
Developing and Certifying Datalog Optimizations in
Coq/MathComp

Pierre-Léo Bégay
Orange Labs

Lannion, France
Univ. Grenoble Alpes

CNRS, Grenoble INP, VERIMAG
Grenoble, France

pierreleo.begay@orange.com

Pierre Crégut
Orange Labs

Lannion, France
pierre.cregut@orange.com

Jean-François Monin
Univ. Grenoble Alpes

CNRS, Grenoble INP, VERIMAG
Grenoble, France

jean-francois.monin@univ-grenoble-
alpes.fr

Abstract
We introduce a static analysis and two program transfor-
mations for Datalog to circumvent performance issues that
arise with the implementation of primitive predicates, no-
tably in the framework of a large scale telecommunication
application. To this effect, we introduce a new trace seman-
tics for Datalog with a verified mechanization. This work
can be seen as both a first step and a proof of concept for the
creation of a full-blown library of verified Datalog optimiza-
tions, on top of an existing Coq/MathComp formalization of
Datalog[5, 14] towards the development of a realistic envi-
ronment for certified data-centric applications.

CCS Concepts: • Security and privacy→ Logic and ver-
ification; • Theory of computation→ Program analysis;
• Networks→ Network dynamics.

Keywords: Datalog, Coq, MathComp, semantics.
ACM Reference Format:
Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin. 2021.
Developing and Certifying Datalog Optimizations in Coq/Math-
Comp. In Proceedings of the 10th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs (CPP ’21), January 18–
19, 2021, Virtual, Denmark. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3437992.3439913

1 Introduction

Datalog is a simple and declarative language tuned to data-
centric applications. As a first approximation, it is a fragment
of Prolog without function symbols. A Datalog program
consists of facts, i.e. positive ground atoms, and implicitly
universally quantified rules which allow the derivation of

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8299-1/21/01. . . $15.00
https://doi.org/10.1145/3437992.3439913

new facts. Recursivitymakes it possible to compute transitive
closures, e.g. accessibility in graphs, in a simpler and more
complete way than other query languages, such as SQL,
XPath and SPARQL. In contrast to Prolog, the evaluation
mechanism of Datalog follows a bottom-up strategy which
guarantees termination [2] – in this framework, the set of
derivable facts is always finite.
Originally designed as a powerful query language on

databases, it has recently gained interest thanks to domain-
specific extensions [2, 29]. The introduction of [5] provides a
comprehensive list of languages built upon Datalog [3, 9, 16,
27] and applications, in both academic [13, 18] and industrial
[11, 15] settings.

This work originates in a large-scale application of Datalog
to a telecommunication verification tool aiming at computing
connectivity properties in virtual infrastructure managers
such as OpenStack. Datalog can model traffic forwarding in
various networking elements in only a few lines of code.

Lopes et al have shown in [25, 26] that the Datalog engine
must use specific representations of set of values rather than
enumeration to efficiently handle common operations on
network addresses. They introduced such a structure, called
cubes, and the Network Optimized Datalog engine (NoD),
that scales to models of networks of industrial size. Although
a step in the right direction, NoD imposes constraints on
programs to scale. Efficient NoD programs (e.g. [24]) are
usually long and complex. The transformation process to
generate those programs from the generic ones is manual,
error prone, undocumented, difficult to understand and trust
by a third-party, and ultimately difficult to maintain when
the initial program evolves.
To address these performance and trust issues, we de-

velop two Datalog-level program transformations aimed at
speeding-up execution by the NoD engine, as well as a static
analysis upon which the first transformation relies. We use
and extend the Coq/MathComp formalization of Datalog
developed in [5, 14], to show that the static analysis captures
an overapproximation of the behavior of a Datalog program,
and that the two rewritings preserve the semantics of the

https://doi.org/10.1145/3437992.3439913
https://doi.org/10.1145/3437992.3439913

CPP ’21, January 18–19, 2021, Virtual, Denmark Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin

transformed program. These proofs lead us to design a new
Datalog trace semantics, whose implementation is also ver-
ified in Coq. The resulting code, which is made available
at [1], can be seen as a first and realistic experiment of the
aforementioned Coq implementation of Datalog.
Section 2 recalls the basics of Datalog and discusses the

limitations of the NoD engine. Sections 3 and 4 present and
justify our program transformations and the static analysis.
Section 5 introduces and discusses their Coq formalizations
and justifications. We sketch out in Section 6 a more efficient
version of the static analysis, as well as the main difficulty it
raises. Section 7 explains the effects of those optimizations,
in particular in our use case. We finally discuss related works
in Section 8 and conclude in 9.

2 Datalog

We first present the formal syntax and semantics of Datalog.
We then introduce the Network Optimized Datalog engine,
and in particular discuss a caveat with the implementation
of certain predicates.

2.1 Syntax

Assuming setsV , C and P of variables, constants and pred-
icate symbols, programs are built using the following rules:

𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑠 𝑃 ::= 𝐶0, · · · ,𝐶𝑘

𝐶𝑙𝑎𝑢𝑠𝑒𝑠 𝐶 ::= 𝐴0 :-𝐴1, · · · , 𝐴𝑚 .
𝐴𝑡𝑜𝑚𝑠 𝐴 ::= 𝑝 (𝑡0, · · · , 𝑡𝑛−1)
𝑇𝑒𝑟𝑚𝑠 𝑡 ::= 𝑥 ∈ V | 𝑐 ∈ C
𝐴0 is the head of the clause, whereas the𝐴1...𝐴𝑚 sequence

is its body. In the third rule, 𝑝 ∈ P and 𝑛 is the arity of 𝑝 ,
written 𝑎𝑟 (𝑝). We will write as ℎ𝑒𝑎𝑑 : 𝑐𝑙𝑎𝑢𝑠𝑒 → 𝑎𝑡𝑜𝑚 and
𝑏𝑜𝑑𝑦 : 𝑐𝑙𝑎𝑢𝑠𝑒 → 2𝑎𝑡𝑜𝑚 the functions that return the head
and body of a clause.

Example 2.1. Figure 1 shows a Datalog program fragment,
which computes connectivity in a graph (the 𝑙𝑖𝑛𝑘𝑒𝑑 predi-
cate) as the transitive closure of the 𝑒𝑑𝑔𝑒 relation.

𝑙𝑖𝑛𝑘𝑒𝑑 (𝑋,𝑌) :- 𝑒𝑑𝑔𝑒 (𝑋,𝑌).
𝑙𝑖𝑛𝑘𝑒𝑑 (𝑋,𝑌) :- 𝑙𝑖𝑛𝑘𝑒𝑑 (𝑋,𝑍), 𝑒𝑑𝑔𝑒 (𝑍,𝑌) .

Figure 1. Graph connectivity in Datalog

A program contains a mix of ground bodyless clauses,
called facts, and rules, i.e. clauses with at least one atom in
their body. A predicate is defined only by rules (intensional
predicates) or by facts (extensional predicates). In Example
2.1, 𝑙𝑖𝑛𝑘𝑒𝑑 is intensional, whereas 𝑒𝑑𝑔𝑒 (not shown) is con-
sidered as extensional, the facts would then represent the
set of edges in the graph.

Another restriction, called safety, requires all variables in
the head of a rule to appear in its body, ensuring that only a
finite number of new facts can be deduced.
Term body occurrences, or 𝑡𝑜𝑐𝑐 are 3-tuples in N3. The

components are the indexes of, respectively, the rule, the
atom (within the body of the rule) and the argument (within
the atom), starting at 0. In Example 2.1, the 𝑡𝑜𝑐𝑐 for the 𝑍
within 𝑒𝑑𝑔𝑒 in the second rule would be ⟨1, 1, 0⟩.

2.2 Semantics

B(𝑃) is the Herbrand Base of program 𝑃 , i.e. the set of ground
atoms built from its predicates and constants. An interpre-
tation 𝐼 is a subset of B(𝑃). A substitution 𝜈 , i.e. a mapping
from variables appearing in the program to (program) con-
stants, can naturally be lifted to clauses. We denote the set
of substitutions as Σ.
A clause 𝐶 is satisfied by an interpretation 𝐼 if, for any

substitution 𝜈 , 𝑏𝑜𝑑𝑦 (𝜈 (𝐶)) ⊆ 𝐼 ⇒ ℎ𝑒𝑎𝑑 (𝜈 (𝐶)) ∈ 𝐼 . Lift-
ing this notion to full programs, 𝐼 is a model of 𝑃 iff all its
clauses are satisfied by 𝐼 . The semantics of 𝑃 is its unique
minimal model w.r.t. set inclusion [2], writtenMP. However,
this model-theoretic semantics provides no clue on how to
actually buildMP. To do so, the following functions are used:

Definition 2.2. (Substitution / clause matching) A sub-
stitution 𝜈 matches a clause 𝐶 w.r.t. an interpretation 𝐼 , writ-
ten𝑚𝑎𝑡𝑐ℎ(𝜈,𝐶, 𝐼), iff 𝜈 maps all atoms from the body of𝐶 to
elements of 𝐼 , i.e. 𝑏𝑜𝑑𝑦 (𝜈 (𝐶)) ⊆ 𝐼 .

Definition 2.3. (𝑇𝑃 – Consequence operator) Let 𝑃 be a
program and 𝐼 an interpretation. The 𝑇𝑃 operator adds the
set of program consequences to 𝐼 :
𝑇𝑃 (𝐼) = {ℎ𝑒𝑎𝑑 (𝜈 (𝐶)) | 𝜈 ∈ Σ ∧ 𝐶 ∈ 𝑃 ∧ 𝑚𝑎𝑡𝑐ℎ(𝜈,𝐶, 𝐼)} ∪ 𝐼

Definition 2.4. (Fixpoint evaluation) The iterations of
the 𝑇𝑃 operator on ∅ are:{

𝑇𝑃 ↑ 0 = ∅
𝑇𝑃 ↑ 𝑛 + 1 = 𝑇𝑃 (𝑇𝑃 ↑ 𝑛)

Since 𝑇𝑃 is monotonic and bound by B(𝑃), the Knaster-
Tarski theorem [34] ensures the existence of a least fixed
point, i.e. ∃𝜔,𝑇𝑃 ↑ 𝜔 =

⋃
𝑛≥0𝑇𝑃 ↑ 𝑛. The fixpoint evalu-

ation of 𝑃 is defined as 𝑇𝑃 ↑ 𝜔 = lfp (𝑇𝑃). It is shown in
[36] that lfp (𝑇𝑃) = MP, ensuring that 𝑇𝑃 is an adequate
mechanization of Datalog model-theoretic semantics.

