Functions

jean-jacques.levy@inria.fr 2013-8-6

Plan

- notation for functions in Coq
- λ-notation
- λ-calculus
- enumerated types
- pattern-matching on constructors

definitions (1/3)

three equivalent definitions:
Definition plusOne (x: nat) : nat := x + 1 . Check plusOne.

Definition plusOne := fun (x: nat) => x + 1 . Check plusOne.

Definition plusOne := fun $\mathrm{x}=>\mathrm{x}+1$. Check plusOne.

Compute (fun $x:$ nat $=>x+1$) 3.
higher-order definitions:
Definition plusTwo (x: nat) : nat := x + 2 .
Definition twice := fun $f=>$ fun (x:nat) $=>\mathrm{f}(\mathrm{f} x)$.
Compute twice plusTwo 3

lambda-terms (2/3)

- Coq tries to guess the type, but could fail.
(type inference)
- but always possible to give explicit types.
- Types can be higher-order
(see later with polymorphic functions)
- Types can also depend on values
(see later the constructor cases)

lambda-terms (3/3)

- Coq treats with an extention of the λ-calculus with inductive data types. It's a small programming language.
- the typed λ-calculus is used as a trick to make a correspondence between proofs and λ-terms and propositions and types for constructive logics (see other lectures).
(Curry-Howard correspondence)

Recap

- Coq commands / keywords:
- Definition
- Check
- Compute
for functions definitions to show types
to show values

constructive logic

constructive logic

- An example of a non constructive proof:

Theorem

There exists 2 irrational numbers a and b such that a^{b} is rational.

Proof
We know that $\sqrt{2}$ is not rational. Take $a=b=\sqrt{2}$.
$-a^{b}$ is rational. OK!

- a^{b} is irrational. Then let $c=a^{b}$

Then $c^{b}=\left(a^{b}\right)^{b}=a^{b \times b}=a^{2}=2$. Done!
QED

- Coq is constructive logic

Propositions always exist with their (witness) proofs. $h: P$ in environment means h is witness proof of P

constructive logic

- An example of a non constructive proof:

Theorem
There exists 2 irrational numbers a and b such that a^{b} is rational.

Proof
We know that $\sqrt{2}$ is not rational. Take $a=b=\sqrt{2}$.

- a^{b} is rational. OK!
- a^{b} is irrational. Then let $c=a^{b}$

Then $c^{b}=\left(a^{b}\right)^{b}=a^{b \times b}=a^{2}=2$. Done!
QED

- Coq is constructive logic

Propositions always exist with their (witness) proofs $h: P$ in environment means h is witness proof of P

Functional calculus (1/4)

$$
\begin{aligned}
& (\lambda x . x+1) 3 \rightarrow 3+1 \rightarrow 4 \\
& (\lambda x .2 * x+2) 4 \rightarrow 2 * 4+2 \rightarrow 8+2 \rightarrow 10 \\
& (\lambda f . f 3)(\lambda x \cdot x+2) \rightarrow(\lambda x . x+2) 3 \rightarrow 3+2 \rightarrow 5 \\
& (\lambda x . \lambda y \cdot x+y) 32= \\
& \quad((\lambda x \cdot \lambda y \cdot x+y) 3) 2 \rightarrow(\lambda y .3+y) 2 \rightarrow 3+2 \rightarrow 5 \\
& (\lambda f . \lambda x . f(f x))(\lambda x . x+2) \rightarrow \ldots
\end{aligned}
$$

Functional calculus (2/4)
$(\lambda f . \lambda x . f(f x))(\lambda x \cdot x+2) \longrightarrow \ldots$

Functional calculus (3/4)

$(\lambda f . \lambda x \cdot f(f x))((\lambda y \cdot \lambda x \cdot x+y) 2) 3 \longrightarrow$

Functional calculus (4/4)

- computing with functions may be long and complex
- but yield a unique result
(Church-Rosser property)

Thought of Tuesday 2013-8-6

- computer science $=$ programs $=$ texts in ASCII
\#define - $-\mathrm{F}<00 \quad| |--\mathrm{F}-00--$;
int $\mathrm{F}=00,00=0$;
int $F=00^{-}, 00=00$;
main() $\left\{F_{-00() ; p r i n t f(" \% 1.3 f \backslash n ", ~ 4 . *-F / 00 / 00) ; ~ ; F-00() ~}^{\text {(}}\right.$

> - mathematics
> = greek letters
> + symbols

$$
\begin{aligned}
& (\lambda \eta \sigma \rho \pi \alpha \beta \gamma \delta \Delta- \\
& +/ \subseteq \cap \vdash \vdash)
\end{aligned}
$$

