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Abstract. Van Breugel et al. [F. van Breugel et al, Theor. Comput. Sci. 333(1-2):171-197,
2005] have given an elegant testing framework that can characterise probabilistic bisimulation,
but its completeness proof is highly involved. Deng and Feng [Y. Deng and Y. Feng, Inf.
Comput. 257:58-64, 2017] have simpli�ed that result for �nite-state processes. The crucial
part in the latter work is an algorithm that can construct enhanced tests. We formalise the
algorithm and prove its correctness by maintaining a number of subtle invariants in Coq. To
support the formalisation, we develop a reusable library for manipulating �nite sets. This sets
an early example of formalising probabilistic concurrency theory or quantitative aspects of
concurrency theory at large, which is a rich �eld to be pursued.

1 Introduction

One of the central concepts in concurrency theory is bisimulation [24,25]. Its generalisation in proba-
bilistic concurrency theory is put forward by Larsen and Skou in [22]. Various characterisations of the
largest probabilistic bisimulation (aka bisimilarity) by probabilistic extensions of Hennessy-Milner
logic [17] have appeared in the literature [22,11,12,26,8,18,16,10,6]. For example, it is shown in [22]
that probabilistic bisimilarity can be characterised by a very simple testing framework for reactive
probabilistic processes [22,28] with a minimal probability assumption. In [27] van Breugel et al.
generalise the testing characterisation of [22] to labelled Markov processes, i.e., reactive probabilistic
processes [22,28] with continuous state spaces, and surprisingly, with an even simpler testing lan-
guage. Generally speaking, the simpler the logical or testing characterisation, the more di�cult the
completeness proof of the chararacterisation. The reason is that this kind of proofs usually involve
constructing distinguishing formulae or tests for non-bisimilar states, which is more challenging if
there are fewer modalities to use. Van Breugel et al. succeeded in proving such an elegant result by
making use of advanced machinery such as the Lawson topology on probabilistic powerdomains [19]
and Banach algebras. In [7], Deng and Feng consider �nite-state reactive probabilistic processes and
give an extremely elementary proof of the coincidence of bisimilarity with the aforementioned test-
ing equivalence while avoiding all the advanced machinery used in [27]. The core of that proof is to
construct a sort of enhanced tests from basic tests by a tricky algorithm. Therefore, the correctness
of the algorithm is crucial for the validity of the testing characterisation of probabilistic bisimilarity.
A manual proof is given in [7], but to increase our con�dence, a machine-checkable proof would be
preferable. This is worthwhile because, as far as we know, among all the modal or testing charac-
terisations of probabilistic bisimilarity, the one in [27] is the simplest, and the completeness proof
presented in [7] is the most elementary and thus accessible.

In the current work, we formalise the algorithm of [7] in Coq [5] and prove its termination
and correctness. We choose Coq because it is one of the mainstream proof assistants that has a
large number of users in both industry and research communities. It has been successfully used for
formal speci�cations of the X86 and LLVM instruction sets and programming languages such as C
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[20,29,21]. It has also been used to build CompCert [23], a fully-veri�ed optimizing C compiler, and
CertiKos [15], a fully veri�ed hypervisor, for proving the correctness of many algorithms. Moreover,
some important results in mathematics, such as the four-color theorem [13] and the Feit-Thompson
theorem [14] are formally proved with Coq. We also claim that some features of the type system
of Coq are very important in our formalisation in the presence of nested loops (more on this in
Section 4.5).

The algorithm that we formalise in the current work involves two nested loops that render
termination and correctness proofs highly non-trivial. We carefully design a number of invariants
and show that they are preserved by appropriate loops. Sometimes, the invariants are not mutually
independent. As we will see in Section 5.3, there are scenarios where we have two invariants (a)
and (b), and after some steps of execution, invariant (b) holds as a post-condition because in the
precondition both (a) and (b) are required to hold. What is more, as invariants are predicates on
program states, they rely on another kind of invariants on program states. This happens because
we heavily use �nite sets. On one hand, if a set contains elements of the form (i, j) where i and j
are natural numbers with i < j, we must make sure that no matter how the set expands or shrinks,
its elements always keep that form. This is a particular invariant originated from program states.
On the other hand, since we represent �nite sets as lists, a general invariant to be maintained is
that there is no duplicated elements in the lists no matter how the lists evolve under di�erent set
operations. The outcome of our development is not only a formal proof of the correctness of the
non-trivial algorithm for constructing enhanced tests, but also a convenient library for manipulating
�nite sets.

Although there are e�orts on the mechanisation of reasoning about randomised algorithms [3] and
on applications to cryptography [4] there exists little work on formalising probabilistic concurrency
theory, or quantitative aspects of concurrency theory at large. The current work sets an example
towards this direction. Undoubtedly, much more can be done in the future.

The rest of the paper is structured as follows. In Section 2 we recall the background on proba-
bilistic testing semantics and the algorithm that we will consider in Section 4. In Section 3 we outline
our use of Coq. In Section 4 we formalise the algorithm in Coq. In Section 5 we introduce the main
invariants used in proving the correctness of the algorithm. Finally, we conclude in Section 6.

The Coq scripts are available at the following link
http://www-verimag.imag.fr/~monin/Proof/ProbaTesting/.

2 Preliminaries

In this section, we recall the probabilistic testing semantics and the algorithm for computing en-
hanced tests introduced in [7].

Let S be a �nite set. A (discrete) probability distribution over S is a function ∆ : S → [0, 1] with∑
s∈S ∆(s) = 1. Its support, written d∆e, is the set {s ∈ S | ∆(s) > 0}. Let D(S) denote the set

of all distributions over S. We write s for the point distribution satisfying s(t) = 1 if t = s, and 0
otherwise. If pi ≥ 0 and ∆i is a distribution for each i in some �nite index set I, then

∑
i∈I pi ·∆i

is the function given by

(
∑
i∈I

pi ·∆i)(s) =
∑
i∈I

pi ·∆i(s) .