Example 2.5. Let 𝑃 be the graph connectivity program from
Example 2.1 augmented with the set of facts 𝐹 = {𝑒𝑑𝑔𝑒 (1, 3),
𝑒𝑑𝑔𝑒 (2, 1), 𝑒𝑑𝑔𝑒 (4, 2), 𝑒𝑑𝑔𝑒 (2, 4)}, then
𝑇𝑃 ↑ 0 = ∅; 𝑇𝑃 ↑ 1 = 𝐹

𝑇𝑃 ↑ 2 = 𝑇𝑃 ↑ 1 ∪ {𝑙𝑖𝑛𝑘𝑒𝑑 (1, 3), 𝑙𝑖𝑛𝑘𝑒𝑑 (2, 1),
hspace 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 2), 𝑙𝑖𝑛𝑘𝑒𝑑 (2, 4)};
𝑇𝑃 ↑ 3 = 𝑇𝑃 ↑ 2 ∪ {𝑙𝑖𝑛𝑘𝑒𝑑 (2, 3), 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 1),
hspace 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 4), 𝑙𝑖𝑛𝑘𝑒𝑑 (2, 2)};

Developing and Certifying Datalog Optimizations in Coq/MathComp CPP ’21, January 18–19, 2021, Virtual, Denmark

𝑇𝑃 ↑ 4 = 𝑇𝑃 ↑ 3 ∪ {𝑙𝑖𝑛𝑘𝑒𝑑 (4, 3)} = 𝑇𝑃 ↑ 5;
The minimal model of 𝑃 is MP = 𝑙 𝑓 𝑝 (𝑇𝑃) = 𝑇𝑃 ↑ 4.

The previous definitions form the usual definition of Dat-
alog. However, the Coq modelization of [5, 14] separates the
rules from the facts, i.e. clauses with an empty body. In the
rest of this paper, we also adopt this setting, which matches
the philosophy of our trace semantics and static analysis.
Concretely, a "program" will refer to a set of rules, such

as Figure 1. A program will be evaluated w.r.t. an initial
interpretation, called Extensional DataBase (EDB). This set
of initial facts will appear explicitely in the iterations of 𝑇𝑃 ,
now written (𝑇𝑃 ↑ 𝑛) (𝐼), where 𝐼 is the EDB. The base case
is changed to be the EDB, i.e. (𝑇𝑃 ↑ 0) (𝐼) = 𝐼 , whereas the
recursive case is unchanged. This alternative presentation
is equivalent to the traditional one, and simply circumvents
the first iteration of 𝑇𝑃 .

Finally, Datalog engines may introduce primitive predi-
cates, i.e. predicates which are not defined via facts or rules,
but computed on the fly. A classical example of primitive
predicate is equality, which may often be useful in practice,
and much easier to dynamically check rather than define as
the set of all pairs ⟨𝑥, 𝑥⟩.

2.3 NoD Engine and Differences of Cubes

Network Optimized Datalog [25] is a Datalog engine used
to check reachability properties of dynamic networks. It is
based on a Z3 [28] implementation of Datalog, called 𝜇𝑍 [17],
with network-oriented modifications made for scalability.
One of the key modifications is the use of a data structure
called difference of cubes for the representation of network
packets and their rewriting.

Definition 2.6. (Difference of Cubes) A DoC is a set of
patterns modulo exceptions. Concretely, they are of the form⋃

𝑖

(𝜈𝑖\
⋃
𝑗

𝜈𝑖, 𝑗)

where 𝜈𝑖 and 𝜈 𝑗 are bit vectors patterns with some bits left
unspecified. In the setting of NoD, it can be understood as, for
example, "every packet of the form 𝜈1 except those matching
𝜈1,1 or 𝜈1,2, as well as the packets of the form 𝜈2 with the
exception of those matching 𝜈2,1".

However, in order to scale, NoD programs have to be tai-
lored to reduce the number of interactions between variables
from different origin. For example, the contents of the rout-
ing tables are inlined in the program rather than kept in a
separate base of fact refered by a small generic program. Us-
ing NoD at a real-world, industrial level then requires a lot of
expertise on NoD itself. Such specialized programs are more
complicated to write, understand and above all maintain.

2.4 Handling More Genericity

We developed a tool which aims at providing a higher-level
network veriicationmodel, using NoD as a backend. Roughly,
the tool is used to define generic properties and behaviors
as Datalog rules, where the configuration is abstract. Then,
the specificities of the analyzed network (routing tables, fire-
walls, etc) are collected by the tool and used as the EDB.

Example 2.7. The building block of the specification and
verification of network behavior is route selection. Figure 2
shows an abstract definition of routing, where predicate
linked(X, Y, P) states that a packet P can flow from X to
Y, and route(X,Y,F,M) is an extensional predicate describ-
ing a route from X to Y for packets matching F (captured
by match_route(P,F)) with priority M. Packets, filters and
priority can be arbitrarily complex.

linked(X, Y, P) :-
route(X, Y, F, M), match_route(P, F),
not exists_better_route(X, Y, P, M).

exists_better_route(X, Y, P, M) :-
route(X, Y, F2, M2), match_route(P, F2),
M2 > M.

Figure 2. Simplified network reachability in Datalog

In comparison, NoD has a clause for each routing rule,
which explicitely contains the negation of the matching of
higher-priority rules. Although highly beneficial, this overall
lift in abstraction and clarity on top of NoD comes at a cost.
As illustrated by Example 2.7, it requires the use of primitives,
here <, with multiple variables. However, the complexity
with which DoC handles some primitives, including all com-
parisons, changes dramatically with the number of involved
variables.

Example 2.8. Figure 3 illustrates how the DoC representa-
tion of the 𝑣1 ≥ 𝑣2 relation is exponential in the number of
bits the integers are coded on – here, four.

∗ ∗ ∗∗︸︷︷︸
𝑣1

∗ ∗ ∗∗︸︷︷︸
𝑣2

\ {0 ∗ ∗∗︸︷︷︸
𝑣1

1 ∗ ∗∗︸︷︷︸
𝑣2

, 00 ∗ ∗︸︷︷︸
𝑣1

01 ∗ ∗︸︷︷︸
𝑣2

, 10 ∗ ∗︸︷︷︸
𝑣1

11 ∗ ∗︸︷︷︸
𝑣2

,

000∗︸︷︷︸
𝑣1

001∗︸︷︷︸
𝑣2

, 010∗︸︷︷︸
𝑣1

011∗︸︷︷︸
𝑣2

, 100∗︸︷︷︸
𝑣1

101∗︸︷︷︸
𝑣2

, 110∗︸︷︷︸
𝑣1

111∗︸︷︷︸
𝑣2

, ...}

Figure 3. (Incomplete) DoC encoding of the 𝑣1 ≥ 𝑣2 relation

Example 2.9. Figure 4 illustrates how the comparison be-
tween a variable and a constant, here 1101, is linear in the
number of bits the integers are coded on.

CPP ’21, January 18–19, 2021, Virtual, Denmark Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin

∗ ∗ ∗ ∗ \ {0 ∗ ∗∗, 10 ∗ ∗, 1100}

Figure 4. DoC encoding of 𝑣 ≥ 1101

This observation on the impact on the number of variables
in some primitives, combined with the fact that, in practice,
the number of relevant integer values (ip addresses, priorities,
etc) in networks is much, much lower than allowed by the
types, led us to the optimizations which are presented and
discussed in the rest of this paper.

3 Partial Rule Instantiation

This section introduces a first program transformation that
aims at the reduction of the number of variables. It consists
of a rewriting that replaces a clause with many variables by
an equivalent set of specialized versions, which all contain
strictly less variables, and a static analysis that provides
values for the specialization. We first introduce the intuitions
behind the two operations, then formalize the rewriting. The
formalization of the static analysis is relegated to Section 5.

3.1 Intuition

In Definition 2.3, the 𝑇𝑃 operator tries out every possible
substitution and, when a match occurs, adds the correspond-
ing fact to the returned set. However, in practice, Datalog
engines may try to be more efficient than that. In particular,
Datalogcert [6] builds the minimal set of relevant substitu-
tions (this point is discussed in Section 5.3).
We observe that an engine which overapproximates the

set of candidate substitutions, while still checking the ground
atoms in the tail of the instantiated rule against the given
interpretation, does not change the deduced set of facts. This
means that, if we obtain a projection of such an overapprox-
imation on some variables, we can use it to constrain the
tested values. Our first transformation does so by rewriting
the program, which avoids the complex and specific opera-
tion of changing the internals of the used Datalog engine.

𝑠 (𝑋1, 𝑌1) :- 𝑞(𝑋1), 𝑝 (𝑋1, 𝑌1).
𝑞(𝑋2) :- 𝑟 (𝑋2, 𝑋2).
𝑞(𝑋3) :- 𝑓1 (𝑌3, 𝑌3, 𝑍3), 𝑓2 (𝑋3, 𝑌3, 𝑍3).
𝑟 (𝑋4, 𝑌4) :- 𝑓1 (𝑋4, 𝑌4, 𝑋4), 𝑓2 (𝑍4, 𝑋4, 𝑍4)

Figure 5. Defining s(X,Y)

Example 3.1. Let us consider the program in Figure 5, where
𝑠 , 𝑞 and 𝑟 are intensional predicates, 𝑓1 and 𝑓2 extensional,
and 𝑝 primitive, as well as the EDB {𝑓2 (1, 2, 5), 𝑓2 (3, 7, 1),
𝑓1 (2, 2, 2)}. Without running the program or knowing the
behavior of 𝑝 , one may quickly convince herself that the

values of 𝑋1 in practice are a subset of {1, 2, 3}. With that in
mind, we can rewrite the programwith the first rule replaced
by the three in Figure 6.

