
Proof pearl: elementary inductive and

integer-based proofs about balanced words

Judicaël Courant1 and Jean-François Monin1

VERIMAG - Centre Équation, 2 avenue de Vignate, F-38610 Gières, France
{judicael.courant|jean-francois.monin}@imag.fr
http://www-verimag.imag.fr/�{courant|monin}/

Abstract. Inductive characterizations of words containing the same
number of 'a' and 'b' can easily be given. However, formally proving
the completeness of some of them turns out to be trickier than one may
expect. We discuss and compare two Coq developments relating such
balanced words to their inductive characterizations. One is based on
auxiliary inductive structures and elementary arguments. The other one
is based on a discrete variant of the intermediate value theorem. The ex-
traction of the computational contents of these solutions leads to parsing
algorithms of dramatically di�erent e�ciencies.

1 Introduction

It is a well-known fact that, in order to prove a property P about an inductively
de�ned set S, one sometimes needs to prove a stronger property using the basic
induction principle associated to S (such as basic Peano's induction principle)
or to use a stronger induction principle (such as well-founded induction on a
suitable relation), or even a combination of both.

It should be noticed that, in a constructive setting, any solution ultimately
reduces to the basic induction principle, simply because the latter exhibits the
canonical way of constructing objects in S. For instance, although in the well-
known example of euclidian division on natural numbers, one can use well-
founded induction on < (�nding q and r < b such that a = bq + r with b > 0
reduces to �nding q′ and r such that a − b = bq′ + r when b < a, since in that

case we have a− b < a), well-foundedness of < does not come for free. It is itself
proven by induction on natural numbers and a close look at the reduction steps
involved in the computation of q and r reveals that all numbers a, a−1, . . . 0 are
considered (not only a, a− b, a− 2b and so on). We don't pretend that a direct
induction on a would provide an interesting and really new solution to euclidian
division. However in some situations, sticking to basic induction principles has
an interest: for instance, [McB03] shows how one can give a structurally recur-
sive uni�cation algorithm; hence seeing the actual program su�ces for being
convinced it terminates.

That said, the most relevant criterium in formal proof engineering is the
same as the one in software engineering: human e�ort measured as development

2 � September 16, 2006

time and size of the code written (hence ease of maintenance). Then, when
faced to a new problem, to what extent should one spend e�ort to formalize an
appropriate piece of mathematics, when it is still not available? Is it worth to
stick to elementary arguments, at the price of thinking more at the inductive
structure of the problem at hand?

We do not intend to provide a general answer to these questions here. Our am-
bition is limited to presenting and comparing the two approaches in the context
of a problem on words. Both solutions, although non-trivial, can be presented in
full detail in little amount of space.

Consider the the set Σ∗ of �nite words over the alphabet Σ = {a, b}. We
say that a word u in Σ∗ is balanced if the number of occurrences of the letter
a in u is equal to the number of occurrences of the letter b in u. An obvious
characterization of the set of balanced words B0 is inductively de�ned as follows:

� the empty word is balanced: ε ∈ B0;
� if a word is balanced, inserting an a and a b anywhere in it yields a balanced
word; that is, if u, v and w are in Σ∗ and if uvw ∈ B0, then uavbw ∈ B0

and ubvaw ∈ B0.

If w is non-empty in an inductive step of B0, it ends either with a or b, and then
a corresponding b or a should respectively occur in the pre�x of the word. This
leads us to consider the (seemingly strictly) weaker inductive de�nition B1:

� ε ∈ B1;
� if u and v are in Σ∗, and uv ∈ B1, then uavb ∈ B1 and ubva ∈ B1.

It is clear that B0 contains B1 and that all words in B0 are balanced. What
about the converse�completeness wrt the set of balanced words? Loosely, we
can argue as follows about B0. If a balanced word t is non-empty, it contains at
least one a (because otherwise, t would only be made of b, which is impossible
because it is balanced). Similarly, t contains at least one b. Depending on whether
a occurs before b in t or conversely, we have t = uavbw or t = ubvaw, where
uvw is balanced. Then we see that an induction on the length of balanced words
will do.

