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Structural induction

A very natural generalisation of induction

On lists

P nil ∀n∀l , P l ⇒ P (n :: l)
∀l , P l

Examples: stuttering list, associativity of append, reverse

On binary trees

P leaf ∀n∀tl tr , P tl ⇒ P tr ⇒ P (Node tl n tr )

∀t, P t

Examples: number of keys and of leaves, algorithms on
binary search trees
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Induction on a inductive predicate

Inductive even : nat -> Prop :=
| E0 : even 0
| E2: forall n:nat, even n -> even (S (S n)).

We expect the following induction principle:

P 0 ∀n, even n⇒ P n⇒ P (S (S n))
∀n, even n⇒ P n
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Lists of consecutive even numbers

Inductive natlist: Set :=
| E : natlist
| C : nat -> natlist -> natlist.

P E ∀n∀l , P l ⇒ P (C n l)
∀l , P l

Inductive evl : nat -> Set :=
| E0 : evl 0
| E2: forall n:nat, evl n -> evl (S (S n)).

P E0 ∀n∀l , P l ⇒ P (E2 n l)
∀l , P l

P 0 E0 ∀n∀l , P n l ⇒ P (S (S n)) (E2 n l)
∀nl , P n l
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Lists of consecutive even numbers (cont’d)

Inductive evl : nat -> Set :=
| E0 : evl 0
| E2: forall n:nat, evl n -> evl (S (S n)).

P 0 E0 ∀n∀l , P n l ⇒ P (S (S n)) (E2 n l)
∀nl , P n l

Take for P a predicate which does not depend on its second
argument: P n l def

== Q n

Q 0 ∀n ∀(l : evl n), Q n⇒ Q (S (S n))
∀n(l : evl n), Q n

Q 0 ∀n, evl n⇒ Q n⇒ Q (S (S n))
∀n, evl n⇒ Q n

Now, evl reads just even
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Functional interpretation

Inductive list : Set :=
| E : list
| C : nat -> list -> list.

P E ∀n∀l , P l ⇒ P(C n l)
∀l , P l

Lists of consecutive even numbers
typed according to the value of the expected next head
Inductive evl : nat -> Set :=

| E0 : evl 0
| E2: forall n:nat, evl n -> evl (S (S n)).

P E0 ∀n∀l , P l ⇒ P(E2 n l)
∀l , P l

P 0 E0 ∀n∀l , P n l ⇒ P (S (S n)) (E2 n l)
∀nl , P n l
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Booleans and inductively defined predicates

Fixpoint evenb (n:nat) : bool :=
match n with
| O => true
| S O => false
| S (S n’) => evenb n’
end.

Inductive even : nat -> Prop :=
| E0 : even O
| E2 : ∀ n, even n -> even (S (S n)).

Theorem even_evenb : ∀ n, even n -> evenb n = true.

By induction on the structure of the proof of even n

Theorem evenb_even : ∀ n, evenb n = true -> even n.

By induction on n



IIPS

J.-F. Monin

Structural
induction

Induction on a
inductive predicate

Well-founded
induction

Booleans and inductively defined predicates

Theorem even_evenb :
∀ n, even n -> evenb n = true.

By induction on the structure of the proof of even n
Don’t have to bother about odd numbers

Theorem evenb_even :
∀ n, evenb n = true -> even n.

By induction on n: need for strengthening and discrimination.

Inversion
Issue: getting the possible ways of constructing a hypothesis
Easier for evenb than for even, see even inversion.v

This issue cannot be avoided for non-deterministic relations



IIPS

J.-F. Monin

Structural
induction

Induction on a
inductive predicate

Well-founded
induction

Outline

Structural induction

Induction on a inductive predicate

Well-founded induction



IIPS

J.-F. Monin

Structural
induction

Induction on a
inductive predicate

Well-founded
induction

Stronger induction principles

P 0 P 1 ∀n, P n ∧ P (S n)⇒ P (S (S n))
∀n, P n

P 0 ∀n, (∀m, m ≤ n⇒ P m)⇒ P (S n)
∀n, P n

By (basic) induction on Q n def
== ∀m, m ≤ n⇒ P m

Rephrasing

∀n, (∀m, m < n⇒ P m)⇒ P n
∀n, P n

Well-founded induction on (nat, <)
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Well-founded induction

Material:
I S: a set, called the domain of the induction
I R: a relation on S
I R is well-founded (see below)

Then we have the following induction principle:

∀x , (∀y , R y x ⇒ P y)⇒ P x
∀x , P x

Two definitions on well-founded (equivalent in classical logic)
I any decreasing chain eventually stops
I all elements of S are accessible

An element is accessible def
== all its predecessors are accessible
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Important application

Theorem of chocolate tablets

Statement
Let us take a tablet containing n tiles
and cut it into pieces along grooves

How many shots are needed for reducing the tablet into tiles?

Answer
n − 1
It does not depend on successive choices of grooves!

Proof
By well-founded induction on (nat, <)
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Construction of well-founded relations

E.g. the lexicographic ordering of two well-founded relations
is well-founded.
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