𝑠 (1, 𝑌1) :- 𝑞(1), 𝑝 (1, 𝑌1).
𝑠 (2, 𝑌1) :- 𝑞(2), 𝑝 (2, 𝑌1).
𝑠 (3, 𝑌1) :- 𝑞(3), 𝑝 (3, 𝑌1).

Figure 6. Defining s(X) with fewer variables

The program indeed has the same semantics, as any com-
putation of the original program is captured by one of the
three rules. Conversely, a rule that does not match any con-
crete computation can not be used, because at least one atom
in its instantiated body will not be deduced and available.

Given a way to approximate the values taken by any
given variable (or set of variables) of a program, this gen-
eral method can be used to reduce the number of variables
in primitive predicate instances, improving performance in
some settings, such as NoD. Before formalizing this transfor-
mation, we introduce a static analysis that computes such
value sets.

3.2 A Static Analysis for Datalog

Without loss of generality, we only consider programs where
variable names are not shared across rules. We also assume
the absence of constants in the head of rules, which can be
enforced by introducing new, unary predicates and corre-
sponding facts (see the proof of Theorem 12.5.2 in [2]). We
write 𝑝.𝑖 the 𝑖𝑡ℎ index (starting at 0) of predicate 𝑝 .

To convey the idea of our static analysis, we introduce an
informal and threefold specification of 𝑇𝑃 , illustrated using
the program of Figure 5: (1) Given any EDB, the set of values
with which 𝑞(𝑋1) can be instantiated is a subset of the union
of the values returned by the second and third rules. (2) Look-
ing at the former, the set of values for 𝑋2 is a subset of the
conjunction of those of any of its instances, i.e. ⟨1, 0, 0⟩ and
⟨1, 0, 1⟩, which correspond to 𝑟 .0 and 𝑟 .1. (3) Given a value
for 𝑋2, ⟨𝑋2, 𝑋2⟩ must form a valid tuple of arguments for 𝑟 ,
i.e. values used to instantiate an atom must be compatible.
Unlike (3), (1) and (2), which are akin to an alternation

between disjunctions and conjunctions, deal with variables
and 𝑡𝑜𝑐𝑐s individually. They then involve much less compu-
tation than the entirety of𝑇𝑃 , while hopefully still providing
interesting constraints.

We propose an analysis that performs (1) and (2) by build-
ing, for any variable to instantiate, a tree with nodes labeled
with ∧ and ∨ and leaves representing columns in the EDB
tables, e.g. "the third argument of predicate 𝑝". The tree then
represents the way values flow from the EDB to a variable

Developing and Certifying Datalog Optimizations in Coq/MathComp CPP ’21, January 18–19, 2021, Virtual, Denmark

during the program’s execution. The branches are annotated
with the index of the corresponding clause (descendants of∨-
nodes) or atom (descendants of ∧-nodes). We will discuss in
Section 6 how to use those annotations to simulate a weaker
version of (3) on top of the actual analysis.

Example 3.2. The flow of 𝑋1 in the program of Figure 5 is
shown in Figure 7. The variable has two occurrences in the
body of the first rule, in the first and second atom. However,
the second atom is a primitive, which is ignored by the static
analysis. The root of of the tree then has only one children,
annotated with the index of the atom, 0.
The corresponding atom is an occurrence of 𝑞, there are

then two descendants, the 1 and 2 annotations being the
indexes of the two clauses defining 𝑞. The use of a ∨-node
reflects the fact that the facts about 𝑞 is the union of those
defined by these two rules (see (1) above).

The right descendant leads to the 𝑋3 variable, whose only
appearance in the body of the rule is as the first argument
of an occurrence of the extensional 𝑓2 predicate. The next
descendent then is the corresponding leaf.

On the other hand, the left descendant leads to 𝑋2, which
has two occurrences in the same (and only) atom of the rule’s
body. There are then two new descendants, both annotated
with 0, the index of the 𝑟 atom. Here, the use of a ∧-node is
justified by (2). The rest of the tree follows the same logic.

∧

∨
∧

𝑓2.0

1
∧

∨

∧

𝑓1.1

0

3
∨

∧

𝑓2.1𝑓1.2𝑓1.0

0
0

1

3

0 0

1 2
0

Figure 7. Analysis of a variable

This principle will obviously not fare well with recursion,
which happens to be a core feature of Datalog. The analy-
sis then stores all previously visited 𝑡𝑜𝑐𝑐s when recursively
calling itself, to avoid having a 𝑡𝑜𝑐𝑐 twice in a branch of the
returned tree. This bounds the derivations despite poten-
tially recursive programs. The reasoning is that, to find an
approximation of the values going through some 𝑡𝑜𝑐𝑐 , one
should not look at the recursive part of the corresponding
predicate, but rather the other predicates that "ground" it.
This idea is formalized is 5.2, but let us provide an intuition.

Example 3.3. Figure 9a shows the analysis of variable𝑋1 in
the program of Figure 8, where 𝑞 is an extensional predicate.

𝑝 (𝑋1, 𝑌1) : − 𝑝 (𝑌1, 𝑋1) .
𝑝 (𝑋2, 𝑌2) : − 𝑞(𝑋2, 𝑌2) .

Figure 8. Program 𝑃𝑟𝑒𝑐

∧

∨

∧

𝑞.1

0
∧

∨

∧

𝑞.0

0

1

0

0 1

0

(a) Analysis of 𝑋1

∧

∨

∧

𝑞.0

0
∧

∨

∧

𝑞.1

0

1

0

0 1

0

(b) Analysis of 𝑌1

Figure 9. Analysis of a recursive program

The analysis starts with the 𝑝 atom in the body of the first
clause. It then considers two different ways to deduce a 𝑝
fact, i.e. the two clauses. When looking at the first clause, we
analyze the variable matching the previous position, i.e. 𝑌1.
It occurs in the same atom, which can again be instantiated
using both clauses. However, this timewe have only one child
under the ∨-node, as looking at the first clause again would
bring us back to our original 𝑡𝑜𝑐𝑐 . The analysis eventually
captures the fact that values of 𝑝 can be permuted, and that
the set of values of 𝑋1 is a subset those of 𝑞.0 and 𝑞.1.

From such a tree, we can extract a set of values for the
analyzed variable. Each 𝑓 .𝑖 leaf returns the set of constants
appearing at the 𝑖𝑡ℎ position of a 𝑓 fact in the EDB, whereas
the ∨ and ∧ nodes are treated as ∪ and ∩, respectively.

3.3 Clause Duplication Formalization

We now fully define the transformation that was informally
introduced in Section 3.1. It first assumes a program 𝑃 and
an interpretation 𝐼 . As one may want to only instantiate a
selection of variables, it is parameterized by such a subset
𝑅. It also requires a set of substitutions 𝑆 that captures the
behavior of the program projected on the variables in 𝑅.

To formalize this notion, we first introduce 𝜈 |𝑅 , the restric-
tion of 𝜈 to the variables in 𝑅, as well as 𝑣𝑎𝑟𝑠 , the function
that computes the set of variables in a clause. A first clarifi-
cation of the completeness condition of 𝑆 is that, whenever

CPP ’21, January 18–19, 2021, Virtual, Denmark Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin

a substitution 𝜈 matches a clause 𝐶 at some point of the pro-
gram’s execution, then the projection of 𝜈 over the relevant
variables is in 𝑆 .

By relevant variables, we mean the intersection of the
variables in the𝐶 clause and the set of variables to instantiate
𝑅. Moreover, due to the monotonicity of the matching w.r.t.
the provided interpretation, a substitution matches a clause
at some point of the execution if and only if it matches it w.r.t.
the semantics of the program, i.e. (𝑇𝑃 ↑ 𝜔) (𝐼). The resulting
formula is as follows:

∀𝐶 ∈ 𝑃, 𝑣𝑎𝑟𝑠 (𝐶) ∩ 𝑅 ≠ ∅
⇒ (∀𝜈,𝑚𝑎𝑡𝑐ℎ(𝜈,𝐶, (𝑇𝑃 ↑ 𝜔) (𝐼)) ⇒ 𝜈 |𝑅 ∈ 𝑆).

It might seem paradoxical to mention the full semantics
of a program to introduce an optimization. We then want to
clarify this point, by underlying that the completeness condi-
tion mentioned above has to be checked once for any static
analysis which computes a set of candidate substitutions,
such as seen in 3.2, and plays no role in practice.

Using function 𝑑𝑜𝑚, that returns the domain of a substitu-
tion, any clause can be instantiated using the 𝑖𝑛𝑠𝑡 function,
which can naturally be lifted to programs.

𝑖𝑛𝑠𝑡 (𝐶) =

{𝜈 (𝐶) | 𝜈 ∈ 𝑆 ∧ 𝑑𝑜𝑚(𝜈) = 𝑅 ∩ 𝑣𝑎𝑟𝑠 (𝐶)}

if 𝑣𝑎𝑟𝑠 (𝐶) ∩ 𝑅 ≠ ∅
{𝐶} otherwise

Note that, in these definitions, the 𝑣𝑎𝑟𝑠 (𝐶) ∩ 𝑅 ≠ ∅ con-
dition can be dropped if the empty substitution is manually
added to 𝑆 .
We can now use the 𝑇𝑃 operator to state and prove that

the two programs deduce the same facts in the same number
of steps. The semantic adequacy trivially follows.

Theorem 3.4. (Transformation completeness) For any
number of steps 𝑘, (𝑇𝑃 ↑ 𝑘) (𝐼) ⊆ (𝑇𝑖𝑛𝑠𝑡 (𝑃) ↑ 𝑘) (𝐼).

