
Functions
jean-jacques.levy@inria.fr

2013-8-6

http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Notes adapted from
Assia Mahboubi 

(coq school 2010, Paris) and 
Benjamin Pierce (software 

foundations course, UPenn)

• notation for functions in Coq

• λ-notation

• λ-calculus

• enumerated types

• pattern-matching on constructors

Plan

Functions in Coq

definitions (1/3)

Definition plusOne (x: nat) : nat := x + 1.
Check plusOne.

Definition plusOne := fun (x: nat) => x + 1.
Check plusOne.

Definition plusOne := fun x => x + 1.
Check plusOne.

Definition plusTwo (x: nat) : nat := x + 2.

Definition twice := fun f => fun (x:nat) => f (f x).

Compute twice plusTwo 3.

Compute (fun x:nat => x + 1) 3.

three equivalent definitions:

higher-order definitions:



lambda-terms (2/3)

• Coq tries to guess the type, but could fail.
(type inference)

• but always possible to give explicit types.

• Types can be higher-order 
(see later with polymorphic functions)

• Types can also depend on values 
(see later the constructor cases)

lambda-terms (3/3)

• Coq treats with an extention of the λ-calculus with 
inductive data types. It’s a small programming language.

• the typed λ-calculus is used as a trick to make a 
correspondence between proofs and λ-terms and propositions 
and types for constructive logics (see other lectures).
(Curry-Howard correspondence)

Recap
• Coq commands / keywords:

- Definition       for functions definitions
- Check            to show types
- Compute          to show values

constructive logic



constructive logic
• An example of a non constructive proof:

Theorem
There exists 2 irrational numbers a and b
such that ab is rational.

Proof
We know that

p
2 is not rational. Take a = b =

p
2.

- ab is rational. OK!

- ab is irrational. Then let c = ab.
Then cb = (ab)b = ab⇥b = a2 = 2. Done!

QED

constructive logic

• Coq is constructive logic

Propositions always exist with their (witness) proofs.

h : P in environment means h is witness proof of P .

• An example of a non constructive proof:

Theorem
There exists 2 irrational numbers a and b
such that ab is rational.

Proof
We know that

p
2 is not rational. Take a = b =

p
2.

- ab is rational. OK!

- ab is irrational. Then let c = ab.
Then cb = (ab)b = ab⇥b = a2 = 2. Done!

QED

constructive logic

• Coq is constructive logic

Propositions always exist with their (witness) proofs.

h : P in environment means h is witness proof of P .

λ-notation



Functional calculus (1/4)

(�x . x + 1)3 3 + 1 4

(�x . 2 ⇤ x + 2)4 2 ⇤ 4 + 2 8 + 2 10

(�f .f 3)(�x . x + 2) (�x . x + 2)3 3 + 2 5

(�x .�y .x + y)3 2 =

((�x .�y .x + y)3)2 (�y .3 + y)2 3 + 2 5

(�f .�x .f (f x))(�x .x + 2) ...

(�f .�x .f (f x))(�x . x + 2) ...

Functional calculus (2/4)

(�f .�x .f (f x))(�x . x + 2) ...





 



Functional calculus (2/4)





 

 











Functional calculus (3/4)
(�f .�x .f (f x))(�x .x + 2)3 ...







 































(�f .�x .f (f x))((�y .�x .x + y)2)3 ...

Functional calculus (4/4)

• computing with functions may be long and complex

• but yield a unique result
(Church-Rosser property)

λ-calculus

Thought  of   Tuesday 2013-8-6
• computer science  =  programs  =  texts  in  ASCII

• mathematics  
 =  greek letters 
 + symbols

 (λ η σ ρ π α β γ δ Δ - 
+ / ⊆  ∩� �)



• lambda-terms

M, N, P ::= x, y, z, ... (variables)

| λx.M (M as function of x)

| M ( N ) (M applied to N)

• Computations “reductions”

(�x .M)(N) M{x := N}

Pure  lambda-calculus

• Examples

Examples of reductions (1/2)

(�f .f N)(�x .x) (�x .x)N N

(�x .x)N N

(�x . x x)(�x .xN) (�x .xN)(�x .xN) (�x .xN)N NN

Let I = �x .x , we have I (x) = x for all x .

Therefore I (I ) = I . [Church 41]

(name of bound variable is meaningless)(�x .x N)(�y .y) (�y .y)N N

(�x .x)(�x .x) �x .x

Examples of reductions (2/2)

• Examples

(�x . x x)(�x .xN) (�x .xN)(�x .xN) (�x .xN)N NN

(�x . x x)(�x . x x) (�x . x x)(�x . x x) · · ·

• Possible to loop inside applications of functions ... 

f (Yf ) f (f (Yf )) · · · f n(Yf ) · · ·

Yf = (�x .f (xx))(�x .f (xx)) f ((�x .f (xx))(�x .f (xx))) = f (Yf )

• Every computable function can be computed by a λ-term

                 Church’s thesis.[Church 41]

Fathers of computability

Alonzo Church

Stephen Kleene



The Giants of computability
Hilbert Gödel Church Turing

Kleene

Post
von Neumann

Curry

typed λ-calculus

• In Coq, all λ-terms are typed

Typed  lambda-calculus (1/5)

(�x . x + 1)3 3 + 1 4

(�x . 2 ⇤ x + 2)4 2 ⇤ 4 + 2 8 + 2 10

(�f .f 3)(�x . x + 2) (�x . x + 2)3 3 + 2 5

(�x .�y .x + y)3 2 =

((�x .�y .x + y)3)2 (�y .3 + y)2 (�y .3 + y)2 3 + 2 5

(�f .�x .f (f x))(�x .x + 2) ...

