braga
method to get Coq programs that: first, combine in a similar and hopefully modular way
an implementation of µ-minimization with “ordinary looking” structural recursion on data
structures such as nat or the syntax of µ-algorithms; and second, are driven by the domain
of an input-output graph G, such as J.K, that is not necessarily expressed inductively. A
suitable general type scheme for such programs is simply ∀x, (∃y,Gx y) → {y | Gxy}, which
can be implemented either by ordinary structural recursion on the first input x, or by using
the Braga method on a termination certificate derived from the second input (∃y,Gx y).

Additionally, µ-minimization provides another opportunity to change the Braga ma-
chinery a little bit: for umin_compute, which is basically a tail-recursive presentation of an
(unbounded) loop for linear search, the propagation of assertions is not encoded backwards
by a Σ-type embedding of the expected input-output relation, but forwards by a parameter
containing an inductive invariant. This makes the enriched Coq program already tail-recursive
and, more importantly, proofs of propagation become simpler.

Remarks about the Coq code. The artifact we publicly deliver only requires a minimal
amount of Coq machinery to implement linear search and the interpreter for µ-recursive
algorithms. To illustrate this and also produce self-contained code, we do not use the Coq
standard library, except for the modules Utf8 to allow for better human readable Coq code,
and Extraction to witness our claims about the faithfulness of the extracted code to the

https://github.com/DmxLarchey/Murec_Extraction

D. Larchey-Wendling and J.-F. Monin 21:5

“natural” OCaml interpreter. The code is intended to be read as an essential part of this
pearl, and we invite the reader to consult the associated artifact, starting with the README.md
file. We tried to make the artifact readable by a human, without the help of the type-checker.
This means that proofs written with scripts (Ltac) are both very short, and with only light
automation not beyond trivial or easy. When the contents of terms is critical, e.g. when
it contributes to extraction, or in order to visualize structural decrease, we write these as
λ-terms.

Contributions. We hope our contributions to be somewhat valuable for people using Coq or
a similar Type Theory as a programming language, but nothing original is claimed about com-
putability theory. First of all, we provide a short, clean, readable and (hopefully) informative,
Coq implementation of the partial linear search algorithm, extending Constructive Epsilon
to partially decidable predicates, using a variant of the Braga method that also fully takes
into account the tail recursivity of the underlying program. Second, we contribute a Coq
interpreter for µ-recursive algorithms, which follows their intended (functional) operational
semantics, taking [1] as reference, as witnessed by a neat extraction to OCaml. Third, this
interpreter relies on linear search in a way that illustrates a general approach to integrating
programs written with the Braga method (or variants of it) and structural recursive programs
that depend on each other in a nested or mutual recursive way. With this reasonably sized and
documented code, we also hope to popularize further some dependent inversion techniques
that sometimes hinder the usage of Coq structural fixpoints. For instance, see our small
library for dependent vectors that features improvements on the standard library and is of
independent interest.

This proof pearl is constructed as follows. Section 2 provides the prerequisites needed to
understand the paper and the associated Coq artifact. Section 3 explains how to generalize
the specification of the linear search algorithm to be able to search with partially decidable
predicates. This generalization of Constructive Epsilon is the essential ingredient to implement
the scheme of µ-minimization. Section 4 presents the Coq implementation of µ-algorithms
with their extensional semantics, following [1], and then their intentional contents as a Coq
term, an interpreter computing the output, if provided with a proof of termination on the
given input. Section 5 presents the result of the extraction of the above mentioned interpreter
as an OCaml program. We list the various tweaks that help at completely rendering a
readable (and herein presentable) program. We also explain how to get rid of some possibly
unwanted OCaml tricks used by the extraction plugin to circumvent the limitations of the
OCaml type-system, as compared to that of Coq, the source type theory.

2 Type-theoretic basics and notations

We present this pearl in the language of the type theory of Coq containing the sort Prop, the
impredicative type of propositions, and the sort Set, the predicative type at the ground-level
of sorts in Type, the predicative type hierarchy above both Prop and Set.

The basic inductive structures we use are the propositions (True : Prop := I) and
(False : Prop := .), the data types unit : Set := tt, first-order logic connectives and Peano
natural numbers nat : Set := O | S (_ : nat), endowed with natural (≤) and strict (<) orders.
Only a minimal amount of basic arithmetic results are needed, for which we give tiny proofs
in arith_mini.v. We won’t use lists but vectors instead, see Section 4.4.

We will use tuples (n-ary products) and dependent pairs (Σ-types) that come under
various forms in Coq, see files sigma.v, relations.v and vec.v. We will write e.g. ⟨a, b, c⟩
for a triple of three values that may be proofs of propositions, hence giving of a proof of say
A ∧ B ∧ C, or else terms giving a value in the product type A×B × C.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/README.md
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/arith_mini.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/sigma.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/relations.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/vec.v

21:6 Faithful Computation and Extraction of µ-Recursive Algorithms

Given a predicate P : X → Prop, we write dependent pairs as ⟨⟨x, p⟩⟩ where p is a proof
of P x (hence dependent on x). In this paper, depending on the context (Prop vs. Type),
⟨⟨x, p⟩⟩ denotes either a proof of the proposition ∃x, P x : Prop, also written exP , or an
inhabitant of the type {x | P x} : Type, also written sigP . Likewise, given d := ⟨⟨x, p⟩⟩, we
write π1 d := x and π2 d := p for the projections of the dependent pair d.

In the file relations.v, we also give basic tools to manipulate 0-ary, unary and binary
relations (i.e. predicates), like notations for composition, inclusion, conjunction. A unary
relation P : X → Prop is functional (or deterministic) if there is at most one x s.t. P x.

