

Functions

jean-jacques.levy@inria.fr 2013-8-6

http://sts.thss.tsinghua.edu.cn/Coqschool2013

Notes adapted from Assia Mahboubi (coq school 2010, Paris) and Benjamin Pierce (software foundations course, UPenn)

Plan

- notation for functions in Coq
- λ-notation
- λ-calculus
- · enumerated types
- pattern-matching on constructors

INRIA MICROSOFT RESEARCH

three equivalent definitions:

Definition plusOne (x: nat) : nat := x + 1. Check plusOne.

Functions in Coq

ENTRE DE RECHERCHE COMMUN

Definition plusOne := fun (x: nat) => x + 1. Check plusOne.

Definition plusOne := fun x => x + 1. Check plusOne.

Compute (fun x:nat => x + 1) 3.

higher-order definitions:

Definition plusTwo (x: nat) : nat := x + 2.

Definition twice := fun f => fun (x:nat) => f (f x).

Compute twice plusTwo 3.

lambda-terms (2/3)

- Coq tries to guess the type, but could fail. (type inference)
- but always possible to give explicit types.
- Types can be higher-order (see later with polymorphic functions)
- Types can also depend on values (see later the constructor cases)

Recap

- Coq commands / keywords:
- Definition
- Check
- Compute
- for functions definitions to show types to show values

lambda-terms (3/3)

• Coq treats with an extention of the λ -calculus with inductive data types. It's a small programming language.

• the typed λ -calculus is used as a trick to make a correspondence between proofs and λ -terms and propositions and types for constructive logics (see other lectures). (Curry-Howard correspondence)

constructive logic

constructive logic

• An example of a non constructive proof:

Theorem

There exists 2 irrational numbers a and b such that a^b is rational.

Proof

We know that $\sqrt{2}$ is not rational. Take $a = b = \sqrt{2}$.

- *a^b* is rational. OK!

- a^b is irrational. Then let $c = a^b$. Then $c^b = (a^b)^b = a^{b \times b} = a^2 = 2$. Done!

QED

constructive logic

• An example of a non constructive proof:

Theorem

There exists 2 irrational numbers a and b such that a^b is rational.

Proof

We know that $\sqrt{2}$ is not rational. Take $a = b = \sqrt{2}$.

- *a^b* is rational. OK!

- a^b is irrational. Then let $c = a^b$. Then $c^b = (a^b)^b = a^{b \times b} = a^2 = 2$. Done!

QED

Coq is constructive logic

Propositions always exist with their (witness) proofs. h: P in environment means h is witness proof of P.

constructive logic

Coq is constructive logic

Propositions always exist with their (witness) proofs. h: P in environment means h is witness proof of P.

Functional calculus (1/4)

 $(\lambda f.\lambda x.f(f x))(\lambda x.x+2) \longrightarrow \dots$

Functional calculus (2/4)

 $(\lambda f.\lambda x.f(f x))(\lambda x.x+2) \longrightarrow \dots$

Functional calculus (2/4)

 $(\lambda f.\lambda x.f(f x))(\lambda x.x+2) \longrightarrow \dots$

Functional calculus (3/4)

Functional calculus (4/4)

• computing with functions may be long and complex

• but yield a unique result (Church-Rosser property)

Thought of Tuesday 2013-8-6

• computer science = programs = texts in ASCII

#define _ -F<00 || --F-00--; int F=00,00=00; main(){F_00();printf("%1.3f\n", 4.*-F/00/00);}F_00() £ _____ ------.-.-.-. _-_-------_-_----_____ _____ }

mathematics

- = greek letters
- + symbols

 $\begin{array}{c} (\lambda \ \eta \ \sigma \rho \pi \alpha \beta \gamma \delta \Delta - \\ + / \subseteq \cap \vdash \models) \end{array}$

Pure lambda-calculus

Examples of reductions (1/2)

• Examples

 $(\lambda x. x x)(\lambda x. xN) \longrightarrow (\lambda x. xN)(\lambda x. xN) \longrightarrow (\lambda x. xN)N \longrightarrow NN$

 $(\lambda x. x x)(\lambda x. x x) \longrightarrow (\lambda x. x x)(\lambda x. x x) \longrightarrow \cdots$