As for the completeness of B1, consider the rightmost letter x in a non-
empty balanced word tx. Then t contains at least one x, where a def== b and
b def== a (because otherwise tx would not be balanced), which means that we
have tx = uxvx, with uv a balanced word.

Now consider the still weaker inductive de�nition B2:

� ε ∈ B2;
� if u ∈ B2 and v ∈ B2 then uavb ∈ B2 and ubva ∈ B2.

The previous line of reasoning does not work any longer. However we will see
that B2 is still a complete inductive characterization of balanced words.

Even for B0 and B1, a complete formalisation requires more work than may
be expected at �rst sight.

September 16, 2006 � 3

We present two opposite approaches to this problem. The �rst one (section 3),
sticks to the inductive de�nition of words (we don't even consider induction on
the length of words) and gets elementary proofs. The second one (section 4)
is based on the theorem of intermediate values. Thanks to a massive use of
automated tactics and tacticals, the proof script remains quite short even for
the latter solution. Both versions share a common set of de�nitions given in
section 2. Finally, measures, conclusions and perspectives are given in section 5.

All proofs were checked within the Coq proof assistant [The05,BC04].

2 Problem statement and notation

2.1 CIC and Coq in a nutshell

Our formalization is carried out in the framework of the calculus of inductive
constructions (CIC), with the help of the Coq proof assistant. The reader is
referred to [The05,BC04] for detailed explanations, but in a few words, a for-
mal development consists of a sequence of de�nitions and theorems. The main
di�erence with usual mathematics is that basic objects are not (untyped) sets,
but inductive types and functions (typed λ-terms). The type system includes
polymorphic types and dependent types. Following Curry-Howard isomorphism,
propositions can be seen as types inhabited by the proofs of those propositions;
similarly, predicates are dependent types�propositions depending on values.
Hence A → B is interpreted as a functional type when A and B are datatypes
and as an implication when A and B are logical formulæ. Similarly, ∀x : A,Px
may be interpreted as a universally quanti�ed formula or as the product of a
type family (Πx∈APx).

A de�nition binds an identi�er to a λ-term. General course-of-values recursion
is not allowed, because (strong) normalization of the calculus is required in order
to preserve the consistency of the underlying logic. However, structural recursion
is allowed on all inductive types, which is enough for encoding any provably
terminating recursive function.

Types are themselves values in higher types. For instance, propositions have
the type Prop and datatypes have the type Set. Hence we can construct families
of propositions and datatypes by structural induction on an inductive type.

In Coq, proofs are not directly expressed as typed λ-terms by the end user.
Instead, she or he interactively speci�es how to construct a proof term by means
of commands called tactics or combination of tactics called tacticals. Coq in-
cludes a language for developing user-de�ned tactics. We return to this feature
in section 4.1, where we describe useful tactics (typically splitsolve), which we
systematically use for discharging routine subgoals.

The proofs presented below stick to the formal Coq proofs. They are au-
tomatically derived from the actual Coq proof scripts using the coqdoc tool of
Jean-Chritophe Filliâtre [The05] and a small number of cosmetic transforma-
tions.

4 � September 16, 2006

2.2 Words

Let us come back to words. Words are inductively de�ned with the �Snoc� con-
vention: letters are added to the right.

Inductive Σ∗: Set := ε: Σ∗ | Snoc : Σ∗ → Σ → Σ∗.

Such a statement de�nes:

� a new inductive type: Σ∗;
� its contructors: ε and Snoc.

Moreover, Coq automatically constructs the expected induction principle on Σ∗.
In the formal development, we use the in�x notation u :: x for Snoc u x. In this
paper, we simply write ux.

The following notions are easily de�ned by structural recursion on words:

� the catenation of two words u and v, denoted by u v
� the length of a word u, denoted by |u|;
� for x in Σ, the x-length of u, denoted by |u|x, which is the number of occur-
rences of x in u.

In this paper, we use the convention that x, y and z range over letters and u, v
and w range over words. This convention or/and the typing context always make
clear whether juxtaposition denotes functional application or word construction.