If
∑

i∈I pi = 1 then this is easily seen to be a distribution in D(S).

De�nition 1. A reactive probabilistic labelled transition system (rpLTS) is a triple (S,A,−→),
where S is a �nite set of states, A is a �nite set of actions, and the transition relation −→ is a
partial function from S ×A to D(S).

We write s
a−→ ∆ for −→ (s, a) = ∆.

http://www-verimag.imag.fr/~monin/Proof/ProbaTesting/


In the probabilistic setting, we often need to compare distributions. There is a way of lifting
relations on states to relations on distributions [9].

De�nition 2. Given two sets S, T and a relation R⊆ S × T , the lifted relation R†⊆ D(S)×D(T )
is the smallest relation that satis�es:

(i) s R t implies s R† t;
(ii) ∆i R† Θi for all i ∈ I implies (

∑
i∈I pi ·∆i) R† (

∑
i∈I pi ·Θi), where I is a �nite index set and∑

i∈I pi = 1.

The above lifting operation is used to de�ne probabilistic bisimulation.

De�nition 3. A binary relation R⊆ S×S is a probabilistic simulation if s R t and s
a−→ ∆ implies

the existence of some transition t
a−→ Θ with ∆ R† Θ.

If both R and R−1 are probabilistic simulations, then R is a probabilistic bisimulation. The
largest probabilistic bisimulation is probabilistic bisimilarity.

Let us �x a rpLTS (S,A,−→) and recall the simple testing framework proposed in [27].

De�nition 4. Let T be a testing language given by the grammar

t ::= ω | a · t | 〈t, t〉

where a ranges over the set of labels A of our rpLTS. The function Pr : S × T 7→ [0, 1] prescribes
the probability of applying a test to a state as follows:

Pr(s, ω) = 1

Pr(s, a · t) =
{∑

s′∈S ∆(s′) · Pr(s′, t) if s
a−→ ∆

0 otherwise.
Pr(s, 〈t1, t2〉) = Pr(s, t1) · Pr(s, t2)

We call 〈t1, t2〉 a conjunction of two tests, which models the copying capacity of probabilistic
testing. Here, conjunction is given the arithmetic interpretation as multiplication, which di�ers from
other logical characterisations of probabilistic bisimilarity. We often write t2 for 〈t, t〉, and tm+1 for
〈t, tm〉, where m ≥ 2. That is, tm is the conjunction of m copies of t. It is obvious that

Pr(s, tm) = (Pr(s, t))m (1)

for any state s and test t.

De�nition 5. The testing language T induces a testing equivalence relation, written =T , by letting
s1 =T s2 if Pr(s1, t) = Pr(s2, t) for any t ∈ T .

It is shown in [7] that =T is a probabilistic bisimulation [22]. The key ingredient of the proof is
to introduce a notion of enhanced tests. By making use of Algorithm 1, we can construct enhanced
tests that satisfy the conditions in Lemma 1. From that lemma, it is not di�cult to prove that =T
is a probabilistic bisimulation. Let us �rst set up the scenario where Algorithm 1 applies. Observe
that =T is an equivalence relation. Hence, we can partition the state space S according to =T . Let
C1, · · · , Cn be the equivalence classes induced by =T , where n ≥ 1. Within each equivalence class
Ci, the states are testing equivalent. So we can write Pr(Ci, t) for Pr(sij , t), where sij is any state in
Ci and t is any test. Nevertheless, for any two states in di�erent equivalence classes, there exist some
tests that can tell them apart. For any i, j with 1 ≤ i < j ≤ n, let tij be a test that distinguishes
Ci from Cj ; that is, Pr(Ci, tij) 6= Pr(Cj , tij). Notice that here tij is only a distinguishing test for
Ci and Cj , and in general it says nothing about a third equivalence class Ck when k 6= i, j. For



example, applying tij to Ci and then to Ck might yield the same outcome. This is normal because
tij is not necessarily a distinguishing test for Ci and Ck. The surprising fact discovered in [7] is
that it is possible to construct an enhanced test that sharpens testing outcomes to distinguish many
equivalence classes. More precisely, applying the enhanced test to some equivalence classes gives
either 0 or distinct positive values.

Lemma 1. For any I ⊆ {1, · · · , n} with I 6= ∅, there exist a nonempty I ′ ⊆ I and an enhanced test
t such that

(i) for all k ∈ I, Pr(Ck, t) > 0 i� k ∈ I ′;
(ii) for any i 6= j ∈ I ′, Pr(Ci, t) 6= Pr(Cj , t).

Algorithm 1: Compute an enhanced test

input : A nonempty set I = {1, · · · , n} with the distinguishing tests tij for all i 6= j.
output: A nonempty I ′ ⊆ I and an enhanced test t satisfying (i) and (ii) in Lemma 1.