3 Unbounded linear search in Coq

The linear search algorithm on an unbounded interval of N (LS for short) is the main engine
of µ-minimization. As one of the simplest examples of a program which computes a partial
(recursive) function, it is particularly interesting. It can be specified as follows. Given a
decidable predicate P on N and a starting number s : N, find an n : N greater or equal to s
such that P (n). Among its many other applications, we can cite Constructive Epsilon, which
corresponds to the special case where s = 0. More precisely, it realizes the specification
ex P → sig P , a short hand for (∃x, P x) → {n | P n}. As we reuse some ideas coming from
ConstructiveEpsilon.v of the Coq standard library, the name “Constructive Epsilon” will
below refer to this implementation.

Assuming a suitable program test, here is an obvious OCaml program for unbounded
linear search:

let rec loop s = if test s then s else loop (s+ 1)

Let us informally write Gr_thanP (s) for the set of natural numbers x such that x ≥ s and
P x holds. If Gr_thanP (s) is inhabited, the returned value is actually the least value m in
Gr_thanP (s); but otherwise, the algorithm loops forever. The underlying function is then
clearly partial. In the following we discuss the contents of file linear_search.v.

3.1 Specification of linear search
Aiming first at a general Coq specification of the unbounded linear search algorithm, we
actually don’t need to assume that P is decidable on nat, but only between s and a large
enough number. For additional generality and convenience we also consider two predicates
Dtest (the domain of test) and Q such that, whenever Dtest holds, P or Q can be decided
and P and Q cannot hold together.

test : ∀n, Dtest n→ {P n} + {Q n} PQ_abs : ∀n, Dtest n→ P n→Q n→ False

We then only assume that Dtest holds between s and a large enough number. On the side of
the post-condition, we see that not only Dtest and P hold at the returned value m, if any,
but also that s ≤ m and that Dtest and Q hold at all k such that s ≤ k < m. Defining

Definition btwn (A : nat → Prop) n m := n ≤ m ∧ (∀k, n ≤ k < m→A k) (1)

and with the notation A ∧1 B := λn, An ∧ B n, the strongest post-condition characterizing
the output of LS is then:

Definition Postls s x := (Dtest x ∧ P x) ∧ btwn (Dtest ∧1 Q) s x.

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/relations.v
https://coq.inria.fr/library/Coq.Logic.ConstructiveEpsilon.html
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/linear_search.v

D. Larchey-Wendling and J.-F. Monin 21:7

On the side of the pre-condition of LS, we assume the existence of some x in Gr_thanP (s)
and the ability to perform test from s to x. It can be stated using the following predicate.

Definition Prels s x := (Dtest x ∧ P x) ∧ btwn Dtest s x.

The expected type for linear search (starting at s) is then (∃x, Prels s x)→{m | Postls s m}.

3.2 Termination of linear search

Observe that the witness x mentioned in the pre-condition is not used in the search loop –
it is not available at the informative level. Moreover, btwn Q s x is not assumed, that is,
x is not necessarily minimal in Gr_thanP (s). But x can be used to compute a termination
certificate since its very existence guarantees that the search loop eventually halts. The usual
argument, in an imperative setting, consists in proving that x− s is a loop variant. However,
as mentioned in the introduction, we can take advantage of an essential feature of type theory
of Coq to provide a direct inductive characterization of termination of sort Prop called Dls,
to be used as follows: Fixpoint loop n (d : Dls n) { struct d } := . . . Only n can be used
in the informative part of the computation; on the other hand, a strict sub-term of d has to
be provided in any recursive call. Consistently, d is erased at extraction time. The design
of Dls follows the pattern of recursive calls of the target program and keeps track of the
information resulting from the tests carried out. Here is our definition of Dls : nat → Prop:

c : Dtest n ∧ P n

Dls_stop c : Dls n

t : Dtest n dS : Dls (S n)
Dls_next t dS : Dls n

Defining Dls_π1 d as the immediate Dtest n component of d : Dlsn using an easy pattern-
matching, and Dls_π2 d q as the immediate Dls (S n) component of d when q : Q n, using
a more subtle pattern-matching, a version of loop returning a simple natural number is

Fixpoint loop n (d : Dls n) { struct d } : nat :=
match test n (Dls_π1 d) with
| left p ⇒ n

| right q ⇒ loop (S n) (Dls_π2 d q)
end.

The second projection Dls_π2 d returns a λ-term of type Qn → Dls (S n) for each
constructor. In the easy (and “intended”) case where d is Dls_next t dS, it just returns
λ_, dS. And when d is Dls_stop ⟨t, p⟩, then t, p and q conspire with PQ_abs to construct a
proof of the empty type False, on which an additional pattern matching provides a strict
sub-term of any proof (of any inductive predicate).

Definition Dls_π2 {n} (d : Dls n) : Q n → Dls (S n) :=
match d with
| Dls_stop ⟨t, p⟩ ⇒ λ q, match PQ_abs t p q with end
| Dls_next _ dS ⇒ λ _, dS

end.

The braces around the first parameter {n} mark an implicit parameter, and the Coq code of
Dls_π2 witnesses structural decrease in a way suitable for a human to check at first glance.

ITP 2023

21:8 Faithful Computation and Extraction of µ-Recursive Algorithms

3.3 Building an initial termination certificate
A termination certificate d for s can be computed (in the hidden realm of propositions and
proofs) from the existence of x such that Prels s x. It is easy to perform from a suitable
inductive characterization of btwn but, in order to stick to its arithmetical definition (1), we
simulate the two constructors and a special induction principle for btwn by proving:

btwnrefl {A n} : btwn A n n

btwnnext {A n m} : btwn A n m→A m→ btwn A n (S m)
btwnind A a b : btwn

(
λn, A (S n) →A n

)
a b→A b→A a.