De�nition 1. A word u is balanced if |u|a = |u|b.
A useful induction principle on words is well-founded induction on their

length. The following commented proof script claims and proves it (using the
automated tactic splitsolve0 described section 4.1):

Lemma length rect :
∀ (P : Σ∗ → Type) u,
(∀ u0, (∀ v, |v| < |u0| → P v) → P u0) → P u.

We �rst introduce variables and the inductive step:
intros P u H Step.
We claim the following properties over natural numbers:
assert (Gen : (∀ n u1, length u1 < n → P u1)).
To prove it, we can use the induction principle for natural numbers:
induction n.
The case 0 is trivial thanks to H Step:
splitsolve0 1...
The case (S n) holds thanks to H Step and the induction hypothesis:
intros u1 l u1 Sn; case (le lt eq dec (|u1|) n).
auto with arith...
exact (IHn u1)...
intro e; apply H Step. rewrite e. exact IHn...

The main claim now clearly holds (just apply Gen to (S |u|) and u):
apply (Gen (S (|u|)) u). splitsolve0 1.

Qed.

September 16, 2006 � 5

2.3 Languages

The languages B0, B1 and B2 are de�ned as inductive properties1 on Σ∗.

Inductive B0 : Σ∗ → Set :=
| B0 e : B0 ε
| B0 ab : ∀ u v w, B0 (uvw) → B0 (ua vbw)
| B0 ba : ∀ u v w, B0 (uvw) → B0 (ub vaw)

Inductive B1 : Σ∗ → Set :=
| B1 e : B1 ε
| B1 ab : ∀ u v, B1 (uv) → B1 (ua vb)
| B1 ba : ∀ u v, B1 (uv) → B1 (ub va)

Inductive B2 : Σ∗ → Set :=
| B2 e : B2 ε
| B2 ab : ∀ u v, B2 u → B2 v → B2 (ua vb)
| B2 ba : ∀ u v, B2 u → B2 v → B2 (ub va)

For i ∈ {0, 1, 2}, we can use Bi other instead of clauses Bi ab and Bi ba.

Lemma B0 other : ∀ u v w x, B0 (uvw) → B0 (uxvxw).
Lemma B1 other : ∀ u v x, B1 (uv) → B1 (uxvx).
Lemma B2 other : ∀ u v x, B2 u → B2 v → B2 (uxvx).

We want to prove, for i ∈ {0, 1, 2}: ∀u, |u|a = |u|b ↔ Bi u. Correctness, that
is ∀u, Bi u → |u|a = |u|b, is easy: just apply the induction principle for Bi. As
for completeness (∀u, |u|a = |u|b → Bi u), in the following we consider only B1

and B2, since B1 trivially entails B0.

3 Elementary inductive proofs

It is clear that a direct attempt to prove ∀u, |u|a = |u|b → Bi u by induction on
the structure of u will fail. The idea is then to �nd a suitable generalization Pi

of Bi such that ∀u, |u|a = |u|b → Pi u is provable by induction on u.

3.1 Completeness of B1

In the course of an induction step, we analyze a word ux. If we want ux to be
balanced, we have to consider the case where u is not balanced. For instance
if x = a, we expect that |u|b = 1 + |u|a. In general, we may have an arbitrary
excess number n of y (where y is a or b) in a word u. An idea is then to encode
this number in a word by considering uyn. Here is the key lemma.

Lemma B1 completeness aux : ∀ u n y, |u| y = n + |u|y → B1 (uyn).
The proof is by induction on u.
induction u as [|u IndHyp x]; intros n y.

1 In the �rst version of this development, the type of B0, B1 and B2 was Σ∗ → Prop
instead of Σ∗ → Set. The di�erence is not signi�cant here, this change was made for
extraction purposes only (see Section 5.3).

6 � September 16, 2006

The case where u = ε reduces to 0 = n → B1 (ε yn) because |ε|y = 0

The following tactic amounts to applying clause B1 e.

splitsolve0 1...