Pure lambda-calculus

- lambda-terms

M, N, P	$::=$	x, y, z, \ldots	(variables)
	\|	$\lambda x . M$	
	\|	$M(N)$	
		$(M$ as functied to $N)$	

- Computations "reductions"
$(\lambda x \cdot M)(N) \longrightarrow M\{x:=N\}$

Examples of reductions (2/2)

- Examples

$$
\begin{aligned}
& (\lambda x \cdot x x)(\lambda x \cdot x N) \rightarrow(\lambda x \cdot x N)(\lambda x \cdot x N) \longrightarrow(\lambda x \cdot x N) N \rightarrow N N \\
& (\lambda x \cdot x x)(\lambda x \cdot x x) \rightarrow(\lambda x \cdot x x)(\lambda x \cdot x x) \longrightarrow \cdots
\end{aligned}
$$

- Possible to loop inside applications of functions ...

$$
\begin{gathered}
Y_{f}=(\lambda x . f(x x))(\lambda x . f(x x)) \longrightarrow f((\lambda x . f(x x))(\lambda x . f(x x)))=f\left(Y_{f}\right) \\
f\left(Y_{f}\right) \longrightarrow f\left(f\left(Y_{f}\right)\right) \longrightarrow \cdots \longrightarrow f^{n}\left(Y_{f}\right) \longrightarrow \cdots
\end{gathered}
$$

- Every computable function can be computed by a λ-term

$$
\Rightarrow \text { Church's thesis. [Church 41] }
$$

Let $I=\lambda x \cdot x$, we have $I(x)=x$ for all x.
Therefore $I(I)=I$. [Church 41]

The Giants of computability

Kleene
Post Curry
von Neumann

Typed lambda-calculus (1/5)

- In Coq, all λ-terms are typed
- In Coq, following λ-terms are typable

$$
\begin{aligned}
& (\lambda x \cdot x+1) 3 \rightarrow 3+1 \rightarrow 4 \\
& (\lambda x \cdot 2 * x+2) 4 \rightarrow 2 * 4+2 \rightarrow 8+2 \rightarrow 10 \\
& (\lambda f . f 3)(\lambda x \cdot x+2) \rightarrow(\lambda x \cdot x+2) 3 \rightarrow 3+2 \rightarrow 5 \\
& (\lambda x \cdot \lambda y \cdot x+y) 32= \\
& \quad((\lambda x \cdot \lambda y \cdot x+y) 3) 2 \rightarrow(\lambda y \cdot 3+y) 2 \rightarrow(\lambda y \cdot 3+y) 2 \rightarrow 3+2 \rightarrow 5 \\
& (\lambda f . \lambda x \cdot f(f x))(\lambda x \cdot x+2) \rightarrow \ldots \\
& \text { these terms are allowed }
\end{aligned}
$$

Typed lambda-calculus (2/5)

- In Coq, all λ-terms have only finite reductions (strong normalization property)
- In Coq, all λ-terms have a (unique) normal form.
- In Coq, the following λ-terms are not typable

Typed lambda-calculus (2/5)

- In Coq, all λ-terms have only finite reductions
(strong normalization property)
- In Coq, all λ-terms have a (unique) normal form.

Typed lambda-calculus (3/5)

- The Coq laws for typing terms are quite complex [Coquand-Huet 1985]
- They are almost the following (1st-order) rules:

```
Basic types: \mathcal{N}\mathrm{ (nat), }\mathcal{B}\mathrm{ (bool), Z (int),}
If M has type \beta}\mathrm{ when x has type }\alpha\mathrm{ , then ( }\lambdax.M)\mathrm{ has type }\alpha-> If \(M\) has type \(\alpha \rightarrow \beta\) and if \(N\) has type \(\alpha\), then \(M(N)\) has type \(\beta\)
```


Example

1: nat
x :nat implies $x+1$:nat
$(\lambda x . x+1):$ nat \rightarrow nat
3 : nat
$(\lambda x \cdot x+1) 3$: nat

Typed lambda-calculus (4/5)

Example

$$
x: \text { nat } \vdash x: \text { nat }
$$

$$
\begin{gathered}
\frac{x: \text { nat } \vdash x: \text { nat } \quad \vdash 1: \text { nat }}{x: \text { nat } \vdash x+1: \text { nat }} \\
x: \text { nat } \vdash x+1: \text { nat } \\
\vdash(\lambda x \cdot x+1): \text { nat } \rightarrow \text { nat } \\
\frac{\vdash(\lambda x \cdot x+1): \text { nat } \rightarrow \text { nat } \vdash 3: \text { nat }}{\vdash(\lambda x \cdot x+1) 3: \text { nat }}
\end{gathered}
$$

Exercise Write it as a proof tree [aka Monin's lectures].