• Possible to loop inside applications of functions ...

$$Y_f = (\lambda x.f(xx))(\lambda x.f(xx)) \longrightarrow f((\lambda x.f(xx))(\lambda x.f(xx))) = f(Y_f)$$
$$f(Y_f) \longrightarrow f(f(Y_f)) \longrightarrow \cdots \longrightarrow f^n(Y_f) \longrightarrow \cdots$$

 \bullet Every computable function can be computed by a $\lambda\text{-term}$

Church's thesis. [Church 41]

Fathers of computability

Alonzo Church

Stephen Kleene

Typed lambda-calculus (1/5)

- In Coq, all λ -terms are typed
- In Coq, following λ-terms are typable

 $(\lambda x. x + 1)3 \longrightarrow 3 + 1 \longrightarrow 4$ $(\lambda x. 2 * x + 2)4 \longrightarrow 2 * 4 + 2 \longrightarrow 8 + 2 \longrightarrow 10$ $(\lambda f. f3)(\lambda x. x + 2) \longrightarrow (\lambda x. x + 2)3 \longrightarrow 3 + 2 \longrightarrow 5$ $(\lambda x. \lambda y. x + y)3 2 =$ $((\lambda x. \lambda y. x + y)3)2 \longrightarrow (\lambda y. 3 + y)2 \longrightarrow (\lambda y. 3 + y)2 \longrightarrow 3 + 2 \longrightarrow 5$

 $(\lambda f.\lambda x.f(f x))(\lambda x.x+2) \longrightarrow \dots$

these terms are allowed

Typed lambda-calculus (2/5)

- In Coq, all λ -terms have only finite reductions (strong normalization property)
- In Coq, all λ -terms have a (unique) normal form.
- In Coq, the following λ -terms are not typable

Typed lambda-calculus (2/5)

• In Coq, all λ-terms have only finite reductions (strong normalization property)

• In Coq, all λ -terms have a (unique) normal form.

Typed lambda-calculus (4/5)

Example $x : \operatorname{nat} \vdash x : \operatorname{nat}$ $\frac{x : \operatorname{nat} \vdash x : \operatorname{nat}}{x : \operatorname{nat} \vdash x + 1 : \operatorname{nat}}$ $\frac{x : \operatorname{nat} \vdash x + 1 : \operatorname{nat}}{\vdash (\lambda x. x + 1) : \operatorname{nat} \to \operatorname{nat}}$ $\frac{\vdash (\lambda x. x + 1) : \operatorname{nat} \to \operatorname{nat}}{\vdash (\lambda x. x + 1) : \operatorname{nat} \to \operatorname{nat}} \vdash 3 : \operatorname{nat}}$

Exercise Write it as a proof tree [aka Monin's lectures].

챣

Typed lambda-calculus (3/5)

• The Coq laws for typing terms are quite complex [Coquand-Huet 1985]

• They are almost the following (1st-order) rules:

Basic types: \mathcal{N} (nat), \mathcal{B} (bool), \mathcal{Z} (int), ... If M has type β when x has type α , then ($\lambda x.M$) has type $\alpha \to \beta$

If *M* has type $\alpha \rightarrow \beta$ and if *N* has type α , then *M*(*N*) has type β

Example	1 : nat
	x: nat implies $x+1: nat$
	$(\lambda x.x+1): \texttt{nat} ightarrow \texttt{nat}$
	3:nat
	$(\lambda x. x + 1)$ 3 : nat

Typed lambda-calculus (5/5)

