Introduction to Interactive Proof of Software

J.-F. Monin

Univ. Joseph Fourier and LIAMA-FORMES, Tsinghua Univ., Beijing

2012, Semester 1

Lecture 1

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Outline

Motivation

- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables

More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Outline

Motivation

- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivatio

- Why Formal Methods Matter Expected benefits from this
- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees
- Several constructors Polymorphic trees

Software Engineering among Engineering

Classical engineering: for bridges, airplane wings, electric or chemical devices

Engineering

- Heavy and expensive material
- Continuous phenomena

Software

- Cheap and easy to change
- Discrete phenomena

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from thi

course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Software is

- easy to type (to design?)
- easy to debug
- easy to introduce bugs while correcting bugs...

Easy then complex

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Analog systems

Changing a little bit the input or to the device makes the output change just a little bit

Mathematical model is continuous

Exhaustive testing easy: check the bounds

Discrete (or digital) systems

Changing a little bit the input or to the program makes the output completely different

Mathematical model is discrete

Exhaustive testing: impossible

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Example: Ariane 5, flight 501

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Let us see...

Firework (June 4, 1996)

Firework (detail)

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

A software problem

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Syntax: FORTRAN

DO 10 I = 1, 10 body of the loop

DO 10 I = 1. 10 body of the loop

Reported to make Mariner 1 lossed

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Quality engineering?

Means: reviews, documentation, processes

Why not, but...

Aircraft industry already implements the strongest quality processes

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Formal Methods

Prove that some piece of software behaves accordingly to a given specification

Boilds down to theorem proving: programs and specifications are represented by logical formulas

Hand waving not allowed

Better programming languages

Programming languages relying on solid foundations

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from th

expected benefits from the

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Understanding Formal Methods, J.F. Monin, Springer, 2003

- Static analysis
- Model Checking
- Deductive techniques
- Soundness: LCF architecture, proof terms (can be checked independantly)

Trade off

- pencil-paper / tool support
- automatization / generality

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter

Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

- Describe a model
- Explain it
- Reason about it
- Be clean and precise

Use math and logic... and make it funny!

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Now routinely taught in many highly ranked universities

- ► France: Paris, Grenoble, Lyon, Bordeaux, Strasbourg...
- Europe: UK, Italy,...
- USA: Harvard, Yale, U. Pennsyvania, MIT, Princeton...
- Australia
- China: Coq Summer School Tsinghua, Suzhou, Shanghai

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from thi

Organization of

he course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Spacecrafts, airplanes (Airbus, Boing)

Microsoft Intel French railways Telecom Operators Nuclear power plants Banks Cryptography

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Discover 3 aspects of Coq

- 1. Coq as a proof assistant
 - write precise and clear definitions
 - how to state meaningful theorems
 - how to prove them in a perfectly rigorous way this task is interactive: tedious parts can be discharged by the machine but creative part need input from a human.

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter

Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Discover 3 aspects of Coq

2. Coq as a challenging programming language

- many applications of Coq to problems arising in computer science
- even for mathematics: benefits of a computer scientist way of thinking

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter

Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Discover 3 aspects of Coq

3. Applications to reasoning about non-trivial programs

- lists, trees...
- data-structures implemented with pointers

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter

Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of rees

Trees with variables

More general trees

Learn basics on successful Formal Methods Introduction to Coq, one of the major proof assistants

Deep insights on programming languages Applications to the mathematical modeling of a simple sequential programming language

Introduction to functional programming

Understand rigorous foundations for software

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter

Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of rees

Trees with variables

More general trees

Outline

Motivation

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Lectures

- ▶ 11 × 3 × 45mn
- Theory + practice
- Laptop preferably with Linux (e.g. Ubuntu) with the following software:
 - coq-8.4 (package or http://coq.inria.fr/download
 - emacs + proofgeneral-coq (for professionals)
 - or coq-ide should be already included in coq-8.4

Project

- Will start around week 6
- important for evaluation

IIPS

J.-F. Monin

Motivatior

Why Formal Methods Matter Expected benefits from thi

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Scoring

Examinations

- Mid term exam (around week 4): 20%
- Final exam: 30 % Most scoring is on typical questions
- Project: 50%

Bonus

- homework
- challenging exercises

Results (from past experience)

several scores > 97

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Outline

Motivation

- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivatio

- Why Formal Methods Matter Expected benefits from this
- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees
- Several constructors Polymorphic trees

Firsts steps to Coq

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Key idea: abstraction

- take a concrete expression
- make some value (repeated or not) a parameter
- that's it

But far reaching

The abstract thing can be

- a data, a function, a program, a type
- a family of them
- subtle combinations

e.g. a program may depend on a previously abstracted value; programs may depend on pgms, or on types, or conversely.

IIPS

J.-F. Monin

Motivatior

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Statements

- Proofs: concrete data
- More powerful than Peano arithmetic: Goodstein sequences
- A way to compute proofs for given statements
- \Rightarrow Programming comes first

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

A strange programming language

- Without state!!
- Called functional programming

2 questions

- What can we do with it, in particular can we do as much as with states in particular can we simulate states
- is it realistic?
 - implementation: exists? efficient?
 - is it easy to use?

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

State is a burden for reasoning

Immutable values are much more convenient

All proof assistants are related to a functional programming language

In the case of Coq (and others e.g. Agda, Matita, Lego, Nuprl) the relationship is very tight

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Live Demo

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Very powerful types Everything has a type, even types We can compute on types and on values at the same time.

Examples: families of types.

- Example: n-tuples, with n = 1, 2... even 0.
- ... So it will become complex...

