
Inductive data types (I)
jean-jacques.levy@inria.fr

2013-8-6

http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Notes adapted from
Assia Mahboubi

(coq school 2010, Paris) and
Benjamin Pierce (software

foundations course, UPenn)

Recap

when

x 62 FVar(B)

A ! B ⌘ 8x :A, B

• definition of functions
• fun x => M notation for anonymous functions

• functional kernel of Coq is a typed λ-calculus
• all calculations are finite
• every Coq term has a unique normal form
• Enumerated (finite) types

Recap

• recap

• recursive types

• recursive definitions

• example 1: natural numbers

• example 2: day lists

• example 3: binary trees

Plan

�� ����

Recap’
• Coq commands / keywords:

- Definition for functions definitions
- Check to show types
- Compute to show values
- Eval compute in to show values
- Inductive to define a new data type
- match ... with for case analysis on constructors
- Type set of all types
- simpl to compute normal form
- reflexivity to conclude with trivial equality

- discriminate to conclude with distinct constructors

Example neq_on_days : monday <> tuesday.
Proof. discriminate. Qed.

typed λ-calculus
with recursion
(and a bit of arithmetic)

• Terms
M, N, P ::= x, y, z, ... (variables)

| λx.M (M as function of x)

| M (N) (M applied to N)

| n (natural integer constant)

| M � N (arithmetic op)

| ifz P then M else N (conditionnal)

| Y (recursion)

PCF language (1/3)
[Plotkin 1975]

• Terms
M, N, P ::= x, y, z, ... (variables)

| λx.M (M as function of x)

| M (N) (M applied to N)

| n (natural integer constant)

| M � N (arithmetic op)

| ifz P then M else N (conditionnal)

| Y (recursion)

PCF language (1/3)

• Calculations (“reductions”)

(�x .M)(N) M{x := N}

m � n m�n

ifz 0 then M else N M

ifz n+1 then M else N N

Yf f (Yf)

[Plotkin 1975]

 Thus following term:

Fact(3)

Fact = Y (�f .�x . ifz x then 1 else x � f (x � 1))

(� Fact . Fact(3))

(Y (�f .�x . ifz x then 1 else x ? f (x � 1)))

PCF language (2/3)

PCF language (3/3)

• In Coq, we do have strong normalization.

• Some computations terminate, but not all.
 (normalization, but not strong normalization)

• Quite common in usual programming languages

Let F = �f .�x . ifz x then 1 else x ? f (x � 1). Then

(� Fact . Fact(3)) (YF)

(� Fact . Fact(3)) (F (YF))

(� Fact . Fact(3)) (F (F (YF)))

· · ·
(� Fact . Fact(3)) (F n(YF))

· · ·

· · · · · · 6

PCF language (3/3)

• In Coq, we do have strong normalization.

Computability

• but the power of Coq typing allows many of them

• Any most general model of computation has
non terminating programs.
 [Kleene, 1950]

• Coq cannot express all computable functions

Recursive
data types

Recursive types (1/6)

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

Inductive daylist : Type :=
| nil : daylist
| cons : day -> daylist -> daylist.

Base case constructors do not feature self-reference to the type.

Recursive case constructors do.

Definition weekend_days := cons saturday (cons sunday nil)).

Recursive types (1/7)

Recursive types (2/7)
• 0, 1 = S(0), 2 = S(S(0), 3 = S(S(S(0),
 (unary representation)

tuesday wednesday

friday sunday

• cons tuesday (cons wednesday
 (cons friday (cons sunday nil)))

Recursive types (2/6)

... Coq language can handle notations for infix operators.

Notation "x :: l" := (cons x l) (at level 60, right associativity).

Notation "[]" := nil.

Notation "[x , .. , y]" := (cons x .. (cons y nil) ..).

Notation "x + y" := (plus x y)

(at level 50, left associativity).

Therefore weekend days can be also written:

Definition weekend_days := saturday :: sunday :: nil.

or

Definition weekend_days := [saturday, sunday].

Recursive types (3/7)

saturday sunday

Recursive types (3/6)

... with recursive definitions of functions.

Fixpoint length (l:daylist) {struct l} : nat :=
match l with
| nil => O
| d :: l’ => S (length l’)
end.

Fixpoint repeat (d:day) (count:nat) {struct count} : daylist :=
match count with
| O => nil
| S count’ => d :: (repeat d count’)
end.

The decreasing argument is precised as hint for termination.

Recursive types (4/7)

to insure strong normalization

Recursive types (4/6)

... with recursive definitions of functions.

Fixpoint app (l1 l2 : daylist) {struct l1} : daylist :=
match l1 with
| nil => l2
| d :: t => d :: (app t l2)
end.

Notation "x ++ y" := (app x y)

(right associativity, at level 60).