1 begin

2 Ipass ← ∅;
3 Irem ← {(i, j) ∈ I × I : i < j};
4 I ′ ← I;
5 t← ω;
6 while Irem 6= ∅ do
7 Choose arbitrarily (i, j) ∈ Irem;
8 I ′ ← {k ∈ I ′ : Pr(Ck, tij) > 0};
9 Idis ← {(k, l) ∈ Irem ∩ I ′ × I ′ : Pr(Ck, tij) 6= Pr(Cl, tij)};
10 Irem ← (Irem ∩ I ′ × I ′)\Idis;
11 Ipass ← (Ipass ∩ I ′ × I ′) ∪ Idis;
12 t← 〈t, tij〉;
13 Item ← ∅;
14 I ← Ipass;
15 while I 6= ∅ do

16 I ← {(k, l) ∈ Ipass\Item : Pr(Ck, t) = Pr(Cl, t)};
17 if I 6= ∅ then
18 t← 〈t, tij〉;
19 Item ← Item ∪ I;
20 end

21 end

22 end

23 return I ′, t;

24 end

The lemma is valid because we can use Algorithm 1 to construct such an enhanced test. The
current work proposes (and proves the correctness of) a functional version of this algorithm. How-
ever, its design was driven by the original imperative version given in [7]. Proving that the functional
version �ts in with the imperative one could be performed using standard transformation techniques,
but this is not needed: what matters is the existence of an algorithm satisfying the required speci-
�cation. The algorithm initially sets I ′ to be I and t to be ω, then it gradually updates the test t
to equipe it with more and more discriminating power. The construction of the new tests involves
removing the indices k with Pr(Ck, t) = 0 from I ′ and keeping the indices i, j such that Pr(Ci, t)
and Pr(Cj , t) are distinct and both positive. The outer loop uses four auxiliary sets: Ipass, Irem,
Idis, and Item. Among them, Ipass and Irem form a partition of the set {(i, j) ∈ I ′× I ′ : i < j}. The



subset Ipass contains the pairs (i, j) such that the current test t can distinguish Ci from Cj , while
Irem contains the remaining pairs to be processed. Each iteration of the outer loop picks up any pair
(i, j) in Irem, uses the distinguishing test tij to form Idis, which is a subset of Irem, and moves it
from Irem to Ipass. Each pair being moved, e.g., (k, l) ∈ Idis indicates that Ck and Cl can be di�ered
by tij . However, just expanding Ipass with Idis is insu�cient. A newly added index k might con�ict
with another index l, which occurs either already in the old Ipass or in the set Idis, in the sense
that Ck and Cl cannot be distinguished by t. To solve this problem, the inner loop tries to update t
by padding it with enough copies of tij until it can distinguish all the equivalence classes indicated
by the pairs in Ipass. Interestingly, the padding procedure only involves conjunctions of tests and
this su�ces for our purpose! The auxiliary set Item is introduced to facilitate this procedure and
contains all the pairs indicating the equivalence classes distinguishable by the �nal enhanced test.
When all the pairs in Irem are explored, the whole procedure terminates.

Two main properties that interest us are the termination and the correctness of the algorithm.
Let us give a more detailed analysis of the termination property. We �rst look at the inner while
loop. In each iteration, I is assigned a new value, which is a subset of Ipass\Iterm. If it becomes
empty, the loop terminates immediately. Otherwise, the set Item is enlarged to include I. Since the
set Ipass does not change in the inner loop, in the next iteration the set Ipass\Iterm becomes smaller
and so does I. Eventually, I must become empty and the loop terminates. For the outer while loop,
in each iteration we choose a pair, say (i, j), from Irem, and then update Idis and Irem. Since tij is a
distinguishing test for (i, j), the two values Pr(Ci, tij) and Pr(Cj , tij) cannot be 0 at the same time.
If both of them are positive, then Idis contains at least the pair (i, j) and is not empty. If exactly
one of them, say Pr(Ci, tij), is 0, then the corresponding index i is removed from I ′, which causes I ′

to shrink. In both cases, the assignment of Irem by (Irem∩ I ′× I ′)\Idis makes Irem strictly smaller.
Eventually, Irem becomes empty and the outer loop terminates. The number of iterations for the
inner loop depends on the size of the set Ipass, and for the outer loop depends on the size of Irem.

The correctness of the algorithm relies on the following four invariants, namely, at the beginning
of each run of the outer while loop,

(a) Ipass ∪ Irem = {(i, j) ∈ I ′ × I ′ : i < j};
(b) I ′ 6= ∅;
(c) for all k ∈ I, Pr(Ck, t) > 0 i� k ∈ I ′;
(d) for any (i, j) ∈ Ipass, Pr(Ci, t) 6= Pr(Cj , t).

Statement (a) is easy to show because each time Idis is obtained, it is moved from Irem to Ipass.
Statement (b) is also simple. Since tij is a distinguishing test for (i, j), at least one of the two
values Pr(Ci, tij) and Pr(Cj , tij) is positive. Therefore, I

′ cannot be empty. Statement (c) can be
proved by induction on the number of iterations of the outer while loop. Statement (d) can also
be proved inductively. A manual proof is provided in [7]. It is involved as it mixes logical reasoning
with quantitative computation. Therefore, a machine-checkable proof is needed.

The above analysis of the algorithm serves as a guide for our formal proof of the correctness in
Coq. However, we do not faithfully follow the manual proofs in [7]. In particular, for statement (d)
we provide a proof that deviates a lot from the original one and is easier to implement inductively.

3 Our use of Coq

In order to complete our case study, several issues need to be addressed:

1. Representing an (originally imperative) algorithm in Coq;
2. Dealing with �nite sets;
3. Formalising and proving assertions and invariants;
4. Proving the termination property.



The previous issues are not independent from each other. For instance, in the strongly normalising
purely functional setting of Coq, only terminating functions can be de�ned. In practice, it means
that termination has to be taken into account at the de�nition time of a function, making issues
1 and 4 interact. Moreover, part of the invariants can be relevant to termination. Finally, design
choices related to issue 2 interact with all other issues.

About issue 1, an important design decision has to be taken from the very beginning. If we
stick to imperative programs, there are at least two distinct techniques for representing them: by a
function from states to states � typically, a while loop will be encoded as a tail-recursive function
� or, by an inductive relation between input and output states. An extension of the last option is
even to consider an IMP-like toy imperative language (including ad-hoc operations on sets), with
its abstract syntax and a big-step or small-step operational semantics [1].