Proof. We proceed by induction on 𝑘 . In the base case, we
have (𝑇𝑃 ↑ 0) (𝐼) = (𝑇𝑖𝑛𝑠𝑡 (𝑃) ↑ 0) (𝐼) = 𝐼 .
In the recursive case, let 𝑓 ∈ (𝑇𝑃 ↑ 𝑘 + 1) (𝐼). We can

extract a clause 𝐶 from 𝑃 and a substitution 𝜈 such that 𝜈
matches 𝐶 w.r.t. (𝑇𝑃 ↑ 𝑘) (𝐼) and 𝑓 is the head of 𝜈 (𝐶). If 𝐶
has no relevant variable, i.e. |𝑣𝑎𝑟𝑠 (𝐶) ∩ 𝑅 | = 0, we reuse the
same clause and substitution. Since the atoms in the body
of the instantiated clause are in (𝑇𝑖𝑛𝑠𝑡 (𝑃) ↑ 𝑘) (𝐼) (induction
hypothesis), meaning that we can indeed deduce 𝑓 in 𝑖𝑛𝑠𝑡 (𝑃).
Otherwise, we use the completeness hypothesis on 𝑆 to

show that 𝑖𝑛𝑠𝑡 (𝑃) contains 𝜈 |𝑅 (𝐶). We write as 𝜈 |𝑅 the re-
striction of 𝜈 to the variables not in 𝑅, we also show that,
using (𝑇𝑖𝑛𝑠𝑡 (𝑃) ↑ 𝑘) (𝐼) as an interpretation, this partially

instantiated clause matches 𝜈 |𝑅 to produce 𝑓 . This is a corol-
lary of a more general lemma, stating that whenever the
variables are split into two sets𝑋1 and𝑋2, and a substitution
𝜎 matches a clause 𝐶 ′, then 𝜎 |𝑋2

matches 𝜎 |𝑋1
(𝐶 ′). □

Theorem3.5. (Transformation soundness) For any num-
ber of steps 𝑘, (𝑇𝑖𝑛𝑠𝑡 (𝑃) ↑ 𝑘) (𝐼) ⊆ (𝑇𝑃 ↑ 𝑘) (𝐼).

Proof. This lemma works in a both similar and dual way, as
we get two substitutions (one for the clause instantiation, one
matching the transformed clause) that need to be combined
to retrieve the substitution used in the original program. □

The reader may notice a discrepancy between the analysis
and the rewriting, as the former provides values for only
one variable, and the latter assumes a set of substitutions,
i.e. potentially instantiates multiple variables at once. We
wanted these two components to be kept separate, so that
the rewriting can be used with another analysis. In particular,
one may come up with a static analysis that returns a set
of values for multiple variables at once, which could then
be directly used with the rewriting, encapsuling this set of
values into substitutions. Such an analysis is sketched and
discussed in Section 6.

In practice, after using the analysis on multiple variables
of the same rule, one can either apply the rewriting multiple
times with a substitution on a single variable, or generate
substitutions using a cross product of the different value sets.

4 Predicate Specialization

After the number of variables, our second optimization re-
duces the number of arguments of some predicates, by in-
troducing new symbols to partition existing relations into
smaller ones. Given an intensional predicate such that one
of its arguments is always a constant in the rules defining
it, then the predicate can indeed be replaced by a set of
specialized versions.

𝑆 (1, 𝑌 , 𝑍) :- 𝑄 (𝑌, 𝑍). | 𝑆1 (𝑌, 𝑍) :- 𝑄 (𝑌, 𝑍).
𝑆 (2, 𝑌 , 𝑍) :- 𝑅(𝑍, 𝑍,𝑌). | 𝑆2 (𝑌, 𝑍) :- 𝑅(𝑍, 𝑍,𝑌).
𝑇 (𝑋) :- 𝑆 (1, 𝑋, 𝑋). | 𝑇 (𝑋) :- 𝑆1 (𝑋,𝑋).
𝑈 (𝑋) :- 𝑆 (𝑋,𝑋,𝑋). | 𝑈 (𝑋) :- 𝑆 (𝑋,𝑋,𝑋)

Figure 10. Normal and specialized program

Example 4.1. The first two rules on the left of Figure 10
define a predicate 𝑆 of arity 3, and the third and fourth rules
use it. We introduce the 𝑆1 and 𝑆2 predicates, of arity 2. The
rules can then be replaced by those on the right. To allow the
use of rules still containing 𝑆 atoms in their body, such as the
fourth one, we need to add the rules of figure 11 to the new
program. On the other hand, the addition of the reverse rules

Developing and Certifying Datalog Optimizations in Coq/MathComp CPP ’21, January 18–19, 2021, Virtual, Denmark

(normal to specialized version, e.g. 𝑆1 (𝑌, 𝑍) ← 𝑆 (1, 𝑌 , 𝑍)) is
not required.

𝑆 (1, 𝑌 , 𝑍) :- 𝑆1 (𝑌, 𝑍).
𝑆 (2, 𝑌 , 𝑍) :- 𝑆2 (𝑌, 𝑍).

Figure 11. Relating normal and specialized definitions

Assuming a Datalog program 𝑃 where the 𝑖𝑡ℎ argument
of a predicate 𝑆 is always a constant, and writing 𝑃 ′ the
program obtained via the specialization of 𝑆 at index 𝑖 , we
proved the following results:

Theorem 4.2. (Predicate specialization completeness)
For any number of steps 𝑘, (𝑇𝑃 ↑ 𝑘) (𝐼) ⊆ (𝑇𝑃 ′ ↑ 2𝑘) (𝐼).

The number of steps used in the transformed program is
doubled, because of the use of rules such as those shown in
Figure 11. The transformed program produces specialized
facts that did not appear in the original program. This is not
a concern for the completeness theorem, as the new facts
are on the right side (both literally and figuratively), but the
soundness must be formulated modulo those new facts:

Theorem 4.3. (Predicate specialization soundness) For
any number of steps 𝑘,
{𝑥 ∈ (𝑇𝑃 ′ ↑ 𝑘) (𝐼) | 𝑥 is not specialized} ⊆ (𝑇𝑃 ↑ 𝑘) (𝐼).

One might expect that the number of steps used in the
transformed program might again be doubled compared to
the original one, but that would not account for the normal,
not specialized part of the program.

5 Coq Formalization

The Coq certification of the static analysis relies on a new
Datalog trace semantics we first introduce. We then outline
the formalization and verification of the analysis, as well as
the two program transformations.
The Coq definitions and statements are slightly altered1.

Also for space constraints and readability, the hypotheses
are removed from the individual lemmas and theorems, but
described in Section 5.5. Finally, we discuss some choices
and errors made in the course of this work.

5.1 Datalog Trace Semantics

A trace semantics not only assigns a meaning to a program,
but also keeps track of the computations leading up to it [12].
Datalogcert [6] already formalizes the fixpoint semantics of
Datalog (see 2.2), but the proof of our static analysis reasons
1Type names are changed to better match those in the paper, and some
meaningless arguments, e.g. default values provided for 𝑛𝑡ℎ, are removed.

about the full deduction of a fact as a whole and a priori, in
the statement of a core intermediate lemma (see 5.2). We
then need to introduce a Datalog trace semantics, formalized
as a set of trees and written B𝑇 (𝑃). The leaves are facts
taken from the initial interpretation, while internal nodes
represent a deduction via a rule, a substitution (both stored
in the node as a couple) and a previously deduced set of facts
(the descendants in the tree). We first need a function that
maps a trace to the corresponding deduced fact:

Definition 5.1. (Erasing function from trees to facts)

𝑑𝑒𝑑 (𝑥) =
{
𝑓 if 𝑥 = 𝐿𝑒𝑎𝑓 (𝑓)
𝜈 (ℎ𝑒𝑎𝑑 (𝐶)) if 𝑥 = 𝑁𝑜𝑑𝑒 (⟨𝐶, 𝜈⟩, 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠)

We adapt the base semantics to its trace version. First, the
interpretation 𝐼 must be a set of trees rather than facts:

Definition 5.2. (𝑡𝑏 – Interpretation to trees)

𝑡𝑏 (𝐼) = {𝐿𝑒𝑎𝑓 (𝑓) | 𝑓 ∈ 𝐼 }

In the spirit of Section 2.2, the trace semantics is defined
via an operator called 𝑇𝑡𝑃 . Like 𝑇𝑃 , it is iterated to build
new traces on top of the previously deduced ones. When
deducing a new fact with a clause𝐶 and a substitution 𝜈 , the
previous iteration must contain traces for the body of 𝜈 (𝐶):

Definition 5.3. (𝑇𝑡𝑃 – Consequence operator on traces)

𝑇𝑡𝑃 (𝐼𝑡) = 𝐼𝑡 ∪ {𝑁𝑜𝑑𝑒 (⟨𝐶, 𝜈⟩, [𝐹1, ..., 𝐹𝑛]) ∈ B𝑇 (𝑃)
| 𝐶 = 𝐴0 :-𝐴1, · · · , 𝐴𝑛 ∈ 𝑃
∧ ∀𝑖 ∈ [1..𝑛], 𝐹𝑖 ∈ 𝐼𝑡 ∧ 𝑑𝑒𝑑 (𝐹𝑖) = 𝜈 (𝐴𝑖)}

Example 5.4. Let us consider again the program of Exam-
ple 2.1, with the first and second clauses denoted 𝐶0 and 𝐶1.
The trace semantics contains the four traces shown in Fig-
ure 12, which gradually lead to the deduction of 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 3).
Writing 𝑡0 to 𝑡3 the trees, 𝑑𝑒𝑑 (𝑡0) = 𝑒𝑑𝑔𝑒 (4, 2), 𝑑𝑒𝑑 (𝑡1) =
𝑙𝑖𝑛𝑘𝑒𝑑 (4, 2), 𝑑𝑒𝑑 (𝑡2) = 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 1), 𝑑𝑒𝑑 (𝑡3) = 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 3).

Since this is our own semantics, we need to prove its
adequacy with the usual one. Given a program 𝑃 with inter-
pretation 𝐼 , this result is expressed in the following lemmas,
which are both proved by induction on the left deduction:

Lemma 5.5. (Datalog trace semantics completeness)
For any number of steps 𝑘,
∀𝑥 ∈ (𝑇𝑃 ↑ 𝑘) (𝐼), ∃𝑡 ∈ (𝑇𝑡𝑃 ↑ 𝑘) (𝑡𝑏 (𝐼)), 𝑑𝑒𝑑 (𝑡) = 𝑥

Lemma 5.6. (Datalog trace semantics soundness)
For any number of steps 𝑘,
∀𝑡 ∈ (𝑇𝑡𝑃 ↑ 𝑘) (𝑡𝑏 (𝐼)), 𝑑𝑒𝑑 (𝑡) ∈ (𝑇𝑃 ↑ 𝑘) (𝐼).