Example test_app1: [monday,tuesday,wednesday] ++ [thursday,friday] =

[monday,tuesday,wednesday,thursday,friday].

Proof. reflexivity. Qed.

Example test_app2: nil ++ [monday,wednesday] = [monday,wednesday].

Proof. reflexivity. Qed.

Example test_app3: [monday,wednesday] ++ nil = [monday,wednesday].

Proof. reflexivity. Qed.

Recursive types (5/7)

d1 d2 d3 d4 d5++

Recursive types (4/6)

... with recursive definitions of functions.

Fixpoint app (l1 l2 : daylist) {struct l1} : daylist :=
match l1 with
| nil => l2
| d :: t => d :: (app t l2)
end.

Notation "x ++ y" := (app x y)

(right associativity, at level 60).

Example test_app1: [monday,tuesday,wednesday] ++ [thursday,friday] =

[monday,tuesday,wednesday,thursday,friday].

Proof. reflexivity. Qed.

Example test_app2: nil ++ [monday,wednesday] = [monday,wednesday].

Proof. reflexivity. Qed.

Example test_app3: [monday,wednesday] ++ nil = [monday,wednesday].

Proof. reflexivity. Qed.

Recursive types (5/7)

Recursive types (4/6)

... with recursive definitions of functions.

Fixpoint app (l1 l2 : daylist) {struct l1} : daylist :=
match l1 with
| nil => l2
| d :: t => d :: (app t l2)
end.

Notation "x ++ y" := (app x y)

(right associativity, at level 60).

Example test_app1: [monday,tuesday,wednesday] ++ [thursday,friday] =

[monday,tuesday,wednesday,thursday,friday].

Proof. reflexivity. Qed.

Example test_app2: nil ++ [monday,wednesday] = [monday,wednesday].

Proof. reflexivity. Qed.

Example test_app3: [monday,wednesday] ++ nil = [monday,wednesday].

Proof. reflexivity. Qed.

Recursive types (5/7)

d1 d2 d3 d4 d5

Recursive types (5/6)

... with recursive definitions of functions.

Definition bag := daylist.

Definition eq_day (d:day)(d’:day) : bool :=
match d, d’ with

| monday, monday | tuesday, tuesday | wednesday, wednesday => true

| thursday, thursday | friday, friday => true

| saturday, saturday => true

| sunday, sunday => true

| _ , _ => false

end.

Fixpoint count (d:day) (s:bag) {struct s} : nat :=
match s with
| nil => 0
| h :: t => if eq_day d h then 1 + count d t else count d t
end.

Recursive types (6/7)

Recursive types (6/6)

Exercice 4 Show following propositions:

Example test_count1: count sunday [monday, sunday, friday, sunday] = 2.

Example test_count2: count sunday [monday, tuesday, friday, friday] = 0.

Exercice 5 Define union of two bags of days.

Exercice 6 Define add of one day to a bag of days.

Exercice 7 Define remove one day from a bag of days.

Exercice 8 Define remove all occurences of a day from a bag of

days.

Exercice 9 Define member to test if a day is member of a bag of

days.

Exercice 10 Define subset to test if a bag of days is a subset of

another bag of days.

Recursive types (7/7)

Remark on constructors

I
Constructors are injective:

Lemma inj_succ : forall n m, S n = S m -> n = m.
Proof.
intros n m H.
injection H.
easy.

Qed.

I
Constructors are all distinct.

Remark on constructors

Recap
• Coq commands / keywords:

- Definition for functions definitions
- Check to show types
- Compute to show values
- Eval compute in to show values
- Inductive to define a new data type
- match ... with for case analysis on constructors
- Type set of all types
- simpl to compute normal form
- reflexivity to conclude with trivial equality

- discriminate to conclude with distinct constructors
- Fixpoint for recursive functions definitions
- struct to hint for termination

Recursive types and structural induction (8/9)

Another recursive type: binary trees.

Inductive natBinTree : Type :=
| Leaf : nat -> natBinTree
| Node : nat -> natBinTree -> natBinTree -> natBinTree.

Abstract Syntax Trees for terms.

Inductive term : Set :=
| Zero : term
| One : term
| Plus : term -> term -> term
| Mult : term -> term -> term.

Other recursive datatypes (1/2)

Recursive types and structural induction (9/9)

Counting leaves and nodes in binary trees.

Fixpoint count_leaves (t : natBinTree) {struct t} : nat :=
match t with
| leaf n => 1
| node n t1 t2 => (count_leaves t1) + (count_leaves t2)
end.

Fixpoint count_nodes (t : natBinTree) {struct t} : nat :=
match t with
| leaf n => 0
| node n t1 t2 => 1 + (count_nodes t1) + (count_nodes t2)
end.

Exercice 13 Show

Lemma leaves_and_nodes : forall t : natBinTree,
count_leaves t = 1 + count_nodes t.

Other recursive datatypes (2/2)