For our purpose here, we only need to prove that there exists an e�ective terminating algorithm
satisfying the expected input-output relation. The imperative or functional nature of the presentation
of the algorithm does not matter. Therefore we just provide a Coq function returning the desired
�nal state from the initial state and the above considerations about imperative programming just
vanish. Nevertheless, the manual proof given before in an imperative setting is an important guide
in the Coq development. In particular, the given invariants remain very important and provide the
structure of the proof. Some amount of dependent typing is needed, in particular in order to deal
with the issue of termination. For clarity, at the end, a simple executable functional program can be
extracted and it is easy (but not crucial) to manually check that this program corresponds to the
imperative one given in the previous section.

Issue 2 is not fundamental by itself: models and basic results for �nite sets are available in
the standard library of Coq [2]. However, for the management of our proofs, the introduction of
concise and familiar set notations on top of it turned out to be very important: our very �rst
formalization, based only on available libraries, resulted in statements very hard to reread and
follow, and completing the last steps of the proofs became a discouraging hassle. Another choice had
to be made: the representation of �nite sets. Several options are possible and available in existing
librairies: lists, with or without duplicates, ordered or unordered; binary search trees; AVL, to quote
a few. Here we only need to prove the correctness of an abstract algorithm, which does not depend
on a speci�c representation of �nite sets. E�ciency of computation of the various operations is an
orthogonal issue which is not relevant here. In summary, we choose a very simple representation of
�nite sets based on lists without duplicates, already available in the Coq standard library, completed
with convenient notations and suitable basic lemmas.

Most of our e�orts are spent on issue (3) because we are interested in the correctness of the
algorithm, which follows from a non-trivial combination of invariants. In the presence of nested
loops, the design of invariants is subtle. We should pay attention to not only (i) the internal logic of
the algorithm but also (ii) the program states. Both (i) and (ii) give rise to di�erent invariants and
furthermore one invariant may depend on another.

3.1 A library on �nite sets

The algorithm deals with two kinds of �nite sets: on nat (also denoted by N) and on N2. Basic
operations on sets (∩ , ∪, ⊆, ∈, etc.) correspond to algorithms ultimately depending on a test
for equality on the elements. Therefore, the actual operations are parameterised not only by the
underlying types, such as N or N2, but also by an actual decision algorithm for equality on this
type. For instance, the complete Coq term for an expression such as A ∩ B, where A and B are
two sets of natural numbers, would be intersection N dec eq nat A B. Therefore, even initially
quite short expressions like the ones used in the algorithm described in the previous section quickly
become very cumbersome: hard to read and to reason about. In order to recover short expressions,
three mechanisms are used:



� In�x notations, available in Coq for a long time, e.g., + for addition on nats. But binary operators
can only be used on expressions of the form f x1 x2. The issue is then to hide the underlying
type T and the equality test of type T → T → Prop to be used on the signi�cant arguments x1
and x2.

� Implicit arguments: in our example, the argument N can be automatically inferred from A (or B).
� Type classes, allowing us to provide a default value having a given type; in our case, the intended
value is an equality test of type T → T → Prop, where T was inferred from x1 and x2. Note
that in general, there is no automatic way to provide such a value. For instance, N → N has
no decidable equality, whereas there are several possible algorithms for an equality test on N.
Type classes are an advanced mechanism of Coq, introduced much more recently than implicit
arguments3.

In terms of the data structure for modeling �nite sets, we simply use lists. We rely on the Coq
library ListSet and represent a �nite set by a list without duplicates.

Notations

The membership and inclusion relations are just parameterised by the implicit types of the elements.
Corresponding operations exist in the standard library, thus we just add suitable notations for them.
Here is the code for membership.

Notation "x ∈ y" := (set_In x y) (at level 70, no associativity).

Then, x /∈ y and u ⊆ v (set inclusion) are de�ned in a similar way. Non-inclusion (u 6⊂ v) is not
the negation of inclusion, but a constructive version providing a witness.

Inductive nincl {A} (u v : set A) : Prop :=

nincl_intro : forall a, a ∈ u -> a /∈ v -> nincl u v.

Strict inclusion (u ⊂ v) is de�ned as u ⊆ v ∧ ∃ a, a ∈ v ∧ a /∈ u.

The usual binary algebraic operations on sets assume a decidable equality on the implicit type
of elements. For instance, in the standard library, the union of two sets u and v of elements of type
A can be written (set union tA u v), where tA is a test for equality on A. In order to hide tA, we
de�ne a suitable type class EqDec as follows.

Definition eq_dec (A: Type) := ∀ (x y: A), {x = y}+{x <> y}.

Class EqDec (A : Type) := {Aeq_dec : eq_dec A}.

This makes it possible to rede�ne union as follows:

Definition union {A}{ED: EqDec A} u v := set_union Aeq_dec u v.

Notation "u ∪ v" := (union u v) (at level 50, left associativity).

Thanks to the mechanism of Coq classes, ED can be given as an implicit argument and the equality
test Aeq dec is guessed from the type of ED. At this stage, union is presented as a binary relation
and can be provided a binary in�x operator. Coq o�ers an additional mechanism called generalisable
variables, allowing us to shorten sequences of implicit arguments. Here, A can be inferred from the
type of ED. Therefore, one uses the following equivalent de�nition for union.

Definition union `{ED: EqDec A} u v := set_union Aeq_dec u v.

3 Alternatively, we could use canonical structures, but more complex interactions from the user would be
required.



The usual operations u ∩ v, u \ v (set di�erence) and u × v are de�ned along the same lines,
as well as a ⊕ u (resp. a † u) for adding (resp. removing) an element a to a set u.