See the file between.v for the code of btwn and its tools that we use here to get

Lemma Prels_Dls {s} : (∃x, Prels s x) → Dls s

by applying btwnind to Dls and conclude with the monotonicity of btwn.

3.4 A tail-recursive program for the full loop
In order to prove that the output of the previous version of loop satisfies the desired post-
condition, we could promote its type from nat to {m : nat | Postls s m}. This would lead to
a decomposition of the result of the recursive call into a pair ⟨⟨m, po⟩⟩, where m is the found
value and po the associated proof of post-condition, followed by the construction of a similar
pair ⟨⟨m, po′⟩⟩, only different on its proof component, to be returned. A more elegant way is
to proceed with proofs as with data in functional programming, when mimicking while loops
using recursivity and accumulators. A remarkable point is that in the proofs-as-programs
paradigm, proof accumulators turn out to be (proofs of) loop invariants, as illustrated below
by b becoming btwnnext b ⟨t, q⟩ in the recursive call.

In more detail, we first fix a starting value s and take as invariant btwn (Dtest ∧1
Q) s n. The linear search algorithm then calls loop with s as the initial input value for n,
(Prels_Dls e) as the initial termination certificate, where e is a proof of (∃n, Prels s n),
and btwnrefl as the initial (proof of the) invariant. In the course of the loop, we assume a
proof of the invariant for n named b; the proof of Dtest n derived from d is first bound to t;
in the recursive call, the (proof of the) invariant for S n is derived from b, t and q : Q n using
btwnnext; and finally, when the test provides a proof p : P n, the desired proof of Postls s n

is just ⟨t, p⟩ paired with the invariant b. Altogether, the extended code of LS is rather short.

Fixpoint loop n (d : Dls n)
(
b : btwn (Dtest ∧1 Q) s n

)
: {m | Postls s m} :=

let t := Dls_π1 d in
match test n t with
| left p ⇒ ⟨⟨n, ⟨t, p, b⟩⟩⟩
| right q ⇒ loop (S n) (Dls_π2 d q)

(
btwnnext b ⟨t, q⟩

)
end.

Definition linear_search : (∃x, Prels s x) → {m | Postls s m} :=
λ e, loop s (Prels_Dls e) btwnrefl.

3.5 From linear search to µ-minimization
To use the above linear search program, we only have to instantiate P , Q, Dtest and the
test function, to provide a corresponding proof of PQ_abs, and possibly to add stubs to
adapt the pre- and post-conditions. For instance in the case of Constructive Epsilon, we are

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/between.v

D. Larchey-Wendling and J.-F. Monin 21:9

given an arbitrary predicate P on nat, with the hypothesis P_dec : ∀n, {P n} + {¬P n}.
Then we keep P and take ¬P for Q, (λ_, True) for Dtest and λn_, P_dec n for test; the
proof of PQ_abs is trivial.

The case of µ-minimization is more interesting, in particular, we have a non-trivial
instantiation for Dtest. We are given a functional relation F : nat → nat → Prop such
that, if n is in the domain of F , then the y such that F ny can be computed by a program
f : ∀n, ex (F n) → sig (F n). We want to transfer this to the minimization of F , that is,
assuming the existence of a minimal m such that F is defined and strictly positive for all
x < m, and F m O, we want to provide a computation returning this (unique) m. Formally,
we define:

def_at F := λn, ∃y, F n y ze_at F := λn, F n O pos_at F := λn, ∃k, F n (S k)
umin0 F y := ze_at F y ∧ ∀n, n < y → pos_at F n

The formal specification of µ-minimization is then ex (umin0 F)→sig (umin0 F). As a natural
and cheap generalization, we also define umin F s y := ze_at F y ∧ btwn (pos_atF) s y.
Then µ-minimization is the special case, with s := 0, of

∀s, ex (umin F s) → sig (umin F s) (2)

This is very close to the specification of linear search, with Dtest instantiated as def_atF ,
P as ze_atF and Q as pos_atF respectively. In order to use its implementation given in
Section 3.4, we just have to feed it with a proof of PQ_abs (simple, using functionality of F
and discrimination between O and S _) and a suitable test program:

Let test n (t : Dtest n) : {P n} + {Q n} :=
let (k, ek) := f n t in
match k return F _ k → _ with O ⇒ λ e, left e | S r ⇒ λ e, right ⟨⟨r, e⟩⟩ end ek

where the term ek : F nk is analyzed as either e : F n O (when k matches O) or e : F n (S r)
(when k matches S r).

However, the code obtained is this way is somewhat unsatisfactory, because each call to
loop first constructs a dependent Boolean from the input and next immediately performs
a pattern matching on the latter, and this intermediate Boolean would be reflected at
extraction stage. A simple way to improve this state of affairs consists in performing a
program transformation on the Coq loop, taking advantage, in passing, of P ⊆ Dtest and
Q ⊆ Dtest. Those transformations have only an impact on the loop (6 lines of code):

Fixpoint loop n (d : Dls Dtest P n)
(
b : btwn Q s n

)
: sig (umin F s) :=

let (k, ek) := f n (Dls_π1 Dtest P d) in
match k return F _ k → _ with
| O ⇒ λ e, ⟨⟨n, ⟨e, b⟩⟩⟩
| S _ ⇒ λ e, loop (S n)

(
Dls_π2 Dtest . . . d ⟨⟨_, e⟩⟩

) (
btwnnext b ⟨⟨_, e⟩⟩

)
end ek.