In the inductive step, we consider the word ux, which yields the goal:
|ux| y = n + |ux|y → B1 (uxyn). Let us compare y with x.

case (eq or other y x); intro e; rewrite e; clear e y; splitsolve0 0.

When y=x, we get: |u| x = n + S (|u|x) ` B1 (u xn+1), hence we can use
the induction hypothesis on n + 1 and x:

apply (IndHyp (S n) x); splitsolve0 0...

When y=x, we get: |u|x + 1 = n + |u| x ` B1 (uxxn). Then we decide to
compare n with 0.

destruct n; simpl in * ` * .

When n=0, the goal reduces to B1 (ux). Then we apply the induction
hypothesis on 1 and the opposite letter.

apply (IndHyp 1 x); splitsolve0 0...

When the previous n is a successor (the successor of the new n provided by
the tactic destruct), the new goal is B1 (uxxnx). We can apply B1 other

with the induction hypothesis on n and x.

apply B1 other. apply (IndHyp n x); splitsolve0 0...
Qed.

The desired theorem is a simple corollary of the previous lemma, taking n = 0
and any letter for y.

3.2 Completeness of B2

The inductive de�nition of B1 allowed us to count the de�cit of a given letter
wrt. the other in a word. In the last case we consider, we use the fact that a y
we get from the stock we have on the right of uyn may �t any y in u.

We don't have this freedom any longer for B2. In order to delete the rightmost
letter of a balanced word wy, we have to decompose w into uyv, such that v is
itself balanced.

So we have to record the structure of a word with a �ner grain than before.
To this e�ect, we introduce a family C of predicates as follows. First, we say
that a word w is split by a predicate P and a letter x if there exist two words
u and v such that P u, B2 v and w = uxv. The family C is then de�ned by the
following equations:

Cx,0
def== B2 (1)

Cx,n+1
def== split Cx,n x (2)

Intuitively, we have Cx,n u if u can be decomposed as u0xu1x . . . xun, with
∀i ∈ [0, n], B2 ui. The formula Cy,n u will play here the role played by B1 u in
section 3.1. We �rst need three easy lemmas.

September 16, 2006 � 7

Lemma B2 app : ∀ u, B2 u → ∀ v, B2 v → B2 (uv).

Proof: by induction on the construction of B2 v.

Lemma C app : ∀ x u n, Cx,n u → ∀ v, B2 v → Cx,n (uv).

Proof: by case analysis on n, using lemma B2 app.

Lemma C other : ∀ x u v n, C x,n u → B2 v → C x,n (uxvx).

Proof: easy corollary of lemma C app.

Now we have the main lemma.

Lemma B2 completeness aux : ∀ u n y, |u|y = n + |u| y → Cy,n u.
induction u as [|u IndHyp x]; intros n y.

The case where u = ε reduces to 0 = n → Cy,n ε because |ε|y = 0

splitsolve0 1...

In the inductive step, we consider the word ux, which yields the goal:
|ux|y = n + |ux| y → Cy,n (ux). Let us compare y with x.

case (eq or other y x); intro e; rewrite e; clear e y; splitsolve0 0.

When y=x, we get: S(|u|x) = n + |u| x ` Cx,n (ux). Then we decide to
compare n with 0.

destruct n; simpl in * ` * .

When n=0, the goal reduces to B2 (ux). Then we apply the induction
hypothesis with 1 and the opposite letter.

elim (IndHyp 1 x); splitsolveB2o 1...

When the previous n is a successor (the successor of the new n provided
by the tactic destruct), the new goal is split (Cx,n) x (ux). The witnesses
are u and ε, using the induction hypothesis on n and x.

generalize (IndHyp n x) B2 e; intros. re�ne (split ex u ε); auto...

When y=x, we get: |u| x = n + (|u|x + 1) ` C x,n (ux). By induction
hypothesis on n+1 and x, we get w and v such that u= wxv), C x,n w and
B2 v, so that we apply lemma C other.

elim (IndHyp (S n) x); [intros w v cnw bv | splitsolve0 0].
apply C other ; assumption...

Qed.