• In Coq, following λ-terms are typable

these terms are allowed

• In Coq, all λ-terms have only finite reductions
(strong normalization property)

Typed  lambda-calculus (2/5)

• In Coq, all λ-terms have a (unique) normal form.

these terms are not allowed

• In Coq, the following λ-terms are not typable

(� Fact . Fact(3))

( (�Y .Y (�f .�x . ifz x then 1 else x � f (x � 1)))

(�f .(�x .f (xx))(�x .f (xx))) )

(�x . x x)(�x . x x) 2 + (�x . x + 1) 2(3)



• In Coq, all λ-terms have only finite reductions
(strong normalization property)

Typed  lambda-calculus (2/5)

• In Coq, all λ-terms have a (unique) normal form.

• The Coq laws for typing terms are quite complex
[Coquand-Huet 1985]

Typed  lambda-calculus (3/5)

• They are almost the following (1st-order) rules: 

1 : nat

x : nat implies x + 1 : nat

(�x . x + 1) : nat ! nat

3 : nat

(�x . x + 1)3 : nat

Example

Basic types: N (nat), B (bool), Z (int), . . .

If M has type � when x has type ↵, then (�x .M) has type ↵ ! �

If M has type ↵ ! � and if N has type ↵, then M(N) has type �

Typed  lambda-calculus (4/5)
Example

x : nat ` x : nat

x : nat ` x : nat ` 1 : nat
x : nat ` x + 1 : nat

x : nat ` x + 1 : nat
` (�x . x + 1) : nat ! nat

` (�x . x + 1) : nat ! nat ` 3 : nat
` (�x . x + 1)3 : nat

Exercise Write it as a proof tree [aka Monin’s lectures].

Typed  lambda-calculus (5/5)
Example  with currying and function as result

x : nat ` x : nat
x : nat, y : nat ` x : nat

y : nat ` y : nat
x : nat, y : nat ` y : nat

x : nat, y : nat ` x : nat x : nat, y : nat ` y : nat
x : nat, y : nat ` x + y : nat

x : nat, y : nat ` x + y : nat
x : nat ` (�y .x + y) : nat ! nat

x : nat ` (�y .x + y) : nat ! nat
` (�x .�y .x + y) : nat ! nat ! nat

` (�x .�y .x + y) : nat ! nat ! nat ` 2 : nat
` ((�x .�y .x + y)2) : nat ! nat

` ((�x .�y .x + y)2) : nat ! nat ` 3 : nat
` ((�x .�y .x + y)2 3) : nat



Enumerated types

Enumerated types (1/3)

Enumerated types are types which list and name exhaustively their

inhabitants.

Inductive bool : Set := true : bool | false : bool.

Set is deprecated. Now use Type.

Inductive color : Type := black : color | white : color.

Enumeratives types (1/5)

Enumerated types (2/3)

Enumerated types are types which list and name exhaustively their

inhabitants.

A new enumerated type:

Inductive day : Type :=

| monday | tuesday | wednesday |

| thursday | friday | saturday | sunday : day.

Check tuesday.
tuesday : day

Labels refer to distinct elements.

Enumeratives types (2/5)

Enumerated types (2/3)

Enumerated types are types which list and name exhaustively their

inhabitants.

A new enumerated type:

Inductive day : Type :=

| monday | tuesday | wednesday |

| thursday | friday | saturday | sunday : day.

Check tuesday.
tuesday : day

Labels refer to distinct elements.

Enumeratives types (2/5)



Enumerated types (2/2)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.

Eval compute in (next_weekday friday).
= monday
: day

Enumeratives types (3/5)

Enumerated types (2/2)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.

Eval compute in (next_weekday friday).
= monday
: day

Enumeratives types (3/5)

Enumerated types (2/2)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) :=
match b with true => false | false => true end.

Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.

Eval compute in (next_weekday friday).
= monday
: day

Enumeratives types (3/5)

Recap
• Coq commands / keywords:

- Definition       for functions definitions
- Check            to show types
- Compute          to show values
- Eval compute in  to show values
- Inductive        to define a new data type
-  Type             set of all types
- match ... with   for case analysis on constructors



Simplification and Reflexivity (1/2)

Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with true => b2 | false => false end.

Definition orb (b1:bool) (b2:bool) : bool :=
match b1 with true => true | false => b2 end.

Example test_orb1: (orb true false) = true.
orb true false = true

Proof.
simpl.
true = true

reflexivity.
Qed.
test orb1 is defined

Simplification and reflexivity (3/4)Enumeratives types (4/5)

Simplification and Reflexivity (1/2)

Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with true => b2 | false => false end.

Definition orb (b1:bool) (b2:bool) : bool :=
match b1 with true => true | false => b2 end.

Example test_orb1: (orb true false) = true.
orb true false = true

Proof.
simpl.
true = true

reflexivity.
Qed.
test orb1 is defined

Simplification and reflexivity (3/4)Enumeratives types (4/5)

Recap
• Coq commands / keywords:

- Definition       for functions definitions
- Check            to show types
- Compute          to show values
- Eval compute in  to show values
- Inductive        to define a new data type
- match ... with   for case analysis on constructors
-  Type             set of all types
-  simpl            to compute normal form
-  reflexivity      to conclude with trivial equality

Inductive types (3/4)

Exercise  Give definitions of predicates work_day and 
weekend_day.

Exercise  Give definitions of function black_if_workday and 
white for weekends.

Enumeratives types (5/5)