and the code of linear_search can be reproduced as is.
In conclusion to the file umin_compute.v, the program umin0_compute, which is needed in

our full development of µ-recursive algorithms, is defined in two lines by functional composition
of linear_search and simple monotonicity lemmas relating the various statements of umin.
The reader can consult the file umin_compute_details.v to get a gradual derivation of
the above loop from the one used in the original linear_search. As a side remark, it is

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/umin_compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/umin_compute_details.v

21:10 Faithful Computation and Extraction of µ-Recursive Algorithms

possible to present µ-minimization as just an instance of a parametric version of linear search,
allowing us to share not only the Dls predicate but also the code of the loop whatever
the type of the result of the test function and the resulting extracted program. But, as
symptomatic to many generic code constructions, it is unfortunately not yet as short and
reasonably explainable as the above compromise between code sharing and code readability,
where we transform a small part of the generic code to get µ-minimization.

4 Representing µ-algorithms in Coq

Basing on our implementation of µ-minimization, we now switch to the intentional encoding
of all µ-recursive algorithms in Coq. We follow the idea already developed in [9, 10] of
capturing the syntax of µ-algorithms in a type dependent on the arity (number of parameters
of the corresponding function), and nested with a parametric type of dependent vectors.
However, in this pearl, we insist on giving a minimized and as clean as possible account of
these types.

We do not use lists at all. Instead, for a given base type X, we use vectors of type
denoted vecX n, which are lists but augmented with a further dependency on their length,
herein denoted using n : nat. Components of vectors are accessed through indices in the
finite type idxn : Set also dependent on n. In the sequel, ⟨ ⟩ denotes the empty vector, a :: v
denotes the vector made of a followed by v, and v.[i] denotes the ith element of v. We also
might write ⟨a; b; c⟩ for the vector a :: b :: c :: ⟨ ⟩. Our files index.v and vec.v reproduce the
types Fin.t and Vector.t of the Coq standard library but are better tailored towards clean
extraction. Technical details on our library are postponed to 4.4.

4.1 µ-algorithms as a nested dependent type
Usually leaving arities (denoted using the letters a, b) as implicit arguments of Coq construct-
ors or terms, we define the type of µ-algorithm of arity a as recalg a or simply Aa : Set
herein, with the following constructors (inductive rules):

ra_zero : A0 ra_succ : A1

i : idx a
ra_proj i : Aa

f : Ab g : vec Aa b

ra_comp f g : Aa

f : Aa g : A2+a

ra_prec f g : A1+a

f : A1+a

ra_umin f : Aa

This inductive data-structure that we define in recalg.v mimics that in [9] but we use
slightly different schemes to better match those of [1] that serve as our textbook reference
here. For instance, we do not have constants (of arity 0) except for the zero constant itself
which appears both at arity 0 and at arity 1 in [9].

The constructor ra_comp _ _ for composition nests the type A_ with the type of vectors
vec _ _, hence Coq fails to automatically derive a powerful enough eliminator for that nested
inductive type. For completeness or further extensions, we provide a hand written general
eliminator recalg_rect for Aa in the file recalg.v (as a suitable fixpoint), but we will
not need it in this pearl since we will always reason or compute inductively on Aa using
hand-written fixpoints, i.e. by inlining recalg_rect.

4.2 The semantics of µ-algorithms
We characterize the semantics JSaK va o of the µ-algorithm of Sa : Aa by interpreting it as a
binary relation between an input vector va : vec nat a and an output value in o : nat, hence for
IOa := vec nat a→ nat → Prop, we seek to define JSaK : IOa. The denotation Sa is intended

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/index.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/vec.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg.v

D. Larchey-Wendling and J.-F. Monin 21:11

to recall that this is S(ource code) for arity a. Notice that this provides an extensional
meaning to Sa that restricts the possible algorithmic interpretations (or intentional meaning)
of Sa which must realize that specification. To do so, we define ra_sem : ∀{a},Aa → IOa as
a fixpoint where we denote JSaK := ra_semSa:

Fixpoint ra_sem {a} (Sa : Aa) : IOa :=
match Sa with
| ra_zero ⇒ Zr | ra_comp Sb Sab ⇒ Cn JSbK (vec_map J·K Sab)
| ra_succ ⇒ Sc | ra_prec Sa Sa′′ ⇒ Pr JSaK JSa′′K
| ra_proj i ⇒ Id i | ra_umin Sa′ ⇒ Mn JSa′K
end where JSaK := (ra_sem Sa).

Notice the nesting of vec_map which applies ra_sem, to every component of the vector
Sab : vec Aa b, and the references to Zr, Sc, Id, Cn, Pr, Mn which correspond to the Coq
encoding of µ-recursive schemes as defined in [1]. The fixpoint proceeds by structural
induction on Sa but the guard-checker inspects the code of the nested instance of vec_map
to ensure J·K is called only on sub-terms of the vector Sab. Notice that since the inductive
type Aa nests the type of vectors vec Aa b in the constructor ra_comp _ _, the only way to
traverse such structures is via nested fixpoints which, if properly written, can fortunately be
accepted by the guard condition of the type-checker.

As a side note, instead of a direct fixpoint, we could use the general recursor recalg_rect
(see file recalg.v), but this would have unfortunate consequences: it would hinder a unified
presentation of ra_sem and ra_compute. Indeed, the induction hypothesis for the ra_comp
constructor does not expect a vector but a (dependent) map, and would thus be incompatible
with the output type of vec_map, hence involving some glue code. That glue code would
also be necessary in the upcoming fixpoint ra_compute in section 4.3, and would there
unfortunately reflect in the extracted OCaml code. To get a unified presentation of ra_sem
and ra_compute, we choose to inline recalg_rect in both cases.

