
http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Review of some basic constructs

Jean-François Monin

2013-08-07

Case analysis on a color

····
c

color
thursday

day
monday

day
destruct

day

Interactive and explicit definition in Coq

Definition day_of_c: day.

destruct c.

- apply thursday.

- apply monday.

Defined.

Definition day_of_c: day :=

match c with

| white => thursday

| black => monday

end.

Case analysis and decomposition of a tuple4

Assume t a tuple4

Interactive definition

destruct t as [c1 c2 c3 c4 | d1 d2 d3 d4 | x1 x2 x3 x4].

- commands using c1 c2 c3 c4.

- commands using d1 d2 d3 d4.

- commands using x1 x2 x3 x4.

Explicit definition

match t with

| Mk4color c1 c2 c3 c4 => ... c1 c2 c3 c4 ...

| Mk4day d1 d2 d3 d4 => ... d1 d2 d3 d4 ...

| Mk4t4 x1 x2 x3 x4 => ... x1 x2 x3 x4 ...

end.

Explicit definition of functions

Definition day_of: forall (c: color), day :=

match c with

| white => thursday

| black => monday

end.

Application: by juxtaposition without parenthesis

day_of black

Parentheses can be used for grouping

More functions

Definition Set_of : forall (c: color), Set :=

fun (c: color) =>

match c with

| white => color

| black => day

end.

Definition funny : forall (c: color), Set_of c :=

fun (c: color) =>

match c with

| white => black

| black => wednesday

end.

Interactive definition of a function

Use intro

Special case: arrow

The type of the result does not depend on the argument

T → U is a shorthand for
∀x : T ,U

Application to logic and proof trees

Universal quantification

Let T be a type and Q a predicate on T
Q : T → Prop

A proof q of ∀x : T ,Qx

is a function which maps any value a in T to a proof of Qa

In order to use q, we apply it to a, notation: q a

In order to prove q, we can start with intro x .

Application to logic and proof trees

Implication

Let P and Q be propositions
P : Prop
Q : Prop

A proof r of P → Q
is a function which maps any proof p of P to a proof of Q

In order to use r , we apply it to p, notation: r p

In order to prove r , we can start with intro hp.

Products and functions

Consider an environment containing x : T where we define
a term ux : U
But in general, U may depend on x .

Then: consider an environment containing x : T where we define

I a type Ux

I a term ux : Ux

Then fun x ⇒ ux is a function defined for all x , and returning ux
each time it is applied to some argument for x .

fun x : T ⇒ ux : ∀x : T ,Ux

Application
If f : ∀x : T ,Ux and if a : T
then f can be applied to a and the type of the result is Ua

Rules (general)

····
f

∀x : T ,Ux

····
a

T
apply

Ua

[x : T]
·····
ux

Ux
intro x

∀x : T ,Ux

Warning: this x makes sense only in ux ,
i.e. is available only from x : T to Ux

When the type of the result does not depend on x

····
f

∀x : T ,U

····
a

T
apply

U

[x : T]
·····
ux

U
intro x

∀x : T ,U

Warning: this x makes sense only in ux ,
i.e. is available only from x : T to U

Other syntax: T → U instead of ∀x : T ,U

····
f

T → U

····
a

T
apply

U

[x : T]
·····
u

U
intro x

T → U

Warning: this x makes sense only in ux ,
i.e. is available only from x : T to U

