

Introduction to trees and proofs

Jean-François Monin

2013-08-05

http://sts.thss.tsinghua.edu.cn/Coqschool2013

June 4, 1996: Ariane 5, flight 501

June 4, 1996: Ariane 5, flight 501

June 4, 1996: firework 501

(Yet another) software problem Formal methods and Coq Trees Many other examples Decomposing, case analysis Functions and implication Outline Formal Methods Formal methods and Coq Prove that some piece of software behaves accordingly to a given specification Boils down to theorem proving: programs and specifications are represented by logical formulas Hand waving not allowed

Outline

Several complementary approaches and tools

In summary

- ► Describe a model
- ► Explain it
- ▶ Reason about it
- ► Be clean and precise

Use math and logic

Coq

A language

- ► Logic formulas
- Proofs
- ► Programs

A software proof assistant

Very secure by architectural design

Some industrial uses

Spacecrafts, airplanes (Airbus, Boeing)

Microsoft

Intel

French railways

Telecom operators

Nuclear power plants

Banks

Cryptography

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Formal models, proofs and programs

Based on a common structure: trees

- ► Can be implemented in many ways by software (pointers, arrays, ...)
- ▶ This talk: use an intuitive and graphical presentation of trees

Developed by the same activity

which can be

- explicit: using an appropriate syntax for trees
- ▶ interactive: using commands for building trees step by step

Make a strong use of types

- ▶ Everything has a type, even types have a type
- ► Computations can be carried out on types as well

Proofs

Same constructs with another reading

Basic building blocks for trees: rules

$$\frac{\textit{input}_1 \quad \textit{input}_2 \quad \dots \quad \textit{input}_n}{\textit{output}} \; \textit{howto}$$

 $input_1, input_2, ..., input_n$ and output are **types**

howto explains how to make an *output*, given $input_1, input_2, ..., input_n$

Basic building blocks for proof trees: rules

$$\frac{\textit{input}_1 \quad \textit{input}_2 \quad \dots \quad \textit{input}_n}{\textit{output}} \; \textit{howto}$$

 $input_1, input_2..., input_n$ and output are propositions $input_1, input_2..., input_n$ are hypotheses output is the conclusion

howto justifies how to make a proof of *output*, given proofs of *input*₁, *input*₂,..., *input*_n

Combining rules

Basic building blocks can be combined

Just plug outputs to identical inputs

Some rules:

- ▶ 1 input comes from exactly 1 output
- ▶ an output can be plugged (used) 1, several or 0 times

Alltogether

We get 1 output from many inputs using a complex (composed) howto

Plugging trees

General shape: trees

Interpretation

- ► At positions 1, 2, 3, 4: types
- ▶ 1, 2, 3: inputs
- ▶ 4: output (or result)

Makes the output from the inputs

Subtrees can have local additional inputs

Simple examples with 0 input

The horizontal bar means: MAKES

Simple example with 4 identical inputs

Making a 4-tuple of days

$$\frac{\texttt{day} \quad \texttt{day} \quad \texttt{day} \quad \texttt{day}}{\texttt{tuple4}} \, \texttt{Mk4day}$$

Mk4day makes a tuple4 from

- ► a day
- ► a day
- ► a day
- ► a day

Intermezzo: definitions

These trees are considered the same as the previous ones (top of previous slide)

Plugging day into Mk4day

Building blocks

$$\frac{}{\mathrm{day}}$$
 Mo $\frac{}{\mathrm{day}}$ We $\frac{}{\mathrm{day}}$ Fr $\frac{}{\mathrm{day}}$ We $\frac{}{\mathrm{day}}$ We $\frac{}{\mathrm{day}}$ We $\frac{}{\mathrm{day}}$ Mk4day

Connecting them yields the concrete 4-tuple of day

$$\frac{\text{Mo}}{\text{day}} \text{Me} \frac{\text{We}}{\text{day}} \text{Fr} \frac{\text{We}}{\text{day}} \text{Mk4day}$$

Another view on Mk4day

As a rule

As a tree

This is called an open tree

Environment

The meaning of the open tree

$$\frac{\frac{}{\text{day}} \text{ Mo}}{\text{day}} \frac{\frac{x_2}{\text{day}}}{\text{day}} \frac{\text{We}}{\text{day}} \frac{\frac{x_4}{\text{day}}}{\text{Mk4day}}$$

depends on x_2 and x_4 . It has a meaning for all trees plugged into x_2 and x_4 .

The variables x_2 : day and x_4 : day make up the environment of this tree

Closed and open trees

The meaning (or value) of

$$\frac{\text{Mo}}{\text{day}} \frac{\text{We}}{\text{day}} \frac{\text{Mo}}{\text{day}} \frac{\text{Th}}{\text{day}}$$

$$\frac{\text{tuple4}}{\text{tuple4}}$$

is completely defined: this is called a closed tree.

In contrast, the meaning of the open tree

$$\frac{\overline{\text{day}} \text{ Mo}}{\text{day}} \frac{\overline{\text{day}}}{\text{day}} \frac{\overline{\text{We}}}{\text{day}} \frac{\overline{\text{May}}}{\text{Mk4day}}$$

$$\frac{\text{tuple4}}{\text{tuple4}}$$

depends on x_2 and x_4 .