Unlike B(𝑃), B𝑇 (𝑃) is not finite by default. In our Coq
formalization, B𝑇 (𝑃) is defined using the finType wutree
[4], i.e. the type of trees with a bounded width (here the max-
imal body length amongst the clauses of a given program)

CPP ’21, January 18–19, 2021, Virtual, Denmark Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin

edge(4,2) ∈ (𝑇𝑡𝑃 ↑ 0) (𝑡𝑏 (𝐼))
⟨𝐶1,

𝑋 ↦→ 4

𝑌 ↦→ 1

𝑍 ↦→ 2

⟩

edge(2,1)⟨𝐶0,

{
𝑋 ↦→ 4

𝑌 ↦→ 2
⟩

edge(4,2)

∈ (𝑇𝑡𝑃 ↑ 2) (𝑡𝑏 (𝐼)) ⟨𝐶1,

𝑋 ↦→ 4

𝑌 ↦→ 3

𝑍 ↦→ 1

⟩

edge(1,3)⟨𝐶1,

𝑋 ↦→ 4

𝑌 ↦→ 1

𝑍 ↦→ 2

⟩

edge(2,1)⟨𝐶0,

{
𝑋 ↦→ 4

𝑌 ↦→ 2
⟩

edge(4,2)

∈ (𝑇𝑡𝑃 ↑ 3) (𝑡𝑏 (𝐼))

⟨𝐶0,

{
𝑋 ↦→ 4

𝑌 ↦→ 2
⟩

edge(4,2)

∈ (𝑇𝑡𝑃 ↑ 1) (𝑡𝑏 (𝐼))

Figure 12. Deduction of 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 3)

and unicity across paths. The unicity constraint bounds the
height of the trees by the cardinal of the node type.

The substitutions were already defined as a finType in [6],
and we changed the clause type so that it is finite as well
(see Section 5.5). The completeness lemma remains true in
this setting, as having a repetition in a deduction amounts
to proving 𝑥 inside a proof of 𝑥 . The whole deduction can
be replaced by the inner one, until a repetition-free tree is
reached.

5.2 Justification of the Static Analysis

As stated in Section 3.2, the trees produced by the analysis
are akin to propositional formulae. The Coq formalization
handles them in Disjunctive Normal Form. In this form, the
relation with the actual computation seems less natural, as
we lose the alternation between conjunctions and disjunc-
tions, but is surprisingly much easier to prove.

Building a DNF means that we need to be able to compute
every combination of propositional formulae across different
disjunctions – here, sets. Figure 13 shows our generalization
of the cartesian product between two sets provided by Math-
Comp (see setX in finset.v), where function tnth x j returns
the j𝑡ℎ element of tuple 𝑥 .

Definition gen_cart_prod
{A : finType} (ss : seq {set A})

: {set (size ss).-tuple A} :=
let m := size ss in
[set x : m.-tuple A |
[forall j : 'I_m, (* seq -> tuple *)
tnth x j \in tnth (in_tuple ss) j]].

Figure 13. Generalized cardinal product

The DNF is encoded as a set of sets of sequences. The outer
and inner sets represent the disjunctive and conjunctive parts,

respectively. Figure 14 shows the Coq definition of the static
analysis (some auxiliary but fundamentally straightforward
functions, such as computing the set of occurrences of a
given variable, are omitted). In this definition, prev is the
set of previously visited 𝑡𝑜𝑐𝑐s, and v is the studied variable.
The role and value of count, as well as the coding style are
discussed later on.
Although the general principle of the analysis is rather

straightforward, the actual definition is not. Despite its short-
ness and heavy use of MathComp’s useful set comprehension
notations, ensuring that it actually computes an overapprox-
imation of Datalog semantics does not seem superfluous.
As previously stated, the analysis does not consider the

same program point twice, allowing a fast and terminating
analysis of recursive programs. However, the resulting, trun-
cated trees and the actual deduction of facts, i.e. traces, do
not fully overlap one another in this setting (which was the
case with a previous version of the analysis, see Section 6).

To relate them, we introduce an intermediate layer, which
we call the no-recursion trace. The idea is to identify a trun-
cated trace that still preserves enough information to be
related to the actual trace semantics – a problem already
tackled in other verification contexts [19]. More concretely,
given a deduction trace and a variable, we extract repetition-
free sequences of 𝑡𝑜𝑐𝑐s the variable goes through.
Example 5.7. We reuse the program from Example 2.1 and
the rightmost trace of Figure 12, which represents a deduc-
tion of 𝑙𝑖𝑛𝑘𝑒𝑑 (4, 3). Let us compute the no-recursion trace
of 𝑋 in the second rule. 𝑋 has only one occurrence in the
body of the rule, at index 0 of the 𝑙𝑖𝑛𝑘𝑒𝑑 atom. We then look
at the child corresponding to the atom – the left child – of
the actual trace, which contains the same clause. The cor-
responding term, i.e. the one at index 0 of the head of the
clause, is again 𝑋 , which only occurs in the 𝑙𝑖𝑛𝑘𝑒𝑑 predicate.

Since this 𝑡𝑜𝑐𝑐 , ⟨1, 0, 0⟩, has already been visited, it is not
added again to the sequence. In a sense, we ignore this step
and keep exploring the trace, which leads us to the first clause.

Developing and Certifying Datalog Optimizations in Coq/MathComp CPP ’21, January 18–19, 2021, Virtual, Denmark

(* flattening a cartesian product *)
Definition bigcup_cart {m} {A : finType} (s : {set m.-tuple {set A}}) : {set {set A}} :=
[set \bigcup_(x <- tval y) x | y : m.-tuple {set A} in s].

Fixpoint analyze_var_prev (prev : {set occ}) (v : var) (count : nat) : {set {set (uniq_seq occ)}} :=
match count with | 0 => set0 | count.+1 =>
(* occurrences of v not yet visited *)
let occs := occsInProgram p v :\: prev in
let analyze_pi (prev : {set occ}) (o : occ) :=

match p_at o with (* predicate of the atom at the occurrence *)
| None => set0
| Some f =>

match predtype f with
| Edb => [set [set unil]]

(* get_cl_var cl i returns the variable at the i-th position of cl's head *)
(* t_ind returns the third item of an occurrence, i.e. t_ind <x,y,z> = z *)

| Idb => let arec := [set (analyze_var_prev prev (get_cl_var cl (t_ind o))) count
| cl in p & head_predicate cl == f]

in \bigcup_(x in arec) x end end in

(* adding occurrence o on top of every branch in dt *)
let all_add_o (dt : {set {set (uniq_seq occ)}}) (o : occ) : {set {set (uniq_seq occ)}}:=
[set [set o::br | br in ct] | ct in dt] in

let arec := [seq all_add_o (analyze_pi (occ |: prev) occ) occ | occ <- enum occs] in
bigcup_cart (gen_cart_prod arec) end.

(* Version used in practice, with prev set to empty set for maximal precision *)
Definition analyze_var (v : var) (count : nat) : {set {set (uniq_seq occ)}} :=
analyze_var_prev set0 v count.

Figure 14. The static analysis in Coq

We add the 𝑡𝑜𝑐𝑐 of 𝑋 in the 𝑒𝑑𝑔𝑒 predicate, i.e. ⟨0, 0, 0⟩. The
next child in the trace is a leaf (the 𝑒𝑑𝑔𝑒 predicate is exten-
sional), so we stop here and return the set only containing
the sequence [⟨1, 0, 0⟩, ⟨0, 0, 0⟩]. This sequence indeed is a
truncated, repetition-free version of the path taken by values
from the EDB to the variable w.r.t. the actual trace.

The Coq definition of the no-recursion trace also has a
𝑐𝑜𝑢𝑛𝑡 argument to ensure its termination. Its natural value
is the successor of the height of the given trace, as seen
in the lemma of Figure 15 (we omit the full details of its
Coq formalization for space reasons). This lemma states that,
for any deduction which ultimately uses a clause 𝑐𝑙 with a
substitution 𝜎 , and for any variable 𝑣 that appears in 𝑐𝑙 , the
sequences extracted from the trace all lead to a (potentially
different) ⟨𝑓 , 𝑖⟩ such that there exists a fact 𝑓 (−→𝑐) in the EDB
with 𝜎 (𝑣) = −→𝑐 .𝑖 .

In other words, the no-recursion trace is used to com-
pute the bounded part of the constraints which the actual
semantics enforces. In that sense, it is complete. Another

Theorem no_rec_needed tr v (i : interp) cl
(m : nat) s :

tr \in sem_t p m i
-> root tr = inl (RS cl s)
-> v \in tail_vars (body_cl cl)
-> [forall br in norec prev tr v (height tr).+1,

...]

Figure 15. Completeness of no-recursion traces

interpretation is that, as stated in Section 3.2 and intuited by
the theorem’s name, dealing with recursion is not necessary
to get a first approximation of the semantics of a program.
Now we need to relate the no-recursion trace with the

actual static analysis. With the no-recursion trace being a set
of sequences and the analysis encoded as a set of sets of se-
quences, the core lemma simply states that the no-recursion
trace is actually an element of the analysis, meaning that it
is captured, as shown in Figure 16.

CPP ’21, January 18–19, 2021, Virtual, Denmark Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin

Lemma no_rec_capt prev tr i m cl s v :
tr \in sem_t p def m i

-> root tr = inl (RS cl s)
-> v \in tail_vars (body_cl cl)
-> norec prev tr v (height tr).+1
\in analyze_var_prev prev v (height tr).

Figure 16. No-recursion trace capture

The program analysis also uses a fuel argument called
count. Our first intuition for its concrete value was the car-
dinal of 𝑡𝑜𝑐𝑐 , i.e. the number of 𝑡𝑜𝑐𝑐s of the given program.
Although it probably is an adequate value, a surprising, differ-
ent answer emerges from no_rec_capt, the lemma relating
the no-recursion trace and the analysis.
In this lemma, the fuel of the analysis is the successor of

the height of the trace. It is in itself not satisfactory as the
deduction traces can in theory be arbitrarily long but, as
mentioned in 5.1, we implement the traces as trees with a
height bounded by the cardinal of the node type, here couples
of a clause and a substitution, written rul_gr. Once the
monotonicity of the analysis w.r.t. fuel is shown, its normal
form can be defined using the product of the cardinals of the
clause and substitution types. The corresponding lemma is
shown in Figure 17, where rul_gr is the node type of the
traces.