xample with currying and function as result
$x : \texttt{nat} \vdash x : \texttt{nat}$ $y : \texttt{nat} \vdash y : \texttt{nat}$
$x : \texttt{nat}, y : \texttt{nat} \vdash x : \texttt{nat}$ $x : \texttt{nat}, y : \texttt{nat} \vdash y : \texttt{nat}$
$x : \texttt{nat}, y : \texttt{nat} \vdash x : \texttt{nat}$ $x : \texttt{nat}, y : \texttt{nat} \vdash y : \texttt{nat}$
x: nat, y: nat dash x + y: nat
$x : \texttt{nat}, y : \texttt{nat} \vdash x + y : \texttt{nat}$
$x: ext{nat} \vdash (\lambda y.x + y): ext{nat} ightarrow ext{nat}$
$x: \operatorname{nat} \vdash (\lambda y.x + y): \operatorname{nat} \rightarrow \operatorname{nat}$ $x: \operatorname{nat} \vdash (\lambda y.x + y): \operatorname{nat} \rightarrow \operatorname{nat}$
$dash (\lambda x.\lambda y.x+y): ext{nat} o ext{nat} o ext{nat}$
$\vdash (\lambda x.\lambda y.x+y): \texttt{nat} ightarrow \texttt{nat} ightarrow \texttt{nat} ightarrow \texttt{12:nat}$
$dash \left((\lambda x.\lambda y.x+y)2 ight): extsf{nat} ightarrow extsf{nat}$
$\vdash ((\lambda x.\lambda y.x + y)2): \texttt{nat} \rightarrow \texttt{nat} \qquad \vdash 3: \texttt{nat}$
$\vdash ((\lambda x.\lambda y.x+y)$ 23):nat

Example with currying and function as result

Enumeratives types (2/5)

Enumerated types are types which list and name exhaustively their inhabitants.

A new enumerated type:

Inductive day : Type :=
| monday | tuesday | wednesday |
| thursday | friday | saturday | sunday : day.

Enumeratives types (1/5)

Enumerated types are types which list and name exhaustively their inhabitants.

Inductive bool : Set := true : bool | false : bool.

Set is deprecated. Now use Type.

Inductive color : Type := black : color | white : color.

Enumeratives types (2/5)

Enumerated types are types which list and name exhaustively their inhabitants.

A new enumerated type:

Inductive day : Type :=
| monday | tuesday | wednesday |
| thursday | friday | saturday | sunday : day.

Check tuesday. *tuesday : day*

Labels refer to distinct elements.

Enumeratives types (3/5)

Inspect the enumerated type inhabitants and assign values:

```
Definition negb (b : bool) :=
 match b with true => false | false => true end.
```


Enumeratives types (3/5)

Inspect the enumerated type inhabitants and assign values:

```
Definition negb (b : bool) :=
 match b with true => false | false => true end.
```

Definition next_weekday (d:day) : day := match d with | monday => tuesday | tuesday => wednesday | wednesday => thursday | thursday => friday | friday | saturday | sunday => monday end.

Enumeratives types (3/5)

Inspect the enumerated type inhabitants and assign values:

Definition negb (b : bool) := match b with true => false | false => true end.

Definition next_weekday (d:day) : day := match d with | monday => tuesday tuesday => wednesday | wednesday => thursday | thursday => friday | friday | saturday | sunday => monday end.

Eval compute in (next_weekday friday). = monday

: day

Recap

- Cog commands / keywords:
- for functions definitions - Definition
- Check
- to show types to show values
- Compute - Eval compute in to show values
- to define a new data type - Inductive set of all types
- Type
- for case analysis on constructors - match ... with

Enumeratives types (4/5)

- Definition andb (b1:bool) (b2:bool) : bool := match b1 with true => b2 | false => false end.
- Definition orb (b1:bool) (b2:bool) : bool := match b1 with true => true | false => b2 end.

Recap

- Cog commands / keywords:
- Definition for functions definitions
- Check
- to show types to show values
- Compute
- Eval compute in to show values
- to define a new data type - Inductive
- match ... with
- Type
- simpl
- reflexivity
- set of all types to compute normal form

for case analysis on constructors

to conclude with trivial equality

Enumeratives types (4/5)

```
Definition andb (b1:bool) (b2:bool) : bool :=
 match b1 with true => b2 | false => false end.
Definition orb (b1:bool) (b2:bool) : bool :=
 match b1 with true => true | false => b2 end.
Example test_orb1: (orb true false) = true.
 orb true false = true
Proof.
simpl.
 true = true
reflexivity.
Qed.
test_orb1 is defined
```

Enumeratives types (5/5)

Exercise Give definitions of predicates work day and weekend day.

Exercise Give definitions of function black if workday and white for weekends.