As for B1, the completeness of B2 reduces to a special case of the previous
lemma, with n = 0 and y = b (y = a works as well).

4 Solution based on the intermediate value theorem

4.1 Automatizing proofs

Compared to the elementary proof, the solution based on the intermediate value
theorem needs much more automation. In order to achieve the proof, we used
a few tactics which we designed in the course of another development [CM06].

8 � September 16, 2006

The simplest one, progress0, carries out a single trivial invertible reasoning step
(that is, a step preserving the provability of the goal) such as introduction of
variables, elimination of conjunction in hypothesis, systematic application in
hypothesis and conclusion of the goal of certain rewriting database, . . . The most
elaborated one, splitsolve0 features a (naive) iterative deepening proof-search,
combining some non-invertible tactics together with application of progress0).
More precisely splitsolve0 actually is an instance of a generic tactic splitsolve,
parameterized by a tactic doing invertible steps and a tactic doing non-invertible
steps. Thus, splitsolve0 could easily be extended to some tactics splitsolve1 and
splitsolve2 dealing with domain-speci�c reasonning:

Ltac progress1 g := match goal with

| [` step up ?f ?z (?u?x)] ⇒ apply step up charact

| [H : C0?f `] ⇒ unfold C0in H
end

|| progress0 g.

Ltac splitsolve1 n := splitsolve progress1 split0 noni0 n 0.

A preliminary version of these tactics has been posted on the Coq Wiki (http:
//cocorico.cs.ru.nl/coqwiki/GenericTactics).

4.2 The discrete intermediate value theorem

As a general result, we �rst prove a discrete version of Weierstrass intermediate
value theorem over words. We de�ne continuous functions over words as follows:

De�nition C0f := ∀ u x,
{f (ux) - f u = 1 }+{ f (ux) = f u }+{ f (ux) - f u = -1}.

Given such a function and a word u, we would like to show that for any inter-
mediate value z between f(ε) and f(u), there exists some pre�x v of u such that
f(v) takes this value. Moreover, if z < f(v), we can choose v such that the next
pre�x vx is such that f(ux) = z + 1 (take for instance the longest pre�x v of u
such that f(v) = z). We say that f steps up from z to z + 1 at v and x. More
precisely, we de�ne stepping up as follows:

Inductive step up (f : Σ∗ → Z) (z : Z) : Σ∗ → Set :=
| Cstep up : ∀ u x v,

f u = z → f (ux) = z + 1 → step up f z (ux v).

Stepping up can be characterized as follows:

The following commented proof script then proves the intermediate value theo-
rem:

Theorem int val : ∀ f z u, C0f → f ε ≤ z < f u →step up f z u.
induction u as [| v IHu x];intros.
The case u = ε is trivial since the hypothesis f(ε) ≤ z < f(u) is absurd then:

splitsolve1 0%nat...
We now consider the case u = vx:

September 16, 2006 � 9

assert ({ z = f v }+{ z < f v }).
The above claim automatically resolves by continuity of f and since
z < f(vx):
splitsolve1 2%nat...
The main case is now trivial: either f(v) = z and f(vx) = z+1 and we are
done, or z < f(v) and we conclude thanks to the induction hypothesis:
splitsolve1 3%nat...

Qed.

4.3 Main proof

In order to apply the intermediate value theorem, we �rst de�ne a balance func-
tion telling us how much a word is unbalanced,
De�nition balance u := Z of nat (|u|a) - Z of nat (|u|b).
De�nition balanced u := balance u = 0.

Then we show balance is continuous:
Lemma continuous balance : C0balance.

Once this is done, we can prove that one can split all slightly unbalanced u into
balanced v and w such that u = vxw for some letter x. Formally:

Lemma unbalanced insert a :
∀ u, balance u = 1 →
{ v : Σ∗ & { w : Σ∗ | balanced v ∧ balanced w ∧ u = vaw }}.

Lemma unbalanced insert b :
∀ u, - balance u = 1 →
{ v : Σ∗ & { w : Σ∗ | balanced v ∧ balanced w ∧ u = vbw }}.