Introduction and elimination principles

The Coq library on �nite sets provides lemmas suitable for rewriting-style proofs. For instance,
set union iff states that a ∈ u ∪ v can be rewritten as a ∈ u \/ a ∈ v and conversely. How-
ever, Coq is much better at unifying propositions than at recognising that the subterm of a propo-
sition matches the left (or right) member of a proven congruence, modulo folding or unfolding of
de�nitions. Moreover, it is often the case that only an inclusion between two sets is available, in-
stead of an equality. Rather than insisting on algebraic-style reasoning, we prefer to go back to basic
logical principles, that is, to the obvious introduction and elimination principles dedicated to each
set operation. This turns out to be suitable and e�cient for our needs. For instance, we provide the
following lemmas dedicated to union.

Lemma union_intro1 `{ED: EqDec A} {a u v} : a ∈ u -> a ∈ u ∪ v.

Lemma union_intro2 `{ED: EqDec A} {a u v} : a ∈ v -> a ∈ u ∪ v.

Lemma union_elim `{ED: EqDec A} {a u v} : a ∈ u ∪ v -> a ∈ u \/ a ∈ v.

Similar lemmas are provided for the empty set, intersection, set di�erence, Cartesian product,
addition and removal of an element. It is then easy to prove additional general lemmas, such as (u
∩ v) ⊆ u, or more speci�c lemmas like (u ∩ w) ∪ (v ∩ w) ⊆ ((u ∪ v) ∩ w).

Filtering

The algorithm makes crucial use of �ltering, thus we need introduction and elimination principles
completed by a small number of lemmas as follows:
� a ∈ u -> f a = true -> a ∈ (filter f u),
� a ∈ filter f u -> a ∈ u ∧ f a = true,
� a ∈ u -> filter f u = ∅ -> f a = false,
� a ∈ (u \ filter f v) -> a ∈ u \ v ∨ f a = false,
� filter f (u \ v) = ∅ -> all false v f -> all false u f.

Duplication

Similarly, as sets are represented by lists without duplicates, we need the following lemmas:
� x ∈ u -> x ∈ nodup u,
� x ∈ nodup u -> x ∈ u,
� NoDup l -> NoDup (l ∩ l'),
� NoDup l -> NoDup (filter f l).

3.2 Termination

The termination of the algorithm is based on a sequence of strictly decreasing sets, ordered by
inclusion. In the current version, sets are represented by �nite lists without duplicates. Therefore, a
simple measure is the size of the corresponding list. Technically, it means that, in addition to the
invariants related to the design of the algorithm, we need invariants keeping track of non-duplication.
In some occasions, e.g., the inner loop of the algorithm, the termination property may be slightly
more complicated and depend on two sets because we jump out of a loop because either one set is
empty or the other shrinks. To deal with that case, we introduce the following measure on two sets.

Definition size (l1 l2 : set N2) : N :=

match l1 with

| nil => O

| _ :: _ => S (length l2)

end.



4 Formalisation of the algorithm

4.1 Preliminaries and input of the algorithm

We �rst formalise the testing semantics. According to the algorithm, an enhanced test t is always in
the form 〈ω, t(i1,j1), t(i2,j2), ..., t(im,jm)〉 for some m > 0 with t(il,jl) being a distinguishing test and
il, jl the indices for two di�erent equivalence classes. In other words, as far as the correctness of
Algorithm 1 is concerned, we do not need to consider tests of the form a · t, where a is a label and t
is a test, as previously given in De�nition 4. Since the input of Algorithm 1 has distinguishing tests
and the �nal enhanced test is constructed out of them, we make a distinction between the two types
of tests. We formalise a distinguishing test as a basic test and the enhanced test is constructed as a
list of basic tests.

Inductive basic_test : Set :=

| mk_bt : N -> N -> basic_test.

Definition test : Set := list basic_test.

Now that we have two types of tests, it is natural to model the function Pr given in De�nition 4
in two steps. We �rst de�ne a variable Prb that prescribes the probability of applying a basic test
to the states in an equivalence class. We use the hypothesis that all probabilities are non-negative.
Then we de�ne the function Prtest to calculate the probability of applying a general test to a state
by multiplying the probabilities of applying Prb to basic tests and that state.

Variable Prb : N -> basic_test -> Q.

Fixpoint Prtest (i : N) (t : test) : Q :=

match t with

| nil => 1

| bt :: t' => Qmult (Prb i bt) (Prtest i t')

end.

We see from the �rst case of the above de�nition that Pr i nil = 1, which corresponds nicely to
the fact that Pr(Ci, ω) = 1. Therefore, the special test ω is modelled by the empty list and there is
no need to de�ne a special basic test.

The set I of Lemma 1 is represented by an nonempty �nite subset of N called I0 (I has a special
meaning in Coq). We also assume a function oracle returning the distinguishing test tij for all
equivalence class indices i 6= j with i, j ∈ I.
Definition distinguish i j :=

{t : basic_test | i <> j -> ¬ Prb i t == Prb j t}.

Variable I0 : set N.
Hypothesis initially_non_empty : I0 <> ∅.
Variable oracle : ∀ i j : N, (i, j) ∈ I0×I0 -> distinguish Prb i j.

4.2 States

Di�erent parts of the algorithm involve di�erent variables. States are represented by records con-
strained by a structural invariant. Transitions are described by functions between such records. In
particular, loops are modelled by tail-recursive functions. Instead of using a notion of global states
containing all variables, we use inner states and outer states to model the data �ow of the inner
loop and the outer loop of the algorithm, respectively.

The inner states are determined by the three sets I, Item, and Ipass, together with the test t.
However, Ipass is not modi�ed in the inner loop. An advantage of the functional style is that we
can consider this set as a constant parameter of the corresponding function. This way, we get the
invariance of Ipass for free, without additional proof obligation. In Coq, we can conveniently use the
scoping mechanism of sections as follows.



Section sec_with_Y_pass.

Variable Y_pass : set N2.

The other sets are then modelled by the three components Y, Y term and tt of the following
record type.
Record in_iter_data : Type := mk_in_iter_data {

Y : set N2;

Y_term : set N2;

tt : test;

}.