Typed lambda-calculus (5/5)

Example with currying and function as result

$$
\begin{gathered}
\frac{x: \text { nat } \vdash x: \text { nat }}{x: \text { nat, } y: \text { nat } \vdash x: \text { nat }} \quad \frac{y: \text { nat } \vdash y: \text { nat }}{x: \text { nat, } y: \text { nat } \vdash y: \text { nat }} \\
\frac{x: \text { nat, } y: \text { nat } \vdash x: \text { nat }}{x: \text { nat, } y: \text { nat } \vdash y: \text { nat }} \\
\frac{x: \text { nat, } y: \text { nat } \vdash x+y: \text { nat }}{x: \text { nat } \vdash(\lambda y \cdot x+y): \text { nat } \rightarrow \text { nat }} \\
\frac{x: \text { nat } \vdash(\lambda y \cdot x+y): \text { nat } \rightarrow \text { nat }}{\vdash(\lambda x \cdot \lambda y \cdot x+y): \text { nat } \rightarrow \text { nat } \rightarrow \text { nat }} \\
\frac{\vdash(\lambda x \cdot \lambda y \cdot x+y): \text { nat } \rightarrow \text { nat } \rightarrow \text { nat } \quad \vdash 2: \text { nat }}{\vdash((\lambda x \cdot \lambda y \cdot x+y) 2): \text { nat } \rightarrow \text { nat }} \\
\frac{\vdash((\lambda x \cdot \lambda y \cdot x+y) 2): \text { nat } \rightarrow \text { nat } \vdash 3: \text { nat }}{\vdash((\lambda x \cdot \lambda y \cdot x+y) 23): \text { nat }}
\end{gathered}
$$

Enumeratives types (1/5)

Enumerated types are types which list and name exhaustively their inhabitants.

Inductive bool : Set := true : bool | false : bool.

Set is deprecated. Now use Type.

Inductive color : Type := black : color | white : color.

Enumeratives types (2/5)

Enumerated types are types which list and name exhaustively their inhabitants.

A new enumerated type:
Inductive day : Type :=
| monday | tuesday | wednesday |
| thursday | friday | saturday | sunday : day.

Enumeratives types (2/5)

Enumerated types are types which list and name exhaustively their inhabitants.

A new enumerated type:
Inductive day : Type :=
| monday | tuesday | wednesday |
| thursday | friday | saturday | sunday : day.
Check tuesday.
tuesday : day
Labels refer to distinct elements

Enumeratives types（3／5）

Inspect the enumerated type inhabitants and assign values

Definition negb（b ：bool）：＝

match b with true $=>$ false｜false＝＞true end．

Enumeratives types（3／5）

Inspect the enumerated type inhabitants and assign values：

```
Definition negb (b : bool) :=
    match b with true => false | false => true end.
Definition next_weekday (d:day) : day :=
    match d with
    monday => tuesday | tuesday => wednesday
    | wednesday => thursday | thursday => friday
    | friday | saturday | sunday => monday end
```


Enumeratives types（3／5）

Inspect the enumerated type inhabitants and assign values：

```
Definition negb (b : bool) :=
```

 match b with true => false | false => true end.
 Definition next_weekday (d:day) : day :=
match d with
| monday => tuesday | tuesday => wednesday
| wednesday => thursday | thursday => friday
| friday | saturday | sunday => monday end.
Eval compute in (next_weekday friday).
$=$ monday
: day

Recap

－Coq commands／keywords：
－Definition for functions definitions
－Check to show types
－Compute to show values
－Eval compute in to show values
－Inductive
－Type
to define a new data type
set of all types
－match ．．．with for case analysis on constructors

引のく

Enumeratives types (4/5)

Definition andb (b1:bool) (b2:bool) : bool :=

 match b1 with true => b2 | false => false end.Definition orb (b1:bool) (b2:bool) : bool := match b1 with true => true | false => b2 end.

Recap

- Coq commands / keywords:
- Definition
- Check
- Compute
for functions definitions
w types
- Inductive
- match ... with
- Type
- simpl
- reflexivity
to show values
to show values
to define a new data type for case analysis on constructors set of all types
to compute normal form to conclude with trivial equality

\qquad

Enumeratives types (4/5)

Definition andb (b1:bool) (b2:bool) : bool :=
match b1 with true => b2 | false => false end.
Definition orb (b1:bool) (b2:bool) : bool := match b1 with true => true | false => b2 end.

Example test_orb1: (orb true false) = true. orb true false $=$ true
Proof
simpl.
true $=$ true
reflexivity.
Qed.
test_orb1 is defined

Enumeratives types (5/5)

Exercise Give definitions of predicates work_day and weekend_day.

Exercise Give definitions of function black_if_workday and white for weekends.

