June 4, 1996: Ariane 5, flight 501

June 4, 1996: firework 501

(Yet another) software problem
$\begin{array}{ll}\text { Many other examples } & \text { Formal methods and Coq } \\ & \text { Decomposing, case analysis } \\ \text { Functions and implication }\end{array}$

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Outline

Formal Methods

Prove that some piece of software behaves accordingly to a given specification

Boils down to theorem proving: programs and specifications are represented by logical formulas

Hand waving not allowed
Several complementary approaches and tools

In summary
Some industrial uses

Spacecrafts, airplanes (Airbus, Boeing)
Microsoft
Intel
French railways
Telecom operators
Nuclear power plants
Banks
Cryptography

Coq

A language

- Logic formulas
- Proofs
- Programs

A software proof assistant

Very secure by architectural design

Outline

Formal methods and Coq

Trees

Decomposing, case analysis

Functions and implication

Formal models, proofs and programs
Based on a common structure: trees

- Can be implemented in many ways by software (pointers, arrays, ...)
- This talk: use an intuitive and graphical presentation of trees

Developed by the same activity
which can be

- explicit: using an appropriate syntax for trees
- interactive: using commands for building trees step by step

Make a strong use of types

- Everything has a type, even types have a type
- Computations can be carried out on types as well

Proofs

Same constructs with another reading

Basic building blocks for trees: rules

$$
\frac{\text { input }_{1} \text { input }_{2} \ldots \text { input }_{n}}{\text { output }} \text { howto }
$$

input $_{1}$, input $_{2} \ldots$, input $_{n}$ and output are types
howto explains how to make an output, given input $_{1}$, input $_{2} \ldots$, input $_{n}$

Basic building blocks for proof trees: rules

$$
\frac{\text { input }_{1} \text { input }_{2} \quad \ldots \text { input }_{n}}{\text { output }} \text { howto }
$$

input $_{1}$, input $_{2} \ldots$, input $_{n}$ and output are propositions
input $_{1}$, input $_{2} \ldots$, input $_{n}$ are hypotheses
output is the conclusion
howto justifies how to make a proof of output, given proofs of input $_{1}$, input $_{2} \ldots$, input $_{n}$

Combining rules

Basic building blocks can be combined

Just plug outputs to identical inputs
Some rules:

- 1 input comes from exactly 1 output
- an output can be plugged (used) 1 , several or 0 times

Alltogether
We get 1 output
from many inputs
using a complex (composed) howto

Plugging trees

General shape: trees

Interpretation

- At positions 1, 2, 3, 4: types
- 1, 2, 3: inputs
- 4: output (or result)

Makes the output from the inputs

Subtrees can have local additional inputs

Simple examples with 0 input

$$
\begin{gathered}
\overline{\text { day }} \text { monday } \overline{\text { day }} \text { tuesday } \overline{\text { day }} \text { wednesday } \overline{\text { day }} \text { thursday } \\
\frac{\text { day }}{\text { friday } \overline{\text { day }} \text { saturday } \overline{\text { day }} \text { sunday }} \\
\overline{\text { color }} \text { white } \overline{\text { color }} \text { black }
\end{gathered}
$$

The horizontal bar means: MAKES

Simple example with 4 identical inputs

Making a 4-tuple of days

$$
\frac{\text { day day day day }}{\text { tuple4 }} \text { Mk4day }
$$

Mk4day makes a tuple4 from

- a day
- a day
- a day
- a day

Intermezzo: definitions

Definition Mo := monday. Definition Th := thursday.
Definition $\mathrm{Tu}:=$ tuesday. Definition Fr := friday.
Definition We := wednesday. Definition $\mathrm{Sa}:=$ saturday.
Definition $\mathrm{Su}:=$ sunday.

$$
\begin{aligned}
& \overline{\text { day }} \text { Mo } \quad \text { day } \quad \mathrm{Tu} \quad \text { day } \quad \text { We }_{\text {day }} \mathrm{Th} \quad \overline{\text { day }} \mathrm{Fr} \\
& \varlimsup_{\text {day }} \mathrm{Sa} \quad-\quad \mathrm{Su}
\end{aligned}
$$

These trees are considered the same as the previous ones (top of previous slide)

Plugging day into Mk4day
Building blocks

$$
\begin{aligned}
& \begin{array}{l}
\text { day } \\
\text { Mo } \\
\text { day } \\
\text { We } \\
\text { day }
\end{array} \quad \frac{}{\text { day }} \text { We } \\
& \frac{\text { day day day day }}{\text { tuple4 }} \text { Mk4day }
\end{aligned}
$$

Connecting them yields the concrete 4-tuple of day

Another view on Mk4day

As a rule

As a tree

This is called an open tree

Environment

The meaning of the open tree

depends on x_{2} and x_{4}. It has a meaning for all trees plugged into x_{2} and x_{4}.

