Introduction to Interactive Proof of Software

J.-F. Monin

Univ. Joseph Fourier and LIAMA-FORMES, Tsinghua Univ., Beijing

2012, Semester 1

Lecture 4

IIPS

J.-F. Monin

Propositions and proofs

IIPS

J.-F. Monin

Propositions and proofs

More Logic

Propositions and proofs

IIPS

J.-F. Monin

Propositions and proofs

More Logic

Propositions and proofs

Another way to look at definitions and types

```
Definition funny :
  forall (r: rgb), Set_of r :=
  fun (r: rgb) => some body
```

Theorem plus_id_example :
 ∀ n m:nat, n=m -> n+n=m+m.

Or, equivalently:

```
Theorem plus_id_example :
  ∀ n m:nat, ∀ e:n=m, n+n=m+m.
```

Its proof is a function

- taking as arguments n, m and e a proof of n = m
- returning a proof of n + n = m + m

IIPS

J.-F. Monin

Propositions and proofs

Theorems are just definitions

Hypotheses are just variables

The type of propositions is called Prop

```
Example: 3 = 2 + 1: Prop
```

WARNING

Prop is at the same level as Set, not bool

Some subtle differences between Prop and Set to be discussed later

IIPS

J.-F. Monin

Propositions and proofs

Correspondance

We have

P_or_Q_intro_left:P_or_Q	P_or_Q:Prop	
true : bool	bool:Set	

P_or_Q is like bool:

- Enriched version of bool, where each constructor embeds an additional proof tree
- Minor difference: it is in Prop instead of Set

IIPS

J.-F. Monin

Propositions and proofs

.

.

An inductive type may have parameters as follows:

```
Inductive list (A Set) : Set :=
| Nil : list A
| Cons : forall (h:A) (t:list A), list A
```

Full definition of disjunction (standard library)

```
Inductive or (P Q: Prop) : Prop :=
| or_intro_left : forall p:P, or P Q
| or_intro_right : forall q:Q, or P Q
```

Next, instead of or P Q, use the usual infix notation P \backslash / Q

IIPS

```
J.-F. Monin
```

Propositions and proofs

J.-F. Monin

Propositions and proofs

More Logic

Logic	Proposition	Proof	Lemma inlining
Programming	Туре	Term	Reduction

A little bit of history

In the 20th century, logic and functionnal programming were developed separately

Actually the same ideas have been discovered twice with different names

Logic	V	\wedge	$\forall \rightarrow$	False
Programming	Sum	product	function	empty

Note: the negation $\neg P$ of a proposition P is defined as $P \rightarrow$ False. For instance, \neg False is easy to prove...

Correctness proofs of functions follow their shape match \rightarrow case or destruct fixpoint \rightarrow induction or fix Choose convenient definitions

1 + n or S n better than n + 1

J.-F. Monin

Propositions and proofs

IIPS

J.-F. Monin

Propositions and proofs

More Logic

Propositions and proofs

J.-F. Monin

Propositions and proofs

More Logic

Inductive False: Prop := .

J.-F. Monin

Propositions and proofs

More Logic

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
 | ex_intro : forall x : A, P x -> ex P

A proof of $\exists x : A, P x$ is a pair made of

- a witness x
- a proof of P x

Selection of values

```
Inductive P248 : nat -> Prop :=
| is2 : P248 2
| is4 : P248 4
| is8 : P248 8.
```

Elimination principle? $P 2 \rightarrow P 4 \rightarrow P 8 \rightarrow \forall n, P248 n \rightarrow P n$

Remark

- (P248 2) has a proof it is like True
- similar for 2 and 4
- (P248 1) has no proof it is like False but not that easy

IIPS

J.-F. Monin

^oropositions and proofs