The outer states are determined by the three sets I', Irem, and Ipass, together with the test t.
They are modelled by the four components I', Y rem, Y pass and et of the following record type.
Record out_iter_data : Type := mk_out_iter_data {

I' : set N;
Y_rem : set N2;

Y_pass : set N2;

et : test; (* enhanced test *)

}.

An invariant maintained by the outer states is the following. It says that each pair (i, j) in Irem
consists of two di�erent indices taken in I, and there are no duplicates in the three sets I ′, Irem,
and Ipass.
Inductive out_data_invariant0 (r: out_iter_data) : Prop :=

| out_data_invariant0_intro :

Y_rem r ⊆ I0×I0 ->

(∀ i j, (i,j) ∈ (Y_rem r) -> i <> j) ->

NoDup (I' r) -> NoDup (Y_rem r) -> NoDup (Y_pass r) ->

out_data_invariant0 r.

Lines 2-5 in Algorithm 1 are the initialisation step. The e�ect is to create the following initial
state.
Definition init_data : out_iter_data :=

{| I' := initial_I;

Y_rem := initial_Y;

Y_pass := ∅;
et := ∅ |}.

The two auxiliary constants initial I and initial Y are introduced in order to create the sets
I and {(i, j) ∈ I × I : i < j}, respectively.
Definition initial_I : set N := nodup I0.

Definition initial_Y : set N2 := filter_lt (nodup (I0 × I0)).

Here we see an example of using �lters: from the set I × I (without duplicates) we �lter out all
pairs (i, j) not satisfying the condition i < j. This is a convenient means of creating subsets from a
given set that we often use in our Coq development.

The �nal output data of the algorithm is the set I ′ and the enhanced test t, as described by the
type final data.
Record final_data : Type := mk_final_data {

I'f : set N;
etf : test;

}.

4.3 Inner loop

To formalise loops, our general strategy is to �rst de�ne one round of iteration, which is a function
from a state possibly with additional parameters to a new state, and then repeatedly apply the
iteration until the state meets the termination condition.

The inner loop (lines 15-21 of Algorithm 1) makes use of an iteration step described below, where
next Y inner loop computes the new value to be assigned to I, as stated in line 16.



Definition next_Y_inner_loop r := filter_eq (tt r) (Y_pass \ Y_term r).

Definition inner_loop_iter (r : in_iter_data) (tij : basic_test) : in_iter_data :=

match Y r with

| ∅ => r

| _ :: _ => let Y' := next_Y_inner_loop r in

match Y' with

| ∅ => {| Y := Y';

Y_term := Y_term r;

tt := tt r |}

| _ :: _ => {| Y := Y';

Y_term := Y_term r ∪ Y';

tt := tij :: tt r |}

end

end.

The structural invariant of the record maintained by the inner loop is:

Inductive in_data_invariant (d: in_iter_data) : Prop :=

| in_data_invariant_intro :

Y d ⊆ Y_pass -> Y_term d ⊆ Y_pass ->

NoDup (Y d) -> NoDup (Y_term d) -> in_data_invariant d.

It requires that for an inner state (I, Iterm, t) to be legal, we must have that I ⊆ Ipass, Iterm ⊆ Ipass,
and there is no duplicated element in I, Iterm and Ipass.

The inner loop itself is formulated as a recursive function that repeatedly applies the iteration
step inner loop iter . Note that each iteration step either makes I empty, or decreases the size of
the set Ipass\Item. So we de�ne the measure size of data for inner states, which yields a strictly
decreasing argument for the function in loop.

Definition size_of_data r := size (Y r) (Y_pass \ Y_term r).

Function in_loop (r : in_iter_data) (di : in_data_invariant r) (tij : basic_test)

{measure size_of_data r} : in_iter_data :=

match Y r with

| ∅ => r

| _ :: _ => in_loop (inner_loop_iter r tij) (inner_loop_iter_invar di tij) tij

end.

The previous de�nitions are written inside Section sec with Y pass mentioned in Section 4.2.
When refering to them outside of this section, namely when they are used in functions and proofs
modelling the outer loop, an actual parameter for Y pass has to be provided. Moreover, in loop

needs an additional parameter stating that Y pass has no duplicate in order to ensure that di is
maintained invariant. This assumption is stated at the beginning of Section sec with Y pass.

4.4 Interface between inner and outer loops

Before entering the inner loop, we need to pass the information stored in the outer state to the inner
state. The interface between the two loops is modelled by the function mk in from out that creates
an inner state from an outer state. It contains the formalisation of lines 13-14 in Algorithm 1.

Definition mk_in_from_out (r : out_iter_data) (bt : basic_test) : in_iter_data :=

let rnew := outer_loop_iter1 r bt in

{| Y := Y_pass rnew;

Y_term := ∅;
tt := et rnew |}.

Lemma out_data_in_data_invar r (dio : out_data_invariant0 r) bt :

let rnew := outer_loop_iter1 r bt in

in_data_invariant (Y_pass rnew) (mk_in_from_out r bt).

Note that the actual parameter given for Y pass to in data invariant is Y pass rnew.



4.5 Outer loop

As we did for the inner loop, we �rst specify one iteration step of the outer loop. The sequence of
assignments before entering the inner loop (lines 7-12 of Algorithm 1) is described by the function
outer loop iter1.

Definition outer_loop_iter1 (r : out_iter_data) (bt : basic_test) : out_iter_data :=

let nI' := filter_pos bt (I' r) in

let Ydis := filter_neq bt (Y_rem r ∩ (nI' × nI')) in

{| I' := nI';

Y_rem := (Y_rem r ∩ (nI' × nI')) \ Ydis;

Y_pass := (Y_pass r ∩ (nI' × nI')) ∪ Ydis;

et := bt :: et r |}.