Lemma no_rec_capt prev tr i m cl s v :
tr \in sem_t p def m i

-> root tr = inl (RS cl s)
-> v \in tail_vars (body_cl cl)
-> norec prev tr v (height tr).+1
\in analyze_var_prev prev v #|rul_gr|.

Figure 17. No-recursion trace capture, normal form

Combining this result with Theorem 15, we show that the
analysis can be used to extract a set of substitutions that
overapproximates the semantics of the studied program, in
the sense formulated at the beginning of Section 3.3.

5.3 Clause Duplication

The Coq proofs of theorems 3.4 and 3.5 are fundamentally
similar to the paper versions above. Our main technical dif-
ficulty for those proofs was the use of substitutions and
matchings. The original development [6] of [5] provides a
constructive matching function, that returns the set of mini-
mal substitutions matching a clause w.r.t. an interpretation,
but surprisingly no boolean one. The "minimality" of the con-
structive version leads to complex proofs, requiring specific
and intricate induction principles. After struggling for a long

time with this version (some desired results could be proved,
others could not), we defined a function that checks whether
a given substitution matches a clause w.r.t. an interpretation,
and related both definitions. This boolean matching was
also most helpful in the proof of the predicate specialization
transformation.

The static analysis and clause duplication are completely
separated in our Coq development. Given another method
to extract a set of substitutions from a Datalog program,
one then only needs to show that it has the completeness
property expressed in 3.3 to show that the use of the partial
rule instance on top of this method preserves the semantics.

5.4 Predicate Specialization

Theorems 4.2 and 4.3 are proved by induction on the number
of steps in the deduction. However, formulated as they are
above, the provided inductions are not strong enough. We
write as 𝑝𝑟𝑜 𝑗 the function that takes a fact 𝐹 (𝑐1, ..., 𝑐𝑛) and
returns 𝑆𝑐𝑖 (𝑐1, ..., 𝑐𝑖−1, 𝑐𝑖+1, ..., 𝑐𝑛) if 𝐹 is the predicate to be
specialized 𝑆 , and behaves as the identity otherwise. The
inductions are performed on the following lemmas, from
which theorems 4.2 and 4.3 can easily be deduced:

Lemma 5.8. (Predicate specialization completeness) For
any number of steps 𝑘,
(𝑇𝑃 ↑ 𝑘) (𝐼) ∪ {𝑝𝑟𝑜 𝑗 (𝑥) | 𝑥 ∈ (𝑇𝑃 ↑ 𝑘) (𝐼)} ⊆ (𝑇𝑃 ′ ↑ 2𝑘) (𝐼).

Lemma 5.9. (Predicate specialization soundness) For
any number of steps 𝑘,
(𝑇𝑃 ′ ↑ 𝑘) (𝐼) ⊆ (𝑇𝑃 ↑ 𝑘) (𝐼) ∪ {𝑝𝑟𝑜 𝑗 (𝑥) ∈ (𝑇𝑃 ↑ 𝑘) (𝐼)}.

The main difficulty in proving those results was the use
of the rules as in Figure 11. Indeed, the point of [6] is the
verification of a Datalog engine, i.e. ensuring that iterating
the 𝑇𝑃 operator on any given program will compute the
expected semantic. On the other hand, we have to manually
add and use such rules. In [6], the atoms carry a proof that
their number of arguments is the arity of the associated
predicate, and the variables are encoded as ordinals, meaning
that we need to deal with a lot of dependent types. As an
illustration, Figure 18 shows the (somewhat cumbersome)
definition of a sequence of variables used in the generic rules.

To use those generic rules, we wrote a function that takes
a list of variables and a list of terms, and creates a substi-
tution that maps each variable to the corresponding value.
This function uses a deduced specialized fact to build the
substitution that matches a generic rule. A shift in the list of
variables fully changes the extracted substitution, meaning
that lemmas on matching using this function could not be
proved using straightforward inductions. Another difficulty
to certify the predicate specialization was to find well-suited
abstractions for the list of variables using a combination of
properties and functions.

Developing and Certifying Datalog Optimizations in Coq/MathComp CPP ’21, January 18–19, 2021, Virtual, Denmark

Definition dep_iota (m n : nat)
: seq ('I_(m+n)) :=

pmap insub (iota m n).

(* [X_1, X_2, ..., X_j] *)
Definition gen_vars_j (j : 'I_n.+1): seq term :=
map
(fun x => Var x)
(map (fun x : 'I_j => widen_ord (ltn_ord j) x)

(dep_iota 0 j)).

Figure 18. Manually defining a sequence of variables

Defining and certifying this rewriting felt like working
against [6], which resulted in core lemmas that are much
more abstruse than the other results presented in this paper.
It could however, along with the definitions and tricks it
relies on, be used if other program transformations that add
rules are to be introduced and verified in the future.

5.5 Assumptions

The original development [6] assumes finTypes for the predi-
cate names and constants, an arity function, a number of vari-
ables, a default constant, and a program with the safety con-
dition defined in Section 2.1. We assume a program-specific
maximum length for the bodies of the clauses, and default
values (predicate, variable, etc) for the nth function. The
definition of wutree requires a default ground atom.
We added three other hypotheses previously mentioned

to the syntax of Datalog: a predicate appears at the head of
a clause iff it is intensional (cf. 2.1), variables are not shared
across clauses and there is no constant in the heads of clauses
(see Section 3 for both). Those last two assumptions could
be replaced by actual transformations ensuring the desired
properties (i.e. adding rule index to variable names for the
former, and a unitary predicate for each constant appearing
in a clause’s head for the latter), but it was not tackled in the
course of this work.
The proofs of the predicate specialization require a few

technical hypotheses, such as the number of variables be-
ing larger than the arity of the specialized predicate. Finally,
the use of Program.Equality to certify the trace seman-
tics requires the heterogeneous equality JMeq_eq, and [4]
uses Equations [33] to build finTypes, which implies the
functional extensionality axiom. The full detailed list of as-
sumptions can be found in the README of [1].

5.6 Discussion and Lessons Learned

The finite nature of Datalog allows the authors of Datalogcert
[6] to make the most of MathComp’s finTypes and set nota-
tions throughout their development. We leverage this asset

as well, and although it sometimes implied to rely more on
dependent types to fit our structures into finTypes, we be-
lieve the trade-off was beneficial, as it led to much more
readable, paper-like definitions and statements. The proof
effort was also lightened, as these definitions made it eas-
ier to follow the high-level proof structures, rather than get
lost in the kind technicalities sometimes required to encode
concepts in Coq.
Section 6 of [35] states that "generally speaking, there

are two ways to specify an algorithm in Coq: either as in-
ductive predicates using inference rules, or as computable
functions defined by recursion and pattern-matching over
tree-shaped data structures". Datalog programs however, are
not naturally seen as trees, both from syntax2 and semantics
standpoints. Our first approach was to develop our static
analysis in the form of a typing system, and formalize it
in Coq using four mutually-defined inductives. The result,
which was supposed to emulate a loop-based implementa-
tion of the idea behind the analysis, was not satisfactory, as
it lacked clarity, was hard to use in practice (the induction
principle required four manually-defined invariants and pro-
duced many proof obligations), and did not allow to reason
about the termination of the analysis, which we felt was
really missing. As a corollary, there was also something awk-
ward about defining what is supposed to be a deterministic
function as an inductive predicate.

We eventually switched to the set-based definition seen in
Figure 14. Although the definition is not completely straight-
forward, the intricacy seems inherent to the analysis rather
than a consequence of the formalization itself.
The authors of [35] also recall that defining a function,

such as our analysis, in a computational way rather than as
an inductive also allows its extraction as an Ocaml program
(which we have not experimented with this development
yet). Alternatively, numerous non-functional programming
languages (e.g. Python) now support set notations. Another
advantage of this version of the analysis is then its simpli-
fied translation in many languages, which reduces the gap
between formalization and implementation, and makes the
latter more trustworthy.

Although the use of finTypes and set notations was even-
tually most beneficial to us, our proof style remained more
classical. This is in contrast to [6], which uses SSReflect ex-
tensively. Combined with the heavy use of dependent types
to obtain finTypes, it resulted in a development that was
probably longer than what could be expected (approx. 6500
loc, vs. 1500 for [6]).
The conclusion of [5] underlines that the justification of

many foundational and "intuitively clear" database results

2Although they implement them as lists in the formalization, Datalog pro-
grams are even defined as sets of clauses in [14].

CPP ’21, January 18–19, 2021, Virtual, Denmark Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin

had always been treated with a high-level persective rather
than "scrupulous proofs", meaning that "low-level details
were either glanced over or left to the reader". This also
applies to our present work, in particular the static analysis,
where fundamentally simple ideas can be implemented in a
rather intricate and error prone way.
A preliminary version of the analysis, as an inductive,

contained a very subtle but major error that made the analy-
sis return a special, theoretically never used no info result
when applied to recursive programs. Since our lemmas were
defined as "if the analysis returns an actual result, it is com-
plete", it went unnoticed at first. We understood there was a
problem when reflecting on the proofs, noticing that Data-
log recursion was not dealt with. We had not realized that
when actually writing the proofs, because of the very tech-
nical, sometimes obscure, obligations generated by the four
mutually-defined inductives. On the other hand, working
with the set-based version was much clearer and allowed
easier high-level reasoning.
In summary, even in the context of machine-aided veri-

fication, the mix of an error in a minor definition – which
would have been spotted with correct lemmas – and lacking
formulations of completeness properties – which would have
been benign with correct definitions – could lead to a broken
result. Computational definitions, higher-level tools (both
provided byMathComp in our case) and a more introspective
view should help avoid this kind of situation.

The simple ideas behind our static analysis are not only
error prone at the level of implementation, but sometimes
also conceptually. The next Section introduces a component
of the rule instantiation, that seemed like a very natural and
efficient addition, and discusses how the verification process
helped us realize that it was not adequate for every program.