The variables x_{2} : day and x_{4} : day make up the environment of this tree

Closed and open trees

The meaning (or value) of

is completely defined: this is called a closed tree.
In contrast, the meaning of the open tree

depends on x_{2} and x_{4}.

More 4-tuples

Lists of days
Examples with proofs

Consider basic propositions, e.g.:

$$
\overline{\text { daylist }} \text { nil }
$$

Examples with proofs

Proposition	Intended meaning
H	hot - the temperature is greater than 35 C
W	the glass contains water
C	the blackboard is clean
HaW	the temperature is greater than 35 C and the glass contains water
HoW	the temperature is greater than 35 C or the glass contains water

Given a proof h of H and a proof w of W,
what is a proof of HaW ?
what is a proof of HoW?

To go farther: making propositions
Given 2 propositions P and Q, make a new proposition whose intended meaning is:
P and Q hold together.
This proposition is noted $P \wedge Q$
Note that it is itself a tree (at the level of propositions, not at the level of proofs)

Similarly, $P \vee Q$ represents the tree:

General conjunctions and disjunctions

$$
\frac{\overbrace{Q}^{q}}{P \vee Q} \text { or_right }
$$

Decomposing, case analysis

- Given a 4-tuple t, extract its components
- Given a day d, provide a color depending on d
- Given a color c, provide a day depending on c
- Given a proof of $A \wedge B$, provide a proof of A
- Given a proof of $A \vee B$, provide a proof of $B \vee A$ A proof of $B \vee A$ is needed in each case

Outline

> Formal methods and Coq
> Trees
> Decomposing, case analysis
> Functions and implication

Case analysis

Question
Give a day for each possible value c in color

$$
\overline{\text { color }} \text { white } \overline{\text { color }} \text { black }
$$

Example
white maps to thursday, black maps to monday

Warning: the order of branches matters

Does it make sense? Subtle point!
Statement of the previous question
Give a day for each possible value in color
Here assume that all trees with color as output are (in this order)

either	
or	white

The real story is more subtle

- Claim of exhaustivity: related to inductive types
- However, there are (infinitely) many trees which make a color
- However, they eventually reduce to one of the declared cases: related to computations and so-called strong normalization

Correct version of the previous example

Building block of a case analysis

In this presentation, the order of contructors matters:
white, black
The destruct construct is driven by 2 parameters

- the type of the value to be analyzed each enumerated type (e.g., color) comes automatically with its destruct construct, which should actually be written, e.g. destruct ${ }_{\text {color }}$
- the type of the result (e.g., day)

Decomposing

Original question
Given a proof tree p of $\mathrm{A} \wedge \mathrm{B}$, provide a proof of A
We know that the only possible shape of p is

where $\begin{gathered}\quad \vdots \\ \dot{A} \\ \end{gathered}$
and similarly for
is an arbitrarily large proof tree concluding to A
\square
\therefore b

So the answer is a, but how to get it?

Decomposing

More general question
Given a proof tree p of $A \wedge B$,
prove some proposition C using the two components building p.
Rule

Reading

Let us prove C assuming a, a proof of A and b, a proof of B; as we have a proof of $A \wedge B$, we get a proof of C.

Example: a proof of $B \wedge A$ from $A \wedge B$

Shape of this proof tree

Warning

contains additional local inputs a and b
The subtree
a and b are not available outside f

Case analysis and decomposition

For a disjunction $A \vee B$, we have 2 cases, and each one has 1 input

The hypothesis a is available only inside f The hypothesis b is available only inside g

Exercises

Outline

Formal methods and Coq

- a proof of $B \vee A$ from $A \vee B$
- a proof of A from $A \wedge B$
- a proof of $B \wedge B$ from $A \wedge B$
- draw the case analysis and decomposition rules for 4-tuples

Implication

What is a function from day to color?

- open a new scope where d represents an arbitrary tree with day as output
- make a tree with output color from d
- in this subtree, d is available; but not outside

What is a proof that P implies Q ?

- open a new scope with p an arbitrary proof of P (an arbitrary proof tree with P as the conclusion)
- make a proof tree with conclusion Q from p
- in this subtree, p is available; but not outside

It is just a function from P to Q
Again: some subtrees have additional inputs

Introduction rules for implications/functions

$$
\begin{aligned}
& \overbrace{A}^{A} \\
& \vdots \cdot u \\
& A_{\mathrm{B}}^{\mathrm{A} \rightarrow \mathrm{~B}}
\end{aligned} \text { intro a }
$$

Warning: this a is available only in u

Example

Applying a function / modus ponens

Next lectures and classes

Use Coq to build
formal models, programs and proofs
(trees)
using an explicit syntax or in the interactive way