Then the function outer loop iter2 formalises one iteration of the outer loop by �rst calling
outer loop iter1, then creating an inner state through the interface mk in from out, and �nally
invoking in loop to deal with the tasks required by the inner loop.

Definition outer_loop_iter2 r (dio : out_data_invariant0 r) bt : out_iter_data :=

let rnew := outer_loop_iter1 r bt in

let rin := mk_in_from_out r bt in

let ndYp := nd_Y_pass r dio bt in

let rin' := in_loop (Y_pass rnew) ndYp rin (out_data_in_data_invar r dio bt) bt in

{| I' := I' rnew;

Y_rem := Y_rem rnew;

Y_pass := Y_pass rnew;

et := tt rin' |}.

By repeatedly applying the iteration step outer loop iter2, we obtain a formalisation of the outer
loop. The decreasing argument for the recursive function out loop is the size of the set Irem. The
auxilliary function pick checks if its argument is nonempty, that is, contains a pair (i, j); in that
case, it returns a basic test distiguishing i and j, using the function oracle.

Inductive resu_pick r : Set :=

| P_empty : Y_rem r = ∅ -> resu_pick r

| P_nonempty : ∀ i j s,

Y_rem r = (i, j) :: s -> distinguish Prb i j -> resu_pick r.

Definition pick {r} (di : out_data_invariant0 r) : resu_pick r.

Function out_loop r (di : out_data_invariant0 r)

{measure size_of_out_data r} : out_iter_data :=

match pick di with

| P_empty _ e => r

| P_nonempty _ i j s e dis => let (bt, _) := dis in

out_loop (outer_loop_iter2 r di bt)

(outer_loop_iter_invar0 r di bt)

end.

A technical di�erence from the inner loop is that the de�nition of the iteration step is de�ned
only on states satisfying the loop invariant, entailing a more subtle use of dependent typing. More
speci�cally, if we compare the de�nitions of in loop and out loop, both of them contain a tail
recursive call with the �rst argument for the state reached after one iteration step then the second
argument embedding the invariant satis�ed by this state. This kind of of dependency, where prop-
erties depending on data are kept separated from them, is rather common in Coq developments: for
instance, it avoids complications related to proof irrelevance that arise with dependent records (and
any inductive type made of one constructor with dependencies between its arguments). However,
in contrast to the de�nition of in loop, where the state argument of the recursive call refers to
data only, the corresponding argument for out loop, namely outer loop iter2 r di bt, makes
a crucial use of invariant di. We believe that this would be hard to express in a concise and accurate



way without dependent types. In other words, we bene�t from the rich type system of Coq which
includes dependent types, while avoiding issues related to dependent records.

Interestingly, the exact reason for this situation is that invariant di is needed in the body of
outer loop iter2 in order to allow for a call to in loop. A similar situation can reasonably be
expected with the formalisation of many algorithms containing nested loops, at least when non-trivial
interactions occur between these loops.

4.6 The whole algorithm

Once the outer loop is formalised, the whole algorithm easily follows. We �rst initialise an outer
state and then call out loop before obtaining the �nal set I ′ and the enhanced test t.

Definition algo_compt_enhanced_test : final_data :=

let r := init_data in

let final_r := out_loop r init_data_invariant0 in

{| I'f := I' final_r;

etf := et final_r |}.

5 Formal proofs

In this section, we take a close look at some important invariants that �nally entail the correctness
of the algorithm.

5.1 Invariants of the inner loop

As mentioned earlier, the de�nition of in loop embeds the structural invariant. The following in-
variants are used for invariant (c) of the outer loop.

Lemma inner_loop_iter_invar_c {k r bt} :

0 < Pr k (tt r) -> (∃ t, tt r = bt :: t) -> Pr k (tt (inner_loop_iter r bt)) > 0.

Lemma inner_loop_iter_invar_c2 {k r} :

Pr k (tt r) == 0 -> ∀ bt, Pr k (tt (inner_loop_iter r bt)) == 0.

The �rst one says that if Pr(Ck, t) > 0 and t is made from basic test bt then after running one
iteration of the inner loop with bt, the test may evolve into some t′, but we still have Pr(Ck, t

′) > 0.
The second one states that if Pr(Ck, t) = 0 and t is changed into some t′ then we always have
Pr(Ck, t

′) = 0. The next two lemmas tell us that executing the whole inner loop preserves similar
properties.

Lemma in_loop_invar_c {k r bt di} :

0 < Pr k (tt r) -> (∃ t, (tt r) = bt :: t) -> 0 < Pr k (tt (in_loop r di bt)).

Lemma in_loop_invar_c2 {k r di} :

Pr k (tt r) == 0 -> ∀ bt, Pr k (tt (in_loop r di bt)) == 0.

Many additional invariants and post-conditions are used for invariant (d) of the outer loop. For
example, the lemma in loop nextI says that if the component I in an inner state is empty, then
it remains empty after the execution of the inner loop.

Definition loop_body bt r := inner_loop_iter r bt.

Inductive ufp (iid: in_iter_data) r bt : Prop :=

ufp_intro :

∀ n,

iid = rditer _ n (loop_body bt) r ->

(Y r <> ∅ -> (0 < n)%nat ∧
Y (rditer _ (pred n) (loop_body bt) r) <> ∅ ∧



next_Y_inner_loop (rditer _ (pred n) (loop_body bt) r) = ∅) ->

(Y r = ∅ -> (n = 0)%nat)

-> ufp iid r bt.

Lemma unfold_fixed_point r (di : in_data_invariant r) bt :

ufp (in_loop r di bt) r bt.

Lemma in_loop_nextI r di bt : Y r <> ∅ -> next_Y_inner_loop (in_loop r di bt) = ∅.

