1茟者
 5th Asian－Pacific Summer School on Formal Methods
 August 5－10，2013，Tsinghua University，Beijing，China

 Inductive data types（I）

 Inductive data types（I）}
jean－jacques．levy＠inria．fr
2013－8－6

http：／／sts．thss．tsinghua．edu．cn／Coaschool2013

回登㲅回

Notes adapted from
Notes a asapled from
Assia Mahboubi
$\underset{\substack{\text {（coa school 2010，Paris）and } \\ \text { Benijamin Pierce（software }}}{\text { four }}$
foundations course，UPenn）

Recap

$A \rightarrow B \equiv \forall x: A, B$

when
$x \notin \mathrm{FVar}(B)$

Recap

－definition of functions
－fun $\mathrm{x}=>\mathrm{M}$ notation for anonymous functions
－functional kernel of Coq is a typed λ－calculus
－all calculations are finite
－every Coq term has a unique normal form
－Enumerated（finite）types

Plan

今天 小菜一碟

－recap
－recursive types
－recursive definitions
－example 1：natural numbers
－example 2：day lists
－example 3：binary trees

Recap'

- Coq commands / keywords:
- Definition
- Check
- Compute
- Eval compute in
- Inductive
- match ... with
- Type
- simpl
- reflexivity
- discriminate
for functions definitions to show types
to show values
to show values
to define a new data type
for case analysis on constructors set of all types
to compute normal form
to conclude with trivial equality
to conclude with distinct constructors

PCF language (1/3)

- Terms
$M, N, P \quad::=\quad x, y, z, \ldots$
| $\lambda x . M$
$M(N)$
n
$M \otimes N$
ifz P then M else N Y

```
Example neq_on_days : monday <> tuesday.
Proof. discriminate. Qed.
```


PCF language (1/3)

- Terms

$::=$	x, y, z, \ldots	(variables)
\mid	$\lambda x \cdot M$	$(M$ as function of x)
\mid	$M(N)$	(M applied to N)
\mid	\underline{n}	(natural integer constant)
\mid	$M \otimes N$	(arithmetic op)
\mid	ifz P then M else N	(conditionnal)
\mid	Y	(recursion)

- Calculations ("reductions")

$$
\begin{aligned}
(\lambda x \cdot M)(N) & \rightarrow M\{x:=N\} \\
\underline{m} \otimes \underline{n} & \rightarrow \underline{m \otimes n} \\
\text { ifz } \underline{0} \text { then } M \text { else } N & \rightarrow M \\
\text { ifz } \underline{n+1} \text { then } M \text { else } N & \rightarrow N \\
Y f & \rightarrow f(Y f)
\end{aligned}
$$

PCF language (2/3)

```
Fact(3)
Fact = Y(\lambdaf.\lambdax. ifz x then 1 else }x\starf(x-1)
```

Thus following term:
(λ Fact.Fact(3))

$$
(Y(\lambda f . \lambda x . \text { ifz } x \text { then } 1 \text { else } x \star f(x-1)))
$$

$\bar{\square}$
10

$\xrightarrow{\square}$
 $\xlongequal{\text { Masextmen }}$

 $\longrightarrow>{ }^{\square}$

.
 4.an $\sim-$ \qquad

1. $\xlongequal[\square]{\square}$.
\qquad
\longrightarrow
 $\xrightarrow[\square]{\square}$ —. \longrightarrow
 $\square \mathrm{vanmanon}$

\qquad

PCF language (3/3)

- Some computations terminate, but not all. (normalization, but not strong normalization)

Let $F=\lambda f . \lambda x$. if $z x$ then 1 else $x \star f(x-1)$. Then
(λ Fact. Fact(3)) (YF) $\rightarrow \longrightarrow \ldots \ldots \rightarrow 6$
$\rightarrow(\lambda$ Fact. Fact (3) $)(F(Y F))$
$\rightarrow(\lambda$ Fact. Fact $(3))(F(F(Y F)))$
\rightarrow...
$\rightarrow(\lambda$ Fact. $\operatorname{Fact}(3))\left(F^{n}(Y F)\right)$
$\rightarrow \cdots$

- Quite common in usual programming languages
- In Coq, we do have strong normalization.

PCF language (3/3)

- In Coq, we do have strong normalization.

Computability

- Any most general model of computation has non terminating programs.
[Kleene, 1950]

- Coq cannot express all computable functions
- but the power of Coq typing allows many of them

Recursive types (1/7)

```
Inductive nat : Set :=
    | 0 : nat
    | S : nat -> nat.
Inductive daylist : Type :=
    | nil : daylist
    | cons : day -> daylist -> daylist.
```

Base case constructors do not feature self-reference to the type. Recursive case constructors do.

Definition weekend_days := cons saturday (cons sunday nil)).

Recursive types (2/7)

- $0,1=S(0), 2=S(S(0), 3=S(S(S(0), \ldots$ (unary representation)

- cons tuesday (cons wednesday (cons friday (cons sunday nil)))

Recursive types (3/7)

... Coq language can handle notations for infix operators.

Notation "x :: l" := (cons x l) (at level 60, right associativity)
Notation "[]" := nil.
Notation "[x , .. , y]" := (cons x .. (cons y nil) ..).
Notation "x + y" := (plus x y)
(at level 50, left associativity).
Therefore weekend_days can be also written:
Definition weekend_days := saturday :: sunday :: nil.
or

Definition weekend_days := [saturday, sunday].