6 Using Dependencies across Analyses

In 3.2, we identified three components of the 𝑇𝑃 operator
and designed a static analysis that performs the first two.
However, the two definitions of 𝑝 in Figure 19, which behave
differently, can only be distinguished using the third compo-
nent, that relates the values assigned to different variables.

𝑝 (𝑋,𝑌) :- 𝑞(𝑋,𝑌). | 𝑝 (𝑋,𝑌) :- 𝑞(𝑋,𝑍1),𝑞(𝑍2, 𝑌).

Figure 19. Linear and quadratic definitions of 𝑝

The first definition computes a number of 𝑝-facts that is
linear in the number of 𝑞-facts, while it is quadratic in the
second. In other words, when used on multiple variables of a
same rule, the first two components of𝑇𝑃 alone may produce
many useless clauses because they fail to track dependencies,
such as between 𝑋 and 𝑌 on the left of Figure 19.

Such constructs were present in our use case, sometimes
with many dependent variables. Figure 20 presents a simpli-
fied implementation of the firewall mechanism (the protocol
is not taken into account), where the presence of many primi-
tives, including comparisons, requires to partially instantiate
the rule. Every of the 10 variables that appear are linked
by the firewall_rule extensional predicate, meaning that
using a cartesian product will lead to a serious impact on
performances.

ok_fw_rule(RID , IP1 , IP2 , PRO , P1, P2) :-
firewall_rule(id=RID ,

protocol=PRO ,
source_prefix=P1,
dest_prefix=P2,
source_mask=M1,
dest_mask=M2,
src_port_min=MIN1 ,
src_port_max=MAX1 ,
dest_port_min=MIN2 ,
dest_port_max=MAX2),

P1 = IP1 & M,
P2 = IP2 & M,
P1 >= MIN1 , P1 <= MAX1 ,
P2 >= MIN2 , P2 <= MAX2.

Figure 20. Simplified firewall in Octant

Moreover, things can be more obsfuscated than with the
previous examples: Figure 21 illustrates how a dependency
can be preserved (left side) or lost (right side) across rules.

𝑝 (𝑋,𝑌) :- 𝑞(𝑋,𝑌). | 𝑝 (𝑋,𝑌) :- 𝑞(𝑋,𝑌).
𝑞(𝑋,𝑌) :- 𝑟 (𝑋,𝑌). | 𝑞(𝑋,𝑌) :- 𝑟 (𝑋,𝑍1), 𝑟 (𝑍2, 𝑌).
𝑟 (𝑋,𝑌) :- 𝑠 (𝑋,𝑌). | 𝑟 (𝑋,𝑌) :- 𝑠 (𝑋,𝑌)

Figure 21. Deep linear and quadratic definitions of 𝑝

Our analysis was first designed to deal with this issue,
which is why the branches of the trees are annotated to store
the corresponding atoms or rules. The idea was to overlap
the trees resulting from the analyses of multiple variables in a
single clause, using the annotations to exclude incompatible
flows, e.g. an atom being instantiated with different rules
defining the corresponding predicate.

Example 6.1. In Example 3.3, variables𝑋1 and 𝑌1 appear in
the same clause. The roots of their respective analyses (Fig-
ures 9a and 9b) have only one descendant, annotated with 0
in both cases. This implies that the corresponding atom is
the same. Then, we have ∨-nodes, and two descendants, an-
notated with 0 and 1. The left (resp. right) subtree represents
in both cases a use of the first (resp. second) clause. Mixing

Developing and Certifying Datalog Optimizations in Coq/MathComp CPP ’21, January 18–19, 2021, Virtual, Denmark

the values extracted from the left branch of one of the trees
and the right branch of the other tree would amount to sim-
ulate a program execution where the 𝑝 atom in the body of
the first clause is instantiated with both the first and second
clause at the same time. We can exclude this possiblity.
Figure 22 shows the overlapping of the two analyses us-

ing annotations. The result states that the values for 𝑋1 and
𝑌1 can be extraced from the 𝑞 facts of the EDB, either di-
rectly (left branch) or after permutation (right branch). More
formally, 𝑋1 and 𝑌1 can be instantiated using the values in
{⟨𝑥,𝑦⟩ | 𝑞(𝑥,𝑦) ∈ 𝐸𝐷𝐵 ∨ 𝑞(𝑦, 𝑥) ∈ 𝐸𝐷𝐵}, which matches
exactly the actual behavior of the program.

∧

∨

∧

⟨𝑞.1, 𝑞.0⟩
0

∧

∨

∧

⟨𝑞.0, 𝑞.1⟩
0

1

0

0 1

0

Figure 22. Merged analyses

This example shows the annotations in the trees produced
by the analysis can be used to avoid extracting many irrele-
vant values. Unfortunately, this operation is not safe.

𝑝 (𝑋1, 𝑌1, 𝑍1) :- 𝑝 (𝑌1, 𝑋1, 𝑍1).
𝑝 (𝑋2, 𝑌2, 𝑍2) :- 𝑞(𝑋2, 𝑌2, 𝑍2)

Figure 23. Mixing some values

Example 6.2. Consider the program in figure 23. The analy-
sis returns the trees shown in figure 24. If we merge the trees
of 𝑍1 and 𝑋1 (resp. 𝑌1), we obtain that 𝑋1 (resp. 𝑌1) can only
be instantiated using values from 𝑞.1 (resp. 𝑞.0) rather than
both 𝑞.0 and 𝑞.1, meaning that the result is not complete.

As explained in Section 5.6, a preliminary implementation
of the analysis only considered non-recursive programs. In
that setting, the no-recursion trace introduced in Section
5.2 was unnecessary, as we could prove that any trace di-
rectly matched a subtree of any analysis. When analyzing
multiple variables in a given clause, the returned trees then

all contained a subtree that fully matched the same trace.
We proved that there is no inconsistency between trees that
match the same trace, thus ensuring that excluding incom-
patible branches did not break the completeness property.
Based on this result, we expect that there is a class of

Datalog programs, strictly larger than non-recursive ones,
where recursion is only used in a way that allows this more
precise version of our analysis. Our first intuition is that a
program is homogeneously recursive if, for any given rule,
all argument cycles have the same length. For example, in
Figure 23, the cycles of 𝑋1 and 𝑌1 have length 2, whereas it
is 1 for 𝑍1. This remains to be formalized and verified.

7 Effects of the Optimizations

As explained in Section 2.4, the Network Optimized Data-
log engine uses a representation called Differences of Cubes,
which does not fare well with some primitive predicates. The
complexity of the computation of these predicates grows ex-
ponentially in the number of (bits across) cubes, i.e. variables,
in their instances. The goal of our optimizations is then to
minimize both the number of variables and sizes of cubes in
any given program.

The clause specialization reduces the number of variables
occuring in primitive predicates, but also specializes the head
of rules that directly depend on facts from the EDB. This
allows and fosters the use of the predicate specialization,
which reduces the sizes of the cubes used in NoD.

An intuition of the effect of this transformation in our
setting, network verification, is that it unrolls the topology
and replaces predicates on the global states of all the network
elements by local predicates on the state of, for example, a
given switch. Then, the state of the ports or the packets
received by the other switches will not be considered to
compute the output of the switch.

Example 7.1. Applying the partial instance and the predi-
cate specialization to the program of Figure 2 transforms the
definition of linked(X,Y,P) into a set of specialized predi-
cates linked_X_Y(P) for each pair of linked locations X and
Y. These new predicates are then described independently
of the rest of the topology.

In conclusion, the transformations we introduce in this
paper rewrite generic, reusable and (usually) clear and short
specifications into a network-specific form closer to NoD
programs. Doing so by hand is obviously possible, but also
lengthy, complex and error-prone, meaning that our certified
optimizations conciliate performances and safety.

CPP ’21, January 18–19, 2021, Virtual, Denmark Pierre-Léo Bégay, Pierre Crégut, and Jean-François Monin

∧

∨

∧

⟨𝑞, 1⟩
0

∧

∨

∧

⟨𝑞, 0⟩
0

1

0

0 1

0

(a) Analysis of 𝑋1

∧

∨

∧

⟨𝑞, 0⟩
0

∧

∨

∧

⟨𝑞, 1⟩
0

1

0

0 1

0

(b) Analysis of 𝑌1

∧

∨

∧

⟨𝑞, 2⟩
0

1

0

(c) Analysis of 𝑍1

Figure 24. Analysis of a heterogeneously recursive program

8 Related Works

Many Datalog optimizations have been developed and for-
malized. The seminal [10] provides a general survey about
Datalog, including some program transformation methods
that annotate the program to help top-down, goal-oriented
evaluations. More recent papers focus on evaluation tech-
nique [30] or user-directed and / or domain-specific optimiza-
tions [7, 32]. Zook et al. developed a static typing system for
Datalog [37], but it only checks the type sanity of a program.
Soufflé [31] is a static analysis tool using Datalog as a

specification language. It performs Datalog-level optimiza-
tions, such as magic sets and user-directed rule inlinings.
The Datalog code is translated into a relational algebra via
the Futamura projection, where the interpreter is the semi-
naive evaluation [2]. Although a form of specialization, this
transformation – not discussed or illustrated – does not seem
to produce an explicit analysis of the program value flows.

The idea of predicate specialization is taken from the code
of [25] (the paper did not mention it). Our proposal contains,
to our knowledge, the first explicit and formally defined
value-focused static analysis and associated optimization
for Datalog. Altough the idea was previously toyed with in
[8, 31] as a debugging tool, our work is also, still to our knowl-
edge, the first formalization of a Datalog trace semantics, not
to mention a certified one.
The DataCert project aims at building a fully and deeply

verified environment for data intensive management tools,
the same way [21, 22] provide verified realistic C and ML
compilers. Kriener et al. used Coq in [20] to prove the equiv-
alence of different Prolog semantics. However, as far as we
know, our work is the first formally proved implementation
of non-trivial optimizations for a declarative and popular
language, Datalog. It is also the first full-blown application
of [5]. Although we had to slightly extend the formaliza-
tion, our work shows that it can concretely be used to prove

results on Datalog’s use, giving credits to Datacert’s ambi-
tion of offering a full environment for Datalog, among other
aspects of data intensive applications.

