Outline

Introduction to trees and proofs

Jean-François Monin

2014-06-04

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Formal Methods

Prove that some piece of software behaves accordingly to a given specification

Boils down to theorem proving: programs and specifications are represented by logical formulas

Hand waving not allowed

Several complementary approaches and tools

In summary

Some industrial uses

- Describe a model
- ► Explain it
- Reason about it
- Be clean and precise

Use math and logic

Coq

A language

- Logic formulas
- Proofs
- Programs

A software proof assistant Very secure by architectural design

Spacecrafts, airplanes (Airbus, Boeing) Microsoft Intel French railways Telecom operators Nuclear power plants Banks Cryptography

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Formal models, proofs and programs

Based on a common structure: trees

- Can be implemented in many ways by software (pointers, arrays, ...)
- > This talk: use an intuitive and graphical presentation of trees

Developed by the same activity

which can be

- explicit: using an appropriate syntax for trees
- interactive: using commands for building trees step by step

Make a strong use of **types**

- Everything has a type, even types have a type
- Computations can be carried out on types as well

Basic building blocks for trees: rules

 $\frac{input_1 \quad input_2 \quad \dots \quad input_n}{output} \quad how to$

 $input_1, input_2, \dots, input_n$ and output are **types**

howto explains how to make an *output*, given *input*₁, *input*₂..., *input*_n

Basic building blocks for proof trees: rules

 $\frac{input_1 \quad input_2 \quad \dots \quad input_n}{output} how to$

 $input_1, input_2..., input_n$ and output are propositions $input_1, input_2..., input_n$ are hypotheses output is the conclusion

howto justifies how to make a proof of *output*, given proofs of *input*₁, *input*₂..., *input*_n

Proofs

Same constructs with another reading

Combining rules

Basic building blocks can be combined

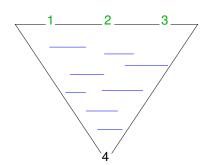
Just plug outputs to identical inputs

Some rules:

- ► 1 input comes from exactly 1 output
- ▶ an output can be plugged (used) 1, several or 0 times

Alltogether

We get 1 output from many inputs using a complex (composed) howto



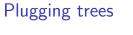
General shape: trees

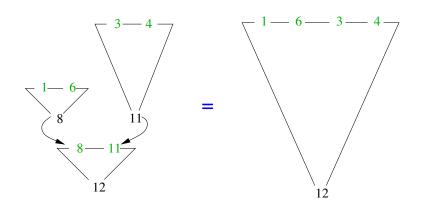
Interpretation

- ► At positions 1, 2, 3, 4: types
- ▶ 1, 2, 3: inputs
- ► 4: output (or result)

Makes the output from the inputs

Subtrees can have local additional inputs





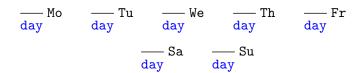
Simple examples with 0 input

---- monday — tuesday —— wednesday day day day day — friday ---- saturday ----- sunday day day day ------ white ------ black color color

The horizontal bar means: MAKES

Intermezzo: definitions

Definition Mo := monday. Definition Th := thursday. Definition Tu := tuesday. Definition Fr := friday. Definition We := wednesday. Definition Sa := saturday. Definition Su := sunday.



These trees are considered the same as the previous ones (top of previous slide)

Simple example with 4 identical inputs

Making a 4-tuple of days

 $\frac{\texttt{day} \ \texttt{day} \ \texttt{day} \ \texttt{day}}{\texttt{tuple4}} \, \texttt{Mk4day}$

Mk4day makes a tuple4 from

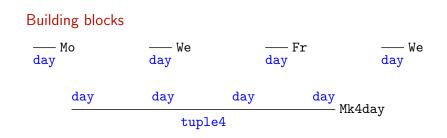
► a day

► a day

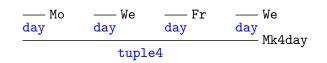
► a day

► a day

Plugging day into Mk4day

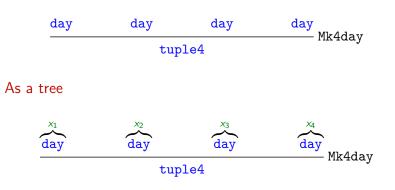


Connecting them yields the concrete 4-tuple of day



Another view on Mk4day

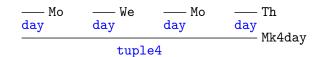
As a rule



This is called an open tree

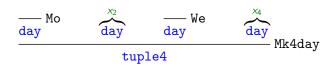
Closed and open trees

The meaning (or value) of



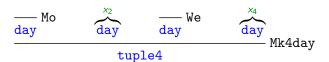
is completely defined: this is called a closed tree.

In contrast, the meaning of the open tree



Environment

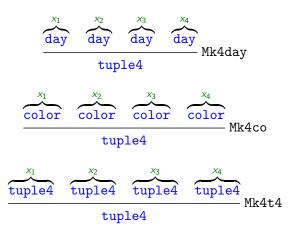
The meaning of the open tree



depends on x_2 and x_4 . It has a meaning for all trees plugged into x_2 and x_4 .

The variables x_2 : day and x_4 : day make up the environment of this tree

More 4-tuples



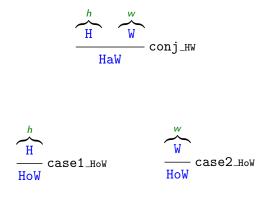
Examples with proofs

Consider basic propositions, e.g.:

Proposition	Intended meaning
Н	hot – the temperature is greater than 35 C
W	the glass contains water
С	the blackboard is clean
HaW	the temperature is greater than 35 C and the glass
	contains water
HoW	the temperature is greater than 35 C or the glass
	contains water

Given a proof h of H and a proof w of W, what is a proof of HaW? what is a proof of HoW?