Equivalence of B1, B2 and B0 then proceed by induction over the length of the
considered words. For instance, here is the script for B1:

Theorem B1 compl : ∀ u, |u|a = |u|b → B1 u.
The proof proceeds by induction over the length of u:
intro u; pattern u; apply length rect ; clear u.
intros u HypInd Hbal u.
We do a case analysis over u:
destruct u as [| v x].
The case u = ε is trivial:
splitsolve2 1%nat...
Otherwise, u = vx. Then we have:
assert ({ - balance v = 1 }+{ balance v = 1 }).
which can be proved by a simple case analysis over x:
destruct x; splitsolve2 1%nat...
Using the previous results on unbalanced words, we can conclude with a
simple case analysis over x:
generalize (unbalanced insert b v) (unbalanced insert a v).
destruct x; splitsolve2 2%nat...

Qed.

10 � September 16, 2006

5 Conclusions

5.1 Figures

We now draw a comparative table of both developments. The points we compare
are the following:

1. Length of the development, measured as the number of lines of speci�cations
and of proof scripts.

2. Number of lemmas and theorems.
3. Average length of proof per lemma/theorem.
4. Complexity of the proof.
5. Automatization level of the proof measured as the number of lines of proof

script per use of the splitsolve tactic.
6. Control of the proof.
7. Compilation speed of the proof script alone (measured on the �rst author's

laptop, in seconds).
8. Compilation speed of the dependencies of the proof script.
9. Size of the generated compiled proof development (.vo �le, in bytes).

These points are measured in the table below for:

� The inductive proof (IP).
� The proof using the intermediate value theorem (PUIVT), alone without the
proof of the intermediate value theorem itself.

� The development of the intermediate value theorem (IVT) itself.

IP PUIVT IVT

Proof length 63 64 44
Results proved 8 6 5
Average proof length 4.1 7.0 4.0
Complexity high low low
Lines of proof / splitsolve 1.9 1.5 2.2
Control high low low
Compilation time (s) 1.9 31.4 5.3
Compilation time of deps (s) 1.4 7.1 1.1
Size of .vo �le 28K 140K 28K

Although the automated tactics were really needed for the development of
the proof using the intermediate value theorem, the inductive proof also takes
advantage of them.

As for compilation times and size of the generated .vo �les, there is clearly
a big advantage to inductive proofs here: although the support for equationnal
reasonning improves, Coq is still much more e�cient on inductive proofs.

The proof based on the intermediate value theorem development and the
inductive proof are on a par (63 lines versus 64), which is somewhat surprising:
the higher-level results you use, the shorter your proofs shoud be. On the other
hand, the proof of the IVT itself turns out to be quite short (44 lines), and
this result can be reused in other contexts. At least, it is certainly much more
reusable than the family Cx,n of predicates introduced in section 3.2.

September 16, 2006 � 11

5.2 Symmetry of the inductive proof

In the approach based on the IVT, we introduce the notion of a balance of a word
u, namely |u|a − |u|b where the considered numbers are integers. This is very
natural and we may wonder why this notion is not needed in the inductive proofs,
where only natural numbers are used: since these proofs proceed by induction on
a word, it is intuitively clear that while traversing this word, one considers all its
pre�xes, whose balances are sometimes positive, sometimes null and sometimes
negative.

The places where the signs of balances change can actually be identi�ed:
they are precisely the places where the induction hypothesis is used with 1 and
the opposite letter (this letter is named x in both lemmas Bi completeness aux :
for B1, this case occurs when y = x while for B2, this case occurs when y =
x). In this way, the management of the case where the balance is positive and
increases (respectively decreases) and of the case where the balance is negative
and decreases (respectively increases) are shared in the inductive proof. The
proofs succeed because the predicate to be inductively proved is quanti�ed over y.

A closer look at the inductive proofs shows more: thanks to this quanti�ca-
tion, letters a and b pleasantly play perfectly identical roles. Using the balance
function actually introduces a bias: we may as well consider the opposite func-
tion, yielding a symmetrical but di�erent proof. It is still unclear for us whether
considering x versus x instead of a and b in the IVT-based development could
lead to shorter and more elegant proofs as well.