We start with a graphical syntax

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Types having finitely many values

The simplest are called an enumeration

Example

Red : color Orange : color Yellow : color Green : color Blue : color Indigo : color Violet : color

Warning: a value has only one type

Red_f : rgb

Green_f : rgb Blue_f: rgb

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

color : Set
rgb : Set

What is the type of Set?

Set : Type

What is the type of Type?

Type(i) : Type(i+1)

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Outline

Motivation

- Organization of the course
- Firsts steps to Coq

Graphical syntax

- Composition of trees
- Trees with variables

More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivatio

- Why Formal Methods Matter Expected benefits from this
- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees
- Several constructors Polymorphic trees

The horizontal bar means: MAKES

Red, Orange,... are called CONSTRUCTORS

At the same time we get

---- color Set

```
In order to save space, we use definitions.
E.g. (Coq syntax)
```

```
Definition R := Red.
```

means that R is definitionally the same as Red.

```
Definition co := color.
```

means that co is definitionally the same as color.

Hence

Red:color, Red:co, R:color and R:co are all the same judgement

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Graphical syntax

Definition O := Orange. Definition Y := Yellow. Definition G := Green. Definition B := Blue. Definition I := Indigo. Definition V := Violet.

— R. — Y — G — B — T — V co co co co co co CO Definition Rf := Red f. Definition Gf := Green f. **Definition** Bf := Blue f.

—— Rf	—— Gf	—— Bf
rgb	rgb	rgb

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Outline

Motivation

- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivatio

- Why Formal Methods Matter Expected benefits from this
- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees
- Several constructors Polymorphic trees

We know how to make (or construct) a value in color or in rgb.

Next issue: how to use a value

- use a given value
- use a (still) unknown value

IIPS

J.-F. Monin

Motivatior

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Making a 4-tuple of rgb

$$\frac{\text{rgb rgb rgb rgb}}{\text{tuple4}}\,\text{Mk4}$$

The constructor Mk4 makes a tuple4 from

- ► a rgb
- ► a rgb
- ▶ a rgb
- ▶ a rgb

At the same time we get

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Building blocks

Connecting them yields the concrete 4-tuple of rgb

$$\frac{ \underbrace{ \ \ \, rgb \ \ \, Gf \ \ \, mkf}_{rgb} \ \ \, Rf \ \ \, mgb \ \ \, rgb \ \ \, rgb \ \ \, Rf}_{Mk4}_{tuple4}$$

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Others trees for 4-tuples

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

As a building block

This is called an open tree

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

irsts steps to Coq

Graphical syntax

Composition of rees

Trees with variables

More general trees

Outline

Motivation

- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees

Trees with variables

More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Closed and open trees

The meaning (or value) of

is completely defined: this is called a closed tree.

In contrast, the meaning of the open tree

depends on x_2 and x_4 .

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

General shape: trees

Interpretation

- At positions 1, 2, 3, 4: types
- ▶ 1, 2, 3: inputs
- ► 4: output (or result)

Makes the output from the inputs

IIPS

J.-F. Monin

Motivatior

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Pluging trees

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of rees

Trees with variables

More general trees

The variables x_2 : rgb and x_4 : rgb make up the environment of this tree

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Outline

Motivation

- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables

More general trees Several constructors Polymorphic trees

IIPS

J.-F. Monin

Motivatio

- Why Formal Methods Matter Expected benefits from this
- Organization of the course
- Firsts steps to Coq
- Graphical syntax
- Composition of trees
- Trees with variables
- More general trees
- Several constructors Polymorphic trees

WRONG

4-tuple of rgb

4-tuple of color

Mk4 must be applied to arguments of a given type

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Solution 1: have different constructors

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Remark

Beyond Mk4rgb, Mk4co, Mk4t4, we can imagine hererogeneous 4-tuples, for instance:

Many possibilities... to be considered again later.

IIPS

J.-F. Monin

Motivatio

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Solution 2: only one constructor, but more general

A A A A gtuple4 Mk4

But where does A come from?

We want the previous tree for all A...

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

Solution 2: only one constructor, but more general

As usual, at the same time we get

----- gtuple4 Set

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of rees

Trees with variables

More general trees

Intermezzo: a shorthand for trees

And so on for t2, etc.

IIPS J.-F. Monin

$\frac{-}{\underbrace{\operatorname{Set}}^{\operatorname{rgb}} \operatorname{rgb}^{\operatorname{rgb}} \operatorname{rgb}^{\operatorname{rgb}} \operatorname{rgb}^{\operatorname{rgb}} \operatorname{rgb}^{\operatorname{rgb}} \operatorname{rgb}^{\operatorname{rgb}}}{\operatorname{gtuple4}} \operatorname{Mk4}$

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

General homogeneous 4-tuples

The type A can be many things beyond rgb

- ▶ gtuple4
- a complex tree

The trees u1, u2, u3, u4 and A can be open (they can depend on variables).

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees

1) Write trees for examples of 4-tuples of 4-tuples using tuple4 and gtuple4. Some of them, closed, some of them open E.g. $\langle \langle R, Y, B, B \rangle, \langle B, 0, x_4, R \rangle, \langle x_7, x_7, x_7, V \rangle, \langle V, Y, 0, R \rangle \rangle$

2) Trees for heterogeneous pairs (2-tuples) and for heterogeneous triples.

3) Trees for homogeneous n-tuples, where n can be 1, 2 or 3.

4) Trees for heterogeneous n-tuples, where n can be 0, 1 or 2.

IIPS

J.-F. Monin

Motivation

Why Formal Methods Matter Expected benefits from this course

Organization of the course

Firsts steps to Coq

Graphical syntax

Composition of trees

Trees with variables

More general trees