Introduction to Interactive Proof of Software

J.-F. Monin

Univ. Joseph Fourier and LIAMA-FORMES, Tsinghua Univ., Beijing

2012, Semester 1

Lecture 8

IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors Inversion

Partial functions

Properties of constructors Inversion

Partial functions

A small development

IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors Inversion

Partial functions

Properties of constructors Inversion

Partial functions

A small development

IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors Inversion

Partial functions

Constructors make distinguishable values

Constructors with different names Tactic discriminate

Same constructor applied to different arguments

Each constructor is injective Proof: using appropriate projections See coq file Automated using tactic injection IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors Inversion

Partial functions

```
Inductive even : nat -> Prop :=
| E0 : even 0
| E2: forall n:nat, even n -> even (S (S n)).
```

Problem 1

Given a goal containing an assumption even 1, conclude because such an assumption is inconsistent

Problem 2

Given a goal containing an assumption e: even S (S x), get an assumption even x, because only E2 x can make the type of e

IIPS

J.-F. Monin

Analyzing constructors Properties of constructors Inversion

Partial functions

small evelopment

```
Inductive even : nat -> Prop :=
| E0 : even 0
| E2: forall n:nat, even n -> even (S (S n)).
```

Why this name

The above reasoning looks like a reading of constructors in the opposite way.

Warning

Nothing to do with induction, just case analysis.

But technically more involved than expected

Basically, destruct or case works well when the conclusion contains occurrences of X, if X is the argument of the hypothesis to be exploited even X

IIPS

J.-F. Monin

Analyzing constructors Properties of constructors Inversion

Partial functions

Inductive even : nat -> Prop :=

- | E0 : even 0
- | E2: forall n:nat, even $n \rightarrow even (S (S n))$.

By hand

See example in coq file

Automated Tactic inversion and variants IIPS

J.-F. Monin

Analyzing constructors Properties of constructor

Partial functions

Properties of constructors Inversion

Partial functions

A small development

IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors Inversion

Partial functions

 \ldots have to be represented either by total functions, or by inductive predicates.

Example

On colors: see coq file

IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors

Partial functions

Properties of constructors Inversion

Partial functions

A small development

IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors Inversion

Partial functions

IIPS

J.-F. Monin

Analyzing constructors

Properties of constructors Inversion

Partial functions

A small levelopment

Finding the min of a list See coq file