9 Conclusion and Perspectives

We design a static analysis and two transformations for Dat-
alog, and prove their adequacy properties. To do so, we in-
troduce a Datalog trace semantics with a certified opera-
tor. Citing [23], [5] comments on the relevance of Math-
Comp to model Datalog, especially in the use of finTypes.
Although the heavy use of dependent types to fit into the fin-
Type framework was especially cumbersome when manually
adding and computing rules in existing programs, the ability
to use paper-like set notations was most helpful. Compared
to more traditional Coq definitions, they are clearer, easier
to certify and to extract or translate into executable code.

Although this workwas undertakenwith the setting of net-
work verification in mind, the optimizations are application-
agnostic, and might be relevant for other areas. In general,
we believe that our work was a good match for a first real-
istic experiment in formally proving Datalog optimizations,
and that the tools and experience we developed now allow
us or others to consider new, potentially more ambitious
optimizations. In that spirit, we already laid out ideas for a
more precise version of our static analysis.

On a more theoretical side, these ideas raise questions on
a tighter characterization of recursion, which we also hope
to address in the near future.

Acknowledgements

We would like to thank the anonymous reviewers for their
numerous and helpful comments, which resulted in a dramat-
ically enriched paper. We also thank Théo Winterhalter and
Arthur Azevedo De Amorim for helping us getting started
with some aspects of the Coq formalization.

Developing and Certifying Datalog Optimizations in Coq/MathComp CPP ’21, January 18–19, 2021, Virtual, Denmark

References
[1] Coq development for this paper, https://orange-opensource.github.io/

octant-proof
[2] Abiteboul, S., Hull, R., Vianu, V. (eds.): Foundations of Databases: The

Logical Level. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edn. (1995)

[3] Aref, M., ten Cate, B., Green, T.J., Kimelfeld, B., Olteanu, D., Pasalic,
E., Veldhuizen, T.L., Washburn, G.: Design and implementation of the
logicblox system. In: Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data. pp. 1371–1382. ACM
(2015)

[4] Bégay, P.L., Crégut, P., Monin, J.F.: Developing sequence and tree
fintypes in MathComp. Coq Workshop 2020 (Jul 2020), https://coq-
workshop.gitlab.io/2020/abstracts/Coq2020_03-03-seq-fintype.pdf

[5] Benzaken, V., Contejean, É., Dumbrava, S.: Certifying Standard and
Stratified Datalog Inference Engines in SSReflect. In: International
Conference on Interective Theorem Proving. Brasilia, Brazil (2017),
https://hal.archives-ouvertes.fr/hal-01745566

[6] Benzaken, V., Contejean, É., Dumbrava, S.: Datalogcert. https://
framagit.org/formaldata/datalogcert/ (2017)

[7] Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of
sophisticated points-to analyses. In: Proceedings of the 24th ACM SIG-
PLAN conference on Object oriented programming systems languages
and applications. pp. 243–262 (2009)

[8] Caballero, R., García-Ruiz, Y., Sáenz-Pérez, F.: A new proposal for de-
bugging datalog programs. Electronic Notes in Theoretical Computer
Science 216, 79–92 (2008)

[9] Calì, A., Gottlob, G., Lukasiewicz, T.: Datalog±: a unified approach
to ontologies and integrity constraints. In: Proceedings of the 12th
International Conference on Database Theory. pp. 14–30. ACM (2009)

[10] Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about
datalog (and never dared to ask). IEEE transactions on knowledge and
data engineering 1(1), 146–166 (1989)

[11] Chin, B., von Dincklage, D., Ercegovac, V., Hawkins, P., Miller, M.S.,
Och, F., Olston, C., Pereira, F.: Yedalog: Exploring knowledge at scale.
In: 1st Summit on Advances in Programming Languages (SNAPL 2015).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)

[12] Cousot, P.: Constructive design of a hierarchy of semantics of a transi-
tion system by abstract interpretation. Theoretical Computer Science
277(1-2), 47–103 (2002)

[13] DeTreville, J.: Binder, a logic-based security language. In: Proceedings
2002 IEEE Symposium on Security and Privacy. pp. 105–113. IEEE
(2002)

[14] Dumbrava, S.G.: Formalisation en Coq de Bases de Données Rela-
tionnelles et Déductives -et Mécanisation de Datalog. Ph.D. thesis,
Université Paris-Sud (2016), http://www.theses.fr/2016SACLS525

[15] Gottlob, G., Koch, C., Baumgartner, R., Herzog, M., Flesca, S.: The lixto
data extraction project: back and forth between theory and practice.
In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. pp. 1–12. ACM (2004)

[16] Grumbach, S., Wang, F.: Netlog, a rule-based language for distributed
programming. In: International Symposium on Practical Aspects of
Declarative Languages. pp. 88–103. Springer (2010)

[17] Hoder, K., Bjørner, N., de Moura, L.: 𝜇z–an efficient engine for fixed
points with constraints. In: International Conference on Computer
Aided Verification. pp. 457–462. Springer (2011)

[18] Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications:
an interactive tutorial. In: Proceedings of the 2011 ACM SIGMOD
International Conference onManagement of data. pp. 1213–1216. ACM
(2011)

[19] Jeannet, B., Serwe, W.: Abstracting call-stacks for interprocedural ver-
ification of imperative programs. In: International Conference on Al-
gebraic Methodology and Software Technology. pp. 258–273. Springer

(2004)
[20] Kriener, J., King, A., Blazy, S.: Proofs you can believe in. proving

equivalences between prolog semantics in coq. pp. 37–48 (09 2013).
https://doi.org/10.1145/2505879.2505886

[21] Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: Cakeml: a verified
implementation of ml. In: ACM SIGPLAN Notices. vol. 49, pp. 179–191.
ACM (2014)

[22] Leroy, X.: Formal verification of a realistic compiler. Communica-
tions of the ACM 52(7), 107–115 (2009), http://xavierleroy.org/publi/
compcert-CACM.pdf

[23] Libkin, L.: The finite model theory toolbox of a database theoretician.
In: Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. pp. 65–76. ACM (2009)

[24] Lopes, N.P.: Network verification website (benchmarks and code).
http://web.ist.utl.pt/nuno.lopes/netverif/

[25] Lopes, N.P., Bjørner, N., Godefroid, P., Jayaraman, K., Varghese, G.:
Checking beliefs in dynamic networks. In: 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15). pp. 499–
512. USENIX Association, Oakland, CA (2015), https://www.usenix.
org/conference/nsdi15/technical-sessions/presentation/lopes

[26] Lopes, N.P., Bjorner, N., Godefroid, P., Varghese, G.: Network verifi-
cation in the light of program verification. Tech. rep., Microsoft (Sep-
tember 2013), https://www.microsoft.com/en-us/research/publication/
network-verification-in-the-light-of-program-verification/

[27] Lu, L., Cleary, J.G.: An operational semantics of starlog. In: Interna-
tional Conference on Principles and Practice of Declarative Program-
ming. pp. 294–310. Springer (1999)

[28] de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Tools and
Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. pp.
337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3_24, https:
//doi.org/10.1007/978-3-540-78800-3_24

[29] Ramakrishnan, R., Ullman, J.D.: A survey of deductive database sys-
tems. The journal of logic programming 23(2), 125–149 (1995)

[30] Ryzhyk, L., Budiu, M.: Differential datalog. In: Datalog (2019)
[31] Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale

program analysis in datalog. In: Proceedings of the 25th International
Conference on Compiler Construction. pp. 196–206. CC 2016, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2892208.2892226,
http://doi.acm.org/10.1145/2892208.2892226

[32] Shen,W., Doan, A., Naughton, J.F., Ramakrishnan, R.: Declarative infor-
mation extraction using datalog with embedded extraction predicates.
In: Proceedings of the 33rd international conference on Very large
data bases. pp. 1033–1044. VLDB Endowment (2007)

[33] Sozeau, M.: Equations: A dependent pattern-matching compiler. In:
International Conference on Interactive Theorem Proving. pp. 419–434.
Springer (2010)

[34] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics 5(2), 285–309 (1955)

[35] Tristan, J.B., Leroy, X.: Formal verification of translation validators: a
case study on instruction scheduling optimizations. In: Proceedings of
the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. pp. 17–27 (2008)

[36] Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as
a programming language. Journal of the ACM (JACM) 23(4), 733–742
(1976)

[37] Zook, D., Pasalic, E., Sarna-Starosta, B.: Typed datalog. In: International
Symposium on Practical Aspects of Declarative Languages. pp. 168–
182. Springer (2009)

https://orange-opensource.github.io/octant-proof
https://orange-opensource.github.io/octant-proof
https://coq-workshop.gitlab.io/2020/abstracts/Coq2020_03-03-seq-fintype.pdf
https://coq-workshop.gitlab.io/2020/abstracts/Coq2020_03-03-seq-fintype.pdf
https://hal.archives-ouvertes.fr/hal-01745566
https://framagit.org/formaldata/datalogcert/
https://framagit.org/formaldata/datalogcert/
http://www.theses.fr/2016SACLS525
http://xavierleroy.org/publi/compcert-CACM.pdf
http://xavierleroy.org/publi/compcert-CACM.pdf
http://web.ist.utl.pt/nuno.lopes/netverif/
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/lopes
https://www.microsoft.com/en-us/research/publication/network-verification-in-the-light-of-program-verification/
https://www.microsoft.com/en-us/research/publication/network-verification-in-the-light-of-program-verification/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://doi.acm.org/10.1145/2892208.2892226

	Abstract
	1 Introduction
	2 Datalog
	2.1 Syntax
	2.2 Semantics
	2.3 NoD Engine and Differences of Cubes
	2.4 Handling More Genericity

	3 Partial Rule Instantiation
	3.1 Intuition
	3.2 A Static Analysis for Datalog
	3.3 Clause Duplication Formalization

	4 Predicate Specialization
	5 Coq Formalization
	5.1 Datalog Trace Semantics
	5.2 Justification of the Static Analysis
	5.3 Clause Duplication
	5.4 Predicate Specialization
	5.5 Assumptions
	5.6 Discussion and Lessons Learned

	6 Using Dependencies across Analyses
	7 Effects of the Optimizations
	8 Related Works
	9 Conclusion and Perspectives
	References