Examples with proofs



To go farther: making propositions

Given 2 propositions P and Q, make a new proposition whose intended meaning is: P and Q hold together.

This proposition is noted $P \wedge Q$,

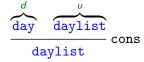
Note that it is itself a tree (at the level of propositions, not at the level of proofs)

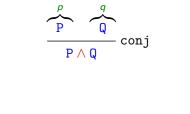
$$\frac{\overbrace{\text{Prop}}^{P} \qquad \overbrace{\text{Prop}}^{Q}}{\Pr } \text{and}$$

Similarly, $P \lor Q$ represents the tree:

$$\frac{\overbrace{\text{Prop}}^{P} \quad \overbrace{\text{Prop}}^{Q}}{Prop} \text{ or }$$

——— nil daylist





Decomposing, case analysis

- Given a 4-tuple *t*, extract its components
- Given a day *d*, provide a color depending on *d*
- Given a color *c*, provide a day depending on *c*
- Given a proof of $A \wedge B$, provide a proof of A
- Given a proof of A \vee B, provide a proof of B \vee A
 A proof of B \vee A is needed in each case

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Case analysis

Question Give a day for each possible value c in color

white black color

Example

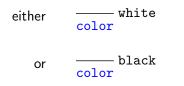
white maps to thursday, black maps to monday

Does it make sense? Subtle point!

Statement of the previous question

Give a day for each possible value in color

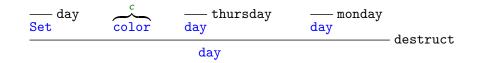
Here assume that all trees with color as output are (in this order)



The real story is more subtle

- Claim of exhaustivity: related to inductive types
- However, there are (infinitely) many trees which make a color
- However, they eventually reduce to one of the declared cases: related to computations and so-called strong normalization

Correct version of the previous example

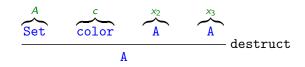


Building block of a case analysis

In this presentation, the order of contructors matters: white, black

The destruct construct is driven by 2 parameters

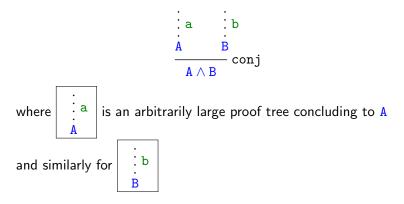
- the type of the value to be analyzed each enumerated type (e.g., color) comes automatically with its destruct construct, which should actually be written, e.g. destruct_{color}
- the type of the result (e.g., day)



Decomposing

Original question

Given a proof tree p of $A \wedge B$, provide a proof of AWe know that the only possible shape of p is

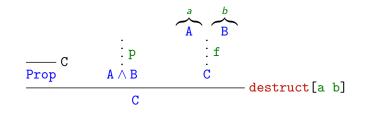


Decomposing

More general question

Given a proof tree p of $A \wedge B$, prove some proposition C using the two components building p.

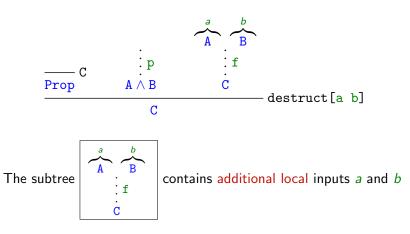
Rule

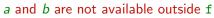


Reading

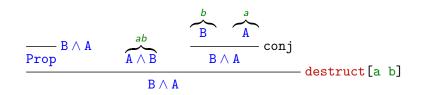
Let us prove C assuming *a*, a proof of A and *b*, a proof of B; as we have a proof of $A \land B$, we get a proof of C.

Warning





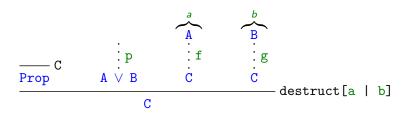
Example: a proof of $B \land A$ from $A \land B$



Shape of this proof tree

Case analysis and decomposition

For a disjunction A $\,\vee\,$ B, we have 2 cases, and each one has 1 input

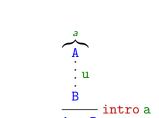


The hypothesis a is available only inside f The hypothesis b is available only inside g

Outline

Functions and implication

Introduction rules for implications/functions



— intro <mark>a</mark> $A \rightarrow B$

Warning: this *a* is available only in **u**

 \blacktriangleright a proof of $\mathbf{B} \lor \mathbf{A}$ from $\mathbf{A} \lor \mathbf{B}$

- ▶ a proof of A from $A \land B$
- ▶ a proof of $B \land B$ from $A \land B$

draw the case analysis and decomposition rules for 4-tuples

Implication

What is a function from day to color?

- ▶ open a new scope where *d* represents an arbitrary tree with day as output
- \blacktriangleright make a tree with output color from d
- ▶ in this subtree, *d* is available; but not outside

What is a proof that P implies Q?

- open a new scope with p an arbitrary proof of P (an arbitrary proof tree with P as the conclusion)
- \blacktriangleright make a proof tree with conclusion Q from p
- ▶ in this subtree, p is available; but not outside

It is just a function from P to Q