5.3 Program extraction

All the proofs described in this paper are constructive. Their computational
contents are simply parsing algorithms for the languages B1 and B2. These
algorithms can be made explicit using a feature of Coq called program extraction,
which is based on a separation between informative types (in the sort Set) and
logical types (in the sort Prop): program extraction essentially boils down to
pruning non-informative parts of a λ-term. We initially de�ned our inductive
properties B1 and B2 as members of the sort Prop and just had to lift them,
as well as the statements of several lemmas from Prop to Set in order to use
this facility. It is quite remarkable to note that we need really few modi�cations,
if any, in the proofs of these lemmas. This is due partly to the fact that many
tactics have similar uniform behavior both on informative and non-informative
goals and partly to the use of our automated tactics. Changes were due for the
one part to the fact that the Omega tactics (a decision procedure for Pressburger
arithmetics) splits some non-informative propositional connectives but not any
informative one and for the other part to a bug of the version of Coq we used.2

Extraction yields functional pieces of codes, (in ML or Haskell) and we
are able to compare code size and e�ciency of the parsing algorithms pro-

2 Less remarkable is the fact that our development works in Coq version 8.0pl3 but does
not seem to work as is in Coq version 8.1beta. We would need further investigations
to tell the extent of the needed changes.

12 � September 16, 2006

vided by the two approaches. Such a study is motivated by problems encoun-
tered in a much larger experiment, the C-CoRN project at University of Ni-
jmegen [GWZ00,CFGW], where the computational contents of a constructive
proof of the fundamental theorem of algebra turned out to be untractable in
practice. This was analyzed and progress were reported in [CFL05] and [Let04].
The di�culty is essentially that the whole development was primarily developed
with a focus on mathematics rather than on algorithmics. On the other hand,
[Let04] reports a less ambitious but resource-aware constructive approach for
representing constructive real numbers and continuous functions, resulting in a
successful computation of approximations of

√
2.

Although the scale of our experiment on words is much smaller, it shares
a common point with C-CoRN: we developed the theorems without thinking
to the underlying algorithms, and afterwards replaced Prop with Set in the
relevant places. We are then able to compare the computational costs of our two
approaches: is it worth looking for an elementary, more controlled, proof in order
to get a more e�cient computational contents?

5.4 Experimental results

We compared the �ve following parsers:

Ind B1 Parser for B1, extracted from the inductive proof.
Ind B2 Parser for B2, extracted from the inductive proof.
Ivt B1 Parser for B1, extracted from the proof using the intermediate value

theorem.
Ind B2 Parser for B2, extracted from the proof using the intermediate value

theorem.
Direct Parser for B2, hand-written.

We posted the challenge of writing parsers for B1 and B2 in our lab, and sent
it as well to a few colleagues. We got only one answer for B1 (in prolog), and
several solutions (or partial solutions) for B2. The parser we evaluated against
our extracted programs has been adapted from a solution by Claude Marché and
Jean-Christophe Filliâtre.

This hand-written parser uses a more compact representation of syntactic
trees than the extracted ones: in extracted parsers, a node B2 ab of a syntactic
tree contains the corresponding words u and v and has two sons corresponding
to the parsing of u and v whereas in the hand-written one, these words are
omitted, which is more natural from a programmer's point of view. This probably
has a non-negligible impact on performance since building these intermediate
words from the compact tree requires words concatenation, which should require
O(n log n) operations on average when parsing words of length n (assuming
concatenation requires a time proportional to the size of its operands).

