Case analysis on a color

day

Interactive and explicit definition in Coq
Definition day_of_c: day. Definition day_of_c: day :=
destruct c.

- apply thursday.
- apply monday.

Defined.
match c with
| white => thursday
| black => monday end.

Explicit definition of functions

```
Definition day_of: forall (c: color), day :=
    match c with
    | white => thursday
    | black => monday
    end.
Application: by juxtaposition without parenthesis
day_of black
```

Parentheses can be used for grouping

More functions

```
Definition Set_of : forall (c: color), Set :=
    fun (c: color) =>
    match c with
    | white => color
    | black => day
    end.
Definition funny : forall (c: color), Set_of c :=
    fun (c: color) =>
    match c with
    | white => black
    | black => wednesday
    end.
```

Special case: arrow

The type of the result does not depend on the argument $T \rightarrow U$ is a shorthand for $\forall x: T, U$

Use intro

Application to logic and proof trees

Universal quantification
Let T be a type and Q a predicate on T
$Q: T \rightarrow$ Prop
A proof q of $\forall x: T, Q_{x}$
is a function which maps any value a in T to a proof of Q_{a} In order to use q, we apply it to a, notation: q a
In order to prove q, we can start with intro x.

Application to logic and proof trees

Implication
Let P and Q be propositions
P : Prop
Q : Prop
A proof r of $P \rightarrow Q$
is a function which maps any proof p of P to a proof of Q
In order to use r, we apply it to p, notation: $r p$
In order to prove r, we can start with intro $h p$.

Products and functions

Consider an environment containing $x: T$ where we define
a term $u_{x}: U$
But in general, U may depend on x.
Then: consider an environment containing $x: T$ where we define

- a type U_{x}
- a term $u_{x}: U_{x}$

Then fun $x \Rightarrow u_{x}$ is a function defined for all x, and returning u_{x} each time it is applied to some argument for x.

$$
\text { fun } x: T \Rightarrow u_{x}: \quad \forall x: T, U_{x}
$$

Application
If $f: \forall x: T, U_{x}$ and if $a: T$
then f can be applied to a and the type of the result is U_{a}

When the type of the result does not depend on x

$$
\begin{gathered}
{[x: T]} \\
\vdots \\
\vdots \\
\forall x: T, U \\
\text { Untro } \mathrm{u}
\end{gathered}
$$

Warning: this x makes sense only in u_{x},

[^0]Other syntax: $T \rightarrow U$ instead of $\forall x: T, U$

Warning: this x makes sense only in u_{x}, i.e. is available only from $x: T$ to U

[^0]: i.e. is available only from $x: T$ to U