We follow precisely our reference textbook [1, p. 63] using reversely ordered vectors to
represent tuples. See file recalg_semantics.v where we define

Definition Zr : IO0 := λ_ y, y = 0.
Definition Sc : IO1 := λ v1 y, y = 1 + vec_head v1.

Definition Id {a} (i : idx a) : IOa := λ va y, y = va.[i].

We follow up with composition of a b-ary µ-algorithm with a vector of a-ary µ-algorithms:

Definition Cn {a b} (φb : IOb) (ψab : vec IOa b) : IOa :=
λ va y, ∃vb, φb vb y ∧ ∀i, ψab.[i] va vb.[i]

to be found in [1, p. 64]. Primitive recursion is mechanically best described using a higher-
order primitive recursive scheme (like that of e.g. Gödel system T). We define

Definition Pr {a} (φa : IOa) (ψa′′ : IO2+a) : IO1+a :=
vec_S_inv

(
λn va, prim_rec φa

(
λwa my, ψa′′ (m :: y :: wa)

)
va n

)
where prim_rec is defined in schemes.v as the following instance nat_rect, the dependent
eliminator/recursor for the nat type and ⋄ denotes the right-associative composition of a
binary relation with a unary one:

Context {X Y : Type} (F : X → Y → Prop) (G : X → nat → Y → Y → Prop).
Definition prim_rec (x0 : X) := nat_rect (λ _, Y → Prop) (F x0)

(
λ n p, (G x0 n) ⋄ p

)
.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/recalg_semantics.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/schemes.v

21:12 Faithful Computation and Extraction of µ-Recursive Algorithms

Informally, this would read as prim_rec x0 n :=
(
Gx0 (n− 1)

)
⋄ · · · ⋄ (Gx0 0) ⋄ (F x0). We

check that Pr satisfies the following two definitional equations, which correspond to the
characterization of primitive recursive scheme in [1, p. 67].

1. Pr φa ψa′′ (O :: va) y = φa va y;
2. Pr φa ψa′′ (Sn :: va) y = ∃o, Pr φa ψa′′ (n :: va) o ∧ ψa′′ (n :: o :: va) y.

We finish with the scheme of unbounded minimization (starting at O), defined via a more
general scheme of minimization starting at a value given as extra parameter:

Definition Mn {a} (φa′ : IO1+a) : IOa := λ va, umin0
(
λ y, φa′(y :: va)

)
.

The definitions of umin and umin0 occur in the file schemes.v and are also discussed in
Section 3.5. We check that Mn satisfies the following definitional equation:

Mn φa′ va y = φa′ (y :: va) O ∧ ∀n, n < y → ∃k, φa′ (n :: va) (S k)

which mimics the definition of the minimization scheme in [1, p. 70].
Having defined the semantic (extensional) interpretation of µ-algorithms, we verify that

JSaK is a functional relation. We proceed by structural induction on Sa,

Theorem ra_sem_fun {a} (Sa : Aa) : functional JSaK

directly with a fixpoint, by compositionally exploiting the fact that µ-recursive schemes
preserve functional relations.

4.3 The interpreter for µ-algorithms
Following the approach hinted in the introduction, given a specification predicate P : X→Prop
over a type X, we characterize a specified partial value by a term t : (∃x, P x) → {x | P x} in
which the specified value {x | P x}, that is, an x paired with a proof of P x, is guarded by
its existence (∃x, P x):

The unary predicate P : X → Prop gives the specification of the value. In our case, we
instantiate e.g. P := JSaK va : nat → Prop, hence, thanks to ra_sem_fun, P will hold for
at most one x;
the Coq term t computes a value x such that P x, provided it is given a certificate for its
algorithm to terminate the computation, stated as the non-informative existence of an
(output) value satisfying P .

In the file compute_def.v, we define the predicate capturing specified partial values as
compute {X} (P : X → Prop) := (∃x, P x) → {x | P x}.2 This encoding of partiality allows
a direct generalization of the code of the semantic ra_sem (noted J·K) into an interpreter
ra_compute (noted J·Ko) as described below, with relatively short proof terms for pre/post
conditions.

As a side note, our approach contrasts with the “partiality monad” of [2] where a partial
value is of type {Q : Prop | Q→X}, i.e. though guarded by a predicate Q, it refers to an
output type X only, and is not further specified in that type. In our case, a compute value is
always specified w.r.t. a predicate over a type (i.e. P) which in practice characterizes that
value uniquely. It comes with a proof that the value satisfies its specification (i.e. P x). Hence
that guard and the specification are linked together. Also, having an output specification
allows us to compositionally derive a correct-by-construction interpreter.

2 Notice that this definition is not intended to hint at the traditional notion of computability.

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/schemes.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/compute_def.v

D. Larchey-Wendling and J.-F. Monin 21:13

We can now present the Coq term for µ-algorithms that is going to be extracted into
OCaml as a natural interpreter for µ-algorithms in that programming language. For Sa : Aa,
the term ra_compute Sa : ∀va : vec nat a, compute

(
JSaK va

)
will realize the extensional

interpretation J·K, by directly computing the output from the input along the lines of the given
µ-algorithm. In the file interpreter.v, we write the following Fixpoint ra_compute {a} Sa

also denoted JSaKo (for a more compact notation) reusing the same scheme as that of the
code of ra_sem {a} Sa = JSaK. The suffix in the new notation J·Ko is intended to recall that
we do not simply define a proposition but instead, an o(utput) value is now computed:

Fixpoint ra_compute {a} (Sa : Aa) {struct Sa} : ∀va : vec nat a, compute
(
JSaK va

)
:=

match Sa with
| ra_zero ⇒ Zr_compute
| ra_succ ⇒ Sc_compute | ra_prec Sa Sa′′ ⇒ Pr_compute JSaKo JSa′′Ko

| ra_proj i ⇒ Id_compute i | ra_umin Sa′ ⇒ Mn_compute JSa′Ko

| ra_comp Sb Sab ⇒ Cn_compute JSbKo
(
λ va dva, vec_map_compute (J·Ko va) Sab dva

)
end where JSaKo := (ra_compute Sa).