We give our experimental timing measures of the parsing time of randomly
chosen balanced words on �gures 1 and 2. Lengths of the words are given on
abscissas while ordinates denote the mean parsing times in seconds (the smaller,

September 16, 2006 � 13

0

2

4

6

8

10

12

14

16

100 400 700 1000

ivt B1, mean

3 3 3
3

3

3

3

33

ivt B2, mean

+ + +
+

+
+

+

++

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000

ind B2, mean

3333 3 3
3

3
3

3
3

3

3

3

3
3

ind B1, mean

++++ ++ +++ + + + + + +

+

Fig. 1. Mean parsing times of ivt1, ivt2, ind1 and ind2

0.0 100
500.0 10−6

1.0 10−3
1.5 10−3
2.0 10−3
2.5 10−3
3.0 10−3
3.5 10−3
4.0 10−3
4.5 10−3

0 5000 10000 15000 20000 25000 30000

direct, mean

33
3

3
3

3
3 3

3
3

3 3

3
3

3

3

Fig. 2. Mean parsing times of direct

the better). The material needed for reproducing these results is available on the
web page of the authors.

In order to help comparing these �gures, we give on �gures 3 and 4 the ra-
tios of some of these execution times. It is interesting to note that the choice
of the right proof method has much more impact (in terms of ratio of perfor-
mance) than the choice of a direct implementation versus the extraction of the
best proof. Besides ratios, a closer inspection of execution times shows that the
hand-written program, the programs extracted from the inductive proof and the
programs extracted from the proof based on the intermediate value theorem have
time complexity of order O(nα), where α takes respectively the values 1.17, 1.7
and 3.2. However these values should be taken with care, as time consumption
in strongly perturbated by automatic memory management (this is especially
visible on the direct implementation, where a linear behavior is expected).

Finally, since the inductive proof was not developed with performance in
mind, there might be room for improvements. Whether there is enough room
for bringing the performance of extracted programs close the performance of the
direct implementation is an open question.

Acknowledgments

We would like to thank Jean-Christophe Filliâtre and Claude Marché for their
parser. We also thank Xavier Nicollin for pointing out that the de�nition of B2

14 � September 16, 2006

1000

2000

3000

4000

5000

6000

7000

8000

100 200 300 400 500 600 700 800

ivt B1 / ind B1

3
3
3
3

3
33

3
3

3 3

3 3
3

3

3

200

400

600

800

1000

1200

1400

1600

1800

100 200 300 400 500 600 700 800

ivt B2 / ind B2

33
333

33
3

3
3

3

3

3

3

3

3

Fig. 3. Ratio ivt1/ind1 and ivt2/ind2 and for small lengths

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

ind B2 / direct
3
3
3
3
3
3

33

3
3

33

3

3

3

3

3
3

3 3

3 3
3

3
3

3

3

3

3

3

Fig. 4. Ratio ind2/direct

could be turned into an LALR(1) grammar (recognized by yacc) by a transfor-
mation preserving the syntactic structure, and Romain Janvier for proposing
prolog solutions. Last but not least, we thank Yassine Lakhnech for the state-
ment of the problem as an exercise for teaching various approaches and proof
strategies on inductive de�nitions as well as for fruitful discussions.

References

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Coq'Art: The Calculus of Inductive Constructions, volume XXV
of Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.
469 p., Hardcover. ISBN: 3-540-20854-2.

[CFGW] Luìs Cruz-Filipe, Herman Geuvers, and Freek Wiedijk. C-CoRN, the Con-
structive Coq Repository at Nijmegen.

[CFL05] L. Cruz-Filipe and P. Letouzey. A Large-Scale Experiment in Executing
Extracted Programs. In 12th Symposium on the Integration of Symbolic Com-
putation and Mechanized Reasoning, Calculemus'2005, 2005. To appear.

[CM06] Judicaël Courant and Jean-François Monin. Defending the bank with a proof
assistant. Vienna, March 2006. To appear in WITS.

[GWZ00] Herman Geuvers, Freek Wiedijk, and Jan Zwanenburg. A constructive proof
of the fundamental theorem of algebra without using the rationals. In TYPES,
pages 96�111, 2000.

September 16, 2006 � 15

[Let04] P. Letouzey. Programmation fonctionnelle certi�ée � L'extraction de pro-
grammes dans l'assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

[McB03] Conor McBride. First-order uni�cation by structural recursion. Journal of
Functional Programming, 13(6):1061�1075, November 2003.

[The05] The Coq Development Team. The Coq Proof Assistant Reference Manual
Version 8.0. Logical Project, January 2005.