5.2 Invariants of the outer loop

The outer loop maintains four invariants as given in page 5. They are formalised as the predicates on
outer states: out data invariant a, out data invariant b, out data invariant c, and �nally
out data invariant d. Althogether, they are used to form the global invariant out data global invariant.

Inductive out_data_invariant_a (d: out_iter_data) : Prop :=

| out_data_invariant_a_intro :

(Y_rem d ∪ Y_pass d) ⊆ (filter_lt (I' d × I' d)) ->

(filter_lt (I' d × I' d)) ⊆ (Y_rem d ∪ Y_pass d) ->

out_data_invariant_a d.

Inductive out_data_invariant_b (d: out_iter_data) : Prop :=

| out_data_invariant_b_intro : I' d <> ∅ -> out_data_invariant_b d.

Inductive out_data_invariant_c (d: out_iter_data)(I : set N) : Prop :=

| out_data_invariant_c_intro :

(∀ k, k ∈ I' d -> 0 < Pr k (et d)) ->

(∀ k, k ∈ I \ I' d -> Pr k (et d) == 0) ->

out_data_invariant_c d I.

Inductive out_data_invariant_d (d: out_iter_data) : Prop :=

| out_data_invariant_d_intro :

all_false (Y_pass d) (eq_prob (et d)) -> out_data_invariant_d d.

Inductive out_data_global_invariant (I : set N) (r: out_iter_data) : Prop :=

odgi_intro :

out_data_invariant_a r ->

out_data_invariant_b r ->

out_data_invariant_c r I ->

out_data_invariant_d r ->

out_data_global_invariant I r.

As expected, the global invariant is established at the beginning of the outer loop.

Lemma init_data_invariant_all : out_data_global_invariant initial_I init_data.

5.3 Preservation lemmas for the outer loop

In order to show that the global invariant is preserved by the outer loop, we consider invariants
(a)-(d) separately. Each of them is preserved after one iteration of the outer loop, and it is the
same case for out data invariant0 given in Section 4.2. Note that those invariants are not com-
pletely independent. For example, the preservation of invariant (b) depends on invariant (a), and
the preservation of invariant (d) relies on invariant (c).



Lemma outer_loop_iter_invar0 :

∀ r (dio : out_data_invariant0 r) bt,

out_data_invariant0 (outer_loop_iter2 r dio bt).

Lemma outer_loop_iter_invar_a {r dio bt} :

out_data_invariant_a r -> out_data_invariant_a (outer_loop_iter2 r dio bt).

Lemma outer_loop_iter_invar_b {r i j dio bt} :

out_data_invariant_a r ->

(i,j) ∈ (Y_rem r) -> (i <> j -> ¬ Prb i bt == Prb j bt) ->

out_data_invariant_b (outer_loop_iter2 r dio bt).

Lemma outer_loop_iter_invar_c {r bt dio I} :

out_data_invariant_c r I -> out_data_invariant_c (outer_loop_iter2 r dio bt) I.

Lemma outer_loop_iter_invar_d {r bt dio I} :

out_data_invariant_c r I -> out_data_invariant_d r ->

out_data_invariant_d (outer_loop_iter2 r dio bt).

Lemma out_loop_invar I r (di : out_data_invariant0 r) :

out_data_global_invariant I r -> out_data_global_invariant I (out_loop r di).

In the proofs of the lemmas outer loop iter invar c and outer loop iter invar d, we
need to make an in-depth analysis of the inner loop and use a number of invariants discussed in
Section 5.1.

Moreover, the emptyness of I rem is (trivially) ensured after running the outer loop, which
implies the termination of the outer loop.

Lemma out_loop_ensures_empty_Yrem r di : Y_rem (out_loop r di) = ∅.

5.4 Main theorem

The desired post-condition is ensured after running the algorithm. It says that the �nal set I ′ and
the enhanced test t satisfy the conditions required by Lemma 1. In other words, we have formally
proved the correctness of the algorithm.

Theorem correctness:

let (fI, ft) := algo_compt_enhanced_test in

fI <> ∅ ∧
(∀ k, k ∈ fI -> 0 < Pr k ft) ∧
(∀ k, k ∈ (I0 \ fI) -> Pr k ft == 0) ∧
(∀ i j, i ∈ fI -> j ∈ fI -> i <> j -> ¬ Pr i ft == Pr j ft).

As a corollary, we get a formal proof of Lemma 1. Note that the choice between a functional or
an imperative style for the formalisation of Algorithm 1 is irrelevant here, since this algorithm is not
part of the statement.

Corollary main_lemma :

∀ Prb : N → basic_test → Q, (∀ i t, 0 <= Prb i t) →
∀ I0 : set N, I0 6= ∅ →
(∀ i j, (i, j) ∈ I0 × I0 → distinguish Prb i j) →
∃ (fI : set N) (ft : test),

let Pr := Prtest Prb in

fI 6= ∅ ∧
(∀ k, k ∈ fI → 0 < Pr k ft) ∧
(∀ k, k ∈ I0 \ fI → Pr k ft == 0) ∧
(∀ i j, i ∈ fI → j ∈ fI → i 6= j → ¬ Pr i ft == Pr j ft).



6 Conclusion

We have demonstrated a mechanisation of proofs in probabilistic testing semantics with Coq. Proving
properties in this setting requires subtle reasoning both on algorithmic and quantitative aspects of
program states. Our development includes more than 500 lines of speci�cations and de�nitions
(but only 21 lines of them are needed for Lemma 1), and more than 900 lines of proof scripts.
Along with a machine-checkable proof of the correctness of the non-trivial algorithm with nested
loops for constructing enhanced tests, we obtain a convenient library for manipulating �nite sets,
which we believe will bene�t future formalisation e�orts such as formal reasoning with probabilistic
bisimulations and testing equivalences.
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