The sub-term J·Ko va has type ∀Sa, compute
(
JSaK va

)
which states that J·K va is a partial

function, which can be computed in Coq if fed with a certificate that its output exists (ter-
mination), and it is passed to vec_map_compute which generalize vec_map to the application
of partial functions on every component of a vector, but still by structural recursion on the
vector. Then the computation follows a natural interpretation of µ-algorithms as functional
programs via extraction.

We further comment on the code of the ra_compute fixpoint, focusing on how Coq
establishes termination. First, it proceeds by structural recursion on Sa. Hence the guard-
checker verifies that ra_compute is only applied to sub-terms of Sa. And for this, it
has to inspect the code of vec_map_compute which inevitably nests a call to ra_compute
(noted J·Ko) because Sab : vec Aa b is a (nested) vector of sub µ-algorithms in Aa. Because
vec_map_compute proceeds by recursion on Sab, the guard checker accepts this nesting.

In the case of ra_uminSa′ , we see that Mn_compute receives JSa′Ko, the fixpoint itself
applied to Sa′ , as first parameter, which obviously passes the guard-checker. The code of
Mn_compute can be found in the compute.v and is based on that of umin0_compute; see the
file umin_compute.v and explanations in Section 3.5.

Variables (a : nat) (Sa′ : A1+a)
(
cSa′ : ∀va′ , compute (JSa′K va′)

)
.

Definition Mn_compute va : compute (Mn JSa′K va) :=
umin0_compute (λ _, ra_sem_fun _ _) (λ n dn, cSa′ (n :: va) dn).

The case of ra_precSa Sa′′ is similar to that of ra_uminSa′ . The case of ra_compSb Sab

is however more complicated because of the nesting with vec_map_compute that is mandated
to recursively iterate J·Ko va over the components of the vector of sub µ-algorithms Sab.

Variables (a b : nat) (Sb : Ab)
(
cSb : ∀vb, compute (JSbK vb)

)
(Sab : vec Aa b)

(
cSab : ∀va, compute

(
λ vb, ∀i, JSab.[i]K va vb.[i])

)
.

Definition Cn_compute : ∀va, compute
(
Cn JSbK (vec_map J·K Sab) va

)
:=

λ va dva, let (vb, vavb) := cSab va _ in let (y, vby) := cSb vb _ in ⟨⟨y, _⟩⟩.

We leave out as holes _ the three (small) proof obligations that can be studied further in code
file compute.v. The term vec_map_compute is used to fill the argument cSab of Cn_compute
and its code is described in the file map_compute.v. It generalizes the code of vec_map to
deal with specifications (i.e. pre/post conditions), but extracts the same.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/interpreter.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/umin_compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/compute.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/map_compute.v

21:14 Faithful Computation and Extraction of µ-Recursive Algorithms

4.4 Remarks on a carefully crafted library of indices and vectors
The types for indices and vectors are defined inductively with the following rules/constructors:

idx : nat → Type := O : ∀{n}, idx (Sn) | S : ∀{n}, idxn→ idx (Sn)
vecX : nat → Type := ⟨ ⟩ : vecX O | _ :: _ : ∀{n}, X → vecX n→ vecX (Sn)

We can analyze the content of vectors by standard pattern matching, or, on nonempty vectors,
using the standard vec_head : vecX (Sn) → X and vec_tail : vecX (Sn) → vecX n

functions. But to access the components in a more versatile way, as sometimes required by
the definition of µ-algorithms, we define the projection vec_prj {X n} : vecX n→idxn→X.
The Coq fixpoint defining vec_prj is carefully written by structural recursion on the vector,3
and the use of idx_inv {0} : idx 0 → False allows to dispose of the impossible case in a
guard-checker friendly way.

Fixpoint vec_prj {n} (u : vec X n) : idx n → X :=
match u in vec _ m return idx m → X with
| ⟨ ⟩ ⇒ λ i, match idx_inv i with end
| x :: v ⇒ λ i, match i in idx m return vec _ (pred m) → X with

| O ⇒ λ _, x

| S j ⇒ λ v, vec_prj v j

end v

end

The type of idx_inv {n : nat} is a bit more general (by dependent pattern matching on n),
to also allow inversions of indices in idx (Sn) but the idea is the same. Actually, besides the
definition of idxn, the statement of the lemma idx_inv together with its short proof is the
only tool defined in our library for indices (in file index.v). Notice that we avoid idx_inv
by inlining it in the second match case x :: v because using it would introduce an additional
level of constructors/matches in the extracted code.

Then v.[i] is just a convenient notation for vec_prj v i. As a consequence of our definition,
the identities (x :: v).[O] = x and (x :: v).[S i] = v.[i] hold by definitional equality. But more
importantly, any component v.[i] is recognized as a sub-term of v by the guard-checker
when type-checking a fixpoint nesting a call to vec_prj. Additionally, vec_prj extracts to
desirable OCaml code:

let rec vec_prj u i = match u with
| ⟨ ⟩ → assert false
| x :: v → match i with O → x | S j → vec_prj v j

The projection vec_prj allows to view the inductive type vecX n as an extensional repres-
entation of the type idxn → X: two vectors are equal iff their components are equal, i.e.(
∀i, v.[i] = w.[i]

)
→ v = w, which is not the case for “functional vectors” in idxn→X.