Recursive types (4/7)

... with recursive definitions of functions.

```
Fixpoint length (l:daylist) {struct l} : nat :=
    match l with
    | nil => 0
    d :: l' => S (length l')
    end.
```

Fixpoint repeat (d:day) (count:nat) \{struct count\} : daylist :=
match count with
| 0 => nil
| S count' => d : : (repeat d count')
end

The decreasing argument is precised as hint for termination
to insure strong normalization

Recursive types (5/7)

... with recursive definitions of functions
Fixpoint app (l1 12 : daylist) \{struct l1\} : daylist := match 11 with
| nil => 12
| d :: t => d : : (app t 12)
end.
Notation "x ++ y" := (app x y) (right associativity, at level 60)

Example test_app1: [monday,tuesday,wednesday] ++ [thursday,friday] = [monday, tuesday, wednesday, thursday, friday].
Proof. reflexivity. Qed.
Example test_app2: nil ++ [monday,wednesday] = [monday,wednesday]. Proof. reflexivity. Qed.

Example test_app3: [monday, wednesday] ++ nil = [monday,wednesday]. Proof. reflexivity. Qed

Recursive types (5/7)
... with recursive definitions of functions

Fixpoint app (l1 12 : daylist) \{struct l1\} : daylist := match 11 with
| nil => 12
| d : : t \Rightarrow d : : (app t 12)
end.
Notation "x ++ y" := (app x y)
(right associativity, at level 60).
Example test_app1: [monday,tuesday,wednesday] ++ [thursday,friday] = [monday,tuesday, wednesday,thursday,friday].
Proof. reflexivity. Qed.
Example test_app2: nil ++ [monday,wednesday] = [monday,wednesday]. Proof. reflexivity. Qed.

Example test_app3: [monday,wednesday] ++ nil = [monday,wednesday]. Proof. reflexivity. Qed.

Recursive types (5/7)

... with recursive definitions of functions.

```
Fixpoint app (l1 l2 : daylist) {struct l1} : daylist :=
    match l1 with
    | nil => l2
    | d :: t => d :: (app t l2)
    end.
```

Notation "x ++ y" := (app x y)
(right associativity, at level 60)
Example test_app1: [monday,tuesday,wednesday] ++ [thursday,friday] =
[monday, tuesday, wednesday, thursday, friday].
Proof. reflexivity. Qed.
Example test_app2: nil ++ [monday,wednesday] = [monday,wednesday].
Proof. reflexivity. Qed.
Example test_app3: [monday,wednesday] ++ nil = [monday,wednesday].
Proof. reflexivity. Qed

\qquad

Recursive types (6/7)
... with recursive definitions of functions.
Definition bag := daylist.
Definition eq_day (d:day)(d':day) : bool := match d, d' with
| monday, monday | tuesday, tuesday | wednesday, wednesday => true
| thursday, thursday | friday, friday \Rightarrow true
| saturday, saturday \Rightarrow true
| sunday, sunday $=>$ true
| _ , _ => false
end.

Fixpoint count (d:day) (s:bag) \{struct s\} : nat := match s with

$$
\text { | nil => } 0
$$

| h : : t => if eq_day $d \mathrm{~h}$ then $1+$ count $d \mathrm{t}$ else count $\mathrm{d} t$ end.

Recursive types (7/7)

Exercice 4 Show following propositions:
Example test_count1: count sunday [monday, sunday, friday, sunday] $=2$ Example test_count2: count sunday [monday, tuesday, friday, friday] $=0$

Exercice 5 Define union of two bags of days.
Exercice 6 Define add of one day to a bag of days.
Exercice 7 Define remove_one day from a bag of days.
Exercice 8 Define remove_all occurences of a day from a bag of days.

Exercice 9 Define member to test if a day is member of a bag of days.

Exercice 10 Define subset to test if a bag of days is a subset of another bag of days.

Remark on constructors

- Constructors are injective:

Lemma inj_succ : forall $\mathrm{nm}, \mathrm{S} \mathrm{n}=\mathrm{S} \mathrm{m} \rightarrow \mathrm{n}=\mathrm{m}$.
Proof.
intros n m H.
injection H .
easy.
Qed.

- Constructors are all distinct.

のac

Recap

- Coq commands / keywords:
- Definition for functions definitions
_ Check to show types
- Compute
- Eval compute in
to show values
- Inductive
- match ... with to define a new data type for case analysis on constructors
- Type set of all types
- simpl
- reflexivity
_ discriminate
- Fixpoint
- struct
to compute normal form
to conclude with trivial equality
to conclude with distinct constructors for recursive functions definitions to hint for termination

Other recursive datatypes (2/2)

Counting leaves and nodes in binary trees.
Fixpoint count_leaves (t : natBinTree) \{struct t\} : nat := match t with
| leaf n => 1
| node n t1 t2 => (count_leaves t1) + (count_leaves t2) end.

Fixpoint count_nodes (t : natBinTree) \{struct t\} : nat := match t with
| leaf n => 0
| node n t1 t2 => 1 + (count_nodes t1) + (count_nodes t2) end.

Other recursive datatypes (1/2)
Another recursive type: binary trees.
Inductive natBinTree : Type :=
| Leaf : nat -> natBinTree
| Node : nat -> natBinTree -> natBinTree -> natBinTree.

Abstract Syntax Trees for terms.
Inductive term : Set :=
| Zero : term
| One : term
| Plus : term -> term -> term
| Mult : term -> term -> term.