More 4-tuples

Lists of days

$$\frac{\overbrace{\text{day}}^{u} \quad \overbrace{\text{daylist}}^{u}}{\text{daylist}} \cos$$

Examples with proofs

$$\frac{\stackrel{h}{\longrightarrow} \stackrel{w}{\longrightarrow}}{\text{HaW}} \text{conj}_{HW}$$

$$\frac{\stackrel{h}{\prod}}{\text{HoW}} \text{case1_HoW}$$

Examples with proofs

Consider basic propositions, e.g.:

Proposition	Intended meaning
Н	hot – the temperature is greater than 35 C
W	the glass contains water
С	the blackboard is clean
HaW	the temperature is greater than 35 C and the glass
	contains water
HoW	the temperature is greater than 35 C or the glass
	contains water

Given a proof h of H and a proof w of W, what is a proof of HaW? what is a proof of HoW?

To go farther: making propositions

Given 2 propositions P and Q, make a new proposition whose intended meaning is:

P and Q hold together.

This proposition is noted $P \wedge Q$,

Note that it is itself a tree (at the level of propositions, not at the level of proofs)

$$\frac{P}{Prop} \frac{Q}{Prop}$$
Prop and

Similarly, $P \lor Q$ represents the tree:

$$\frac{P}{Prop} \quad \frac{Q}{Prop}$$

General conjunctions and disjunctions

$$\frac{P}{P \wedge Q} \operatorname{conj}_{q}$$

$$\frac{\stackrel{p}{\longrightarrow}}{\stackrel{P}{\lor} \bigcirc} \text{or}_{-\text{left}}$$

$$\frac{\bigcap_{\mathbb{Q}}^{q}}{P \vee \mathbb{Q}} \text{ or_right}$$

Decomposing, case analysis

- ► Given a 4-tuple *t*, extract its components
- ▶ Given a day *d*, provide a color depending on *d*
- ► Given a color c, provide a day depending on c
- ▶ Given a proof of $A \land B$, provide a proof of A
- ▶ Given a proof of $A \lor B$, provide a proof of $B \lor A$ A proof of $B \lor A$ is needed in each case

Outline

Formal methods and Cog

Trees

Decomposing, case analysis

Functions and implication

Case analysis

Question

Give a day for each possible value c in color

Example

white maps to thursday, black maps to monday

Warning: the order of branches matters

Does it make sense? Subtle point!

Statement of the previous question

Give a day for each possible value in color

Here assume that all trees with color as output are (in this order)

either
$$\frac{}{\text{color}}$$
 white or $\frac{}{\text{color}}$ black

The real story is more subtle

- ► Claim of exhaustivity: related to inductive types
- ▶ However, there are (infinitely) many trees which make a color
- ► However, they eventually reduce to one of the declared cases: related to computations and so-called *strong normalization*

Correct version of the previous example

Building block of a case analysis

In this presentation, the <u>order</u> of contructors matters: white, black

The destruct construct is driven by 2 parameters

- ► the type of the value to be analyzed each enumerated type (e.g., color) comes automatically with its destruct construct, which should actually be written, e.g. destructcolor
- ▶ the type of the result (e.g., day)

$$\underbrace{\frac{A}{\text{Set}} \quad \underbrace{\frac{c}{\text{color}} \quad \underbrace{\frac{x_2}{A}}_{\text{A}} \quad \underbrace{\frac{x_3}{A}}_{\text{destruct}}}_{\text{destruct}}$$

Decomposing

Original question

Given a proof tree p of $A \wedge B$, provide a proof of AWe know that the only possible shape of p is

So the answer is a, but how to get it?

Decomposing

More general question

Given a proof tree p of A \wedge B, prove some proposition C using the two components building p.

Rule

Reading

Let us prove C assuming a, a proof of A and b, a proof of B; as we have a proof of A \wedge B, we get a proof of C.

Example: a proof of $B \wedge A$ from $A \wedge B$

Shape of this proof tree

Warning

a and b are not available outside f

Case analysis and decomposition

For a disjunction $A \lor B$, we have 2 cases, and each one has 1 input

The hypothesis a is available only inside f The hypothesis b is available only inside g

Exercises

- ► a proof of B ∨ A from A ∨ B
- ▶ a proof of A from A ∧ B
- ▶ a proof of $B \land B$ from $A \land B$
- draw the case analysis and decomposition rules for 4-tuples

Implication

What is a function from day to color?

- ▶ open a new scope where d represents an arbitrary tree with day as output
- ▶ make a tree with output color from *d*
- ▶ in this subtree, *d* is available; but not outside

What is a proof that P implies Q?

- ▶ open a new scope with p an arbitrary proof of P (an arbitrary proof tree with P as the conclusion)
- ▶ make a proof tree with conclusion Q from p
- ▶ in this subtree, p is available; but not outside

It is just a function from P to Q

Again: some subtrees have additional inputs

Outline

Formal methods and Cog

Trees

Decomposing, case analysis

Functions and implication

Introduction rules for implications/functions

Warning: this a is available only in u

$$\frac{\overline{\text{Prop}} \; B \wedge A \qquad \overbrace{A \wedge B}^{ab} \qquad \overline{\frac{B \wedge A}{B \wedge A}} \; \text{conj}}{\frac{B \wedge A}{A \wedge B \rightarrow B \wedge A}} \; \text{destruct[a b]}$$

Next lectures and classes

Use Coq to build formal models, programs and proofs (trees)

using an explicit syntax or in the interactive way

$$\begin{array}{ccc}
\vdots & \vdots & \vdots \\
 & \vdots & \vdots \\
 & A \rightarrow B & A \\
\hline
 & & & & \\
\hline
 & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & \\
\hline
 & & & &$$