Complementary to vec_head and vec_tail, we also provide versatile inversion lemmas
for vectors in either vecX O or vecX (Sn) of types (see vec.v for detailed explanations):

Definition vec_O_inv {X} {P : vec X O → Type} : P ⟨ ⟩ → ∀u, P u.

Definition vec_S_inv {X n} {P : vec X (S n) → Type} :
(
∀x v, P (x :: v)

)
→ ∀u, P u.

3 The Coq standard library version 8.16.1 of Vector.nth proceeds by recursion on the index, not on the
vector, which would conflict with our guard conditions, but a version of nth computationally similar to
vec_prj has been accepted into future revisions of the standard library as PR #16731.

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/index.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/vec.v
https://github.com/coq/coq/pull/16731

D. Larchey-Wendling and J.-F. Monin 21:15

For instance, the term vec_S_inv (λx v, f x v)u can then be seen as a correct (hence
type-checkable) way to write something like match u with x :: v ⇒ f x v end for a vector
u : vec _ (S _), that moreover extracts into a pattern-matching on u, i.e. of the form

match u with ⟨ ⟩ → assert false | x :: v → f x v.

The alternate code f (vec_headu) (vec_tailu) would extract less gracefully in two successive
pattern-matchings on u performed inside vec_head and vec_tail.

5 Extraction to OCaml

To shorten a bit the extracted code and make it easier to read, in the file interpreter.v we
feed the extraction plugin of Coq with several kinds of directives:

we generally forget about arities because they do not participate in the computation.
They exist at proof-level to ensure that e.g. composition (resp. projection) occurs only
between vectors (resp. and indices) of proper arities;
we extract indices in idxn as natural numbers directly to avoid duplication of code
between idx _ and nat;
having forgotten their arity, we can extract vectors as native OCaml lists to present the
reader with a familiar notation for tuples;
we inline some Coq terms to avoid duplicating OCaml names for the same functions and
avoid steps that need no factorization because they are only used once.

With those directives, in a first iteration of extraction, we get the OCaml interpreter for
µ-algorithms as presented in the introduction, with two minor differences that we describe
and discuss how they can be addressed below.

The first difference is that Coq does not generate partial match filters and thus, we get
extra assert false statements instead of missing match cases. Computationally the only
difference this makes is in the name of the generated exception. However, they should not
be triggered unless the OCaml interpreter is called on a context which could not be typed
within Coq, e.g. the input vector has a shorter length that the arity of the µ-algorithm.4

The second difference is the occurrence of __ = Obj.t OCaml type and object that the
extraction plugin uses to circumvent the type system of OCaml on Coq types which are too
general for it.5 This difference is more important to tackle in our opinion.

Let us start with an explanation of why these __ appear in the extracted code in the first
place. They come from e.g. the second (non implicit) argument of umin0_compute, which is
a partial value of type f : ∀n, compute (F n) or, by expanding the definition of compute, of
type f : ∀n, (∃y, F n y) → {y | F ny}. The extraction plugin is not able to recognize that it
can safely erase (∃y, F n y) because f is itself an argument of umin0_compute. No directive
of our knowledge is able to inform the extraction plugin with non-informative data in the
types of the arguments of extracted terms.

We present two ways of getting rid of __. Both consist in hiding the proposition (∃y, F n y)
in the propositional part of a Σ-type. We think it is better to describe these tricks as a diff
on the Coq code rather than directly exposing a more convoluted variant of the interpreter;
see files unit.diff and hide.diff.

4 We do not know if it is possible to instruct the extraction plugin to dismiss impossible match cases.
5 Additional issues could be raised by the call-by-value evaluation strategy of OCaml; anyway, extracting

to Haskell produces similar extra arguments of type any, showing that the discussion below still makes
sense even with a lazy strategy, especially the second improvement.

ITP 2023

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/interpreter.v
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/unit.diff
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/hide.diff

21:16 Faithful Computation and Extraction of µ-Recursive Algorithms

The first approach consists in adding a new parameter of type unit and packing it with
the proposition (∃y, F n y), hence we get the following definition of computeu:

Definition computeu {X} (P : X → Prop) := {_ : unit | ∃x, P x} → {x | P x}

the type of the parameter f in umin0_compute becoming f : ∀n, computeu (F n). We do not
need to upgrade compute into computeu everywhere though, only when a parameter is a
partial function, e.g. in the definitions of prim_rec_compute, or vec_map_compute or that
of umin_compute and umin0_compute.

This solution has the advantage of symmetry (see below) and conceptual simplicity. The
simplest way to visualize small amount of needed updates in the code is through the diff
file unit.diff. The resulting extracted code is the same as in the first iteration except that
Obj.t (resp. __) gets substituted with unit (resp. ()). So there is no trick to circumvent
the OCaml type system anymore but still, an extra dummy/unit argument remains.

The second approach gives us an extraction where the __ parts are completely removed
from the code. This is quite satisfying and not much more complicated than the unit trick
but we lose symmetry in the treatment of the arguments of Coq terms. The trick consists
in hiding (∃y, F n y) directly under the last argument it depends on, hence n in the case of
umin0_compute. So we get the following type for its second argument:

f : ∀p : {n | ∃y, F n y}, {y | F (π1 p) y}.

Again, we only need to make that change on the type of the arguments that represent partial
functions, e.g. f , not on the terms implementing partial functions, e.g. umin0_compute. We
recall that the simplest way to visualize the small amount of required modifications in the
Coq code is via the diff file hide.diff.

6 Conclusion

Program extraction was advocated as an interesting approach to the study of the correctness
(by construction) of functional programs for a long time, and the issue of partial functions,
especially possibly non-terminating programs, was raised very early, both in untyped settings
such as PX [6] and in strongly typed logical settings where only terminating (functional)
programs can be expressed such as Nuprl [3]. Parametric ways to deal with partial values in
Coq include [2, 4], allowing for the development of synthetic computability theory [5].

In addition to theoretical considerations, the issue of partiality is not that easy from a
practical point of view, notably when partial functions are mixed with higher-order functional
programs: when the latter are basically structurally recursive, it is desirable to keep their
conceptual simplicity as much as possible.

We think that the example of µ-recursive functions contains a significant summary of the
issues raised, so the work presented here may help to understand how they can be dealt with
in CIC as implemented in the Coq proof assistant. We could have just tried to follow the
Braga method [11], i.e., to provide an inductive definition of the domain of the full desired
interpreter (ra_compute) either directly, or from an inductive presentation of its input-output
graph. Clearly, the resulting development would have been much more convoluted. Instead,
we have limited the use of the machinery of [11] – actually a tail-recursive variant of it – at
the single place where it is relevant (unbounded minimization), using ordinary structural
recursion on the input data at all other places. Beyond careful explanations on why and how
guard condition for termination are satisfied, the resulting development is made conceptually

https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/unit.diff
https://github.com/DmxLarchey/Murec_Extraction/tree/murec_artifact/theories/hide.diff

D. Larchey-Wendling and J.-F. Monin 21:17

simple and concise. To this effect, a very simple, hence easy to overlook idea turned out to
be surprisingly effective: use ∀x, (∃y,Gx y) → {y | Gxy} as a general shape for specifying
ra_compute and its auxiliary functions.

Note that, as a bonus, the results previously presented in [9] can then be obtained with
much shorter and elegant proofs.

References
1 George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and Logic. Cambridge

University Press, 4 edition, 2002. doi:10.1017/CBO9781139164931.
2 Mario Carneiro. Formalizing Computability Theory via Partial Recursive Functions. In ITP

2019, volume 141, pages 12:1–12:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.
doi:10.4230/LIPIcs.ITP.2019.12.

3 Robert L. Constable et al. Implementing Mathematics with the Nuprl Development System.
Prentice-Hall, NJ, 1986.

4 Yannick Forster. Church’s Thesis and Related Axioms in Coq’s Type Theory. In CSL
2021, volume 183, pages 21:1–21:19. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CSL.2021.21.

5 Yannick Forster. Parametric church’s thesis: Synthetic computability without choice. In Sergei
Artemov and Anil Nerode, editors, Logical Foundations of Computer Science, pages 70–89,
Cham, 2022. Springer International Publishing.

6 Susumu Hayashi. Extracting Lisp Programs from Constructive Proofs: A Formal Theory
of Constructive Mathematic Based on Lisp, volume 19, pages 169–191. Publications of the
Research Institute for Mathematical Sciences, 1983.

7 Stephen C. Kleene. λ-definability and recursiveness. Duke Mathematical Journal, 2(2):340–353,
1936. doi:10.1215/S0012-7094-36-00227-2.

8 Stephen C. Kleene. Recursive predicates and quantifiers. Trans. Amer. Math. Soc., 53:43–73,
1943. doi:10.1090/S0002-9947-1943-0007371-8.

9 Dominique Larchey-Wendling. Typing Total Recursive Functions in Coq. In ITP 2017, pages
371–388. Springer, 2017. doi:10.1007/978-3-319-66107-0_24.

10 Dominique Larchey-Wendling and Yannick Forster. Hilbert’s Tenth Problem in Coq (Extended
Version). Logical Methods in Computer Science, Volume 18, Issue 1:35:1–35:41, March 2022.
doi:10.46298/lmcs-18(1:35)2022.

11 Dominique Larchey-Wendling and Jean-François Monin. The Braga Method: Extracting
Certified Algorithms from Complex Recursive Schemes in Coq, chapter 8, pages 305–386. World
Scientific, 2021. doi:10.1142/9789811236488_0008.

12 Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley series in logic. Addison-Wesley,
1967.

13 Vincent Zammit. A Proof of the S-m-n theorem in Coq. Technical report, The Computing
Laboratory, The University of Kent, Canterbury, Kent, UK, March 1997. URL: http://kar.
kent.ac.uk/21524/.

ITP 2023

https://doi.org/10.1017/CBO9781139164931
https://doi.org/10.4230/LIPIcs.ITP.2019.12
https://doi.org/10.4230/LIPIcs.CSL.2021.21
https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.1090/S0002-9947-1943-0007371-8
https://doi.org/10.1007/978-3-319-66107-0_24
https://doi.org/10.46298/lmcs-18(1:35)2022
https://doi.org/10.1142/9789811236488_0008
http://kar.kent.ac.uk/21524/
http://kar.kent.ac.uk/21524/

	1 Introduction
	2 Type-theoretic basics and notations
	3 Unbounded linear search in Coq
	3.1 Specification of linear search
	3.2 Termination of linear search
	3.3 Building an initial termination certificate
	3.4 A tail-recursive program for the full loop
	3.5 From linear search to μ-minimization

	4 Representing μ-algorithms in Coq
	4.1 μ-algorithms as a nested dependent type
	4.2 The semantics of μ-algorithms
	4.3 The interpreter for μ-algorithms
	4.4 Remarks on a carefully crafted library of indices and vectors

	5 Extraction to OCaml
	6 Conclusion

