5th Asian-Pacific Summer School on Formal Methods
 August 5-10, 2013, Tsinghua University, Beijing, China

Program Verification in Coq

Guillaume Melquiond
August 9th, 2013

http://sts.thss.tsinghua.edu.cn/Coqschool2013

Cheat Sheet (1/4)

Things that are always good to do:

- When an assumption states x <> x , change the goal to False using exfalso, then conclude.
- When two assumptions are in contradiction, change the goal to False using exfalso, then conclude.
- When an assumption states C1 . . . = C2 ... with C1 and C2 two different constructors, discriminate it.
- When the goal is an equality $\mathrm{x}=\mathrm{x}$, use reflexivity.
- When the goal is True, apply I.

Cheat Sheet $(2 / 4)$

Things that are (almost) always good to do:

- When the goal is a forall, an implication, a negation, introduce its left-hand side with intros.
- When an assumption is a conjunction or an inductive object with a single constructor (e.g. a pair), destruct it.
- When the goal is a disjunction, select the provable side using left and right as soon as you know it.
- Perform computations with simpl, or with change if simpl goes too far.

Cheat Sheet (3/4)

Things that are good to do, but as late as possible:

- When the goal is a conjunction, split it.
- When an assumption is a disjunction or an inductive object with several constructors, destruct it.

Cheat Sheet (4/4)

Things to do in the remaining cases:

- When the goal contains an application f x with f a fixpoint definition, perform an induction on x.
- Before doing the induction, revert all the arguments that are not constant in the recursive call of f.
- When the goal contains a match on a value, destruct it.
- Do apply lemmas or rewrite with equalities.

Some Simple Functions on Lists

```
Definition head {T : Type} (l : list T) : option T :=
    match l with
    | nil => None
    | cons h _ => Some h
    end.
Definition tail {T : Type} (l : list T) : list T :=
    match l with
    | nil => nil
    | cons h q => q
    end.
```


Accessing the n-th Element of a List

```
Fixpoint get {T : Type} (l : list T) (n : nat)
    {struct l} : option T :=
    match l with
    | nil => None
    | cons h q =>
        if n == 0 then Some h else get q (n - 1)
    end.
```


Modifying the n-th Element of a List

```
Fixpoint set {T : Type} (l : list T) (n : nat) (v : T)
    {struct l} : list T :=
match l with
    | nil => l
    | cons h q =>
    if n == 0 then cons v q
    else cons h (set q(n - 1) v)
    end.
```

Note: the original list is not modified; a new list is returned.

Time Complexity for Standard Lists

Time complexity: how many lists have to be constructed / destructed in order to perform a given operation.

- cons: T -> list T -> list T
- head: list T \rightarrow option T
- tail: list T -> list T
- get : list T -> nat -> option T
- set : list T -> nat -> T -> list T

Note: get and set are slow!

Random Access Lists (Chris Okasaki)

Time complexity: how many lists have to be constructed / destructed in order to perform a given operation.

- racons: T -> ralist -> ralist
- rahead: ralist -> option T
$O(1)$
- ratail: ralist -> ralist $O(1)$
- raget : ralist -> nat -> option T
- raset : ralist -> nat -> T -> ralist
$O(\log n)$

Note: get and set went from $O(n)$ to $O(\log n)$.

Random Access Lists (Chris Okasaki)

Internal representation:

- List of balanced trees with nodes labeled by elements of T.
- Trees of the list have strictly increasing heights. Exception: the first two trees may have the same height.
- The older the elements, the further in the list of trees they are. Tree elements are stored with a depth-first pre-order traversal.

Note: the reduced complexity comes from the fact that $2 n$ operations suffices to access the 2^{n} first elements.

Adding an Element to a RA List

- If the first two trees have different heights,

- If the first two trees have the same height,

Coq Types for Representing RA Lists

```
Variable T : Type.
Inductive tree :=
    | Leaf : T -> tree
    | Node : T -> tree -> tree -> tree.
Inductive ralist :=
    | raNil : ralist
    | raCons : tree -> nat -> ralist -> ralist.
```

Note: raCons stores a tree, its height, and the remaining of the list.

Definition of Head

```
Definition rahead (l : ralist) : option \(T\) :=
    match 1 with
    | raNil => None
    | raCons t _ _ =>
        match t with
        | Leaf \(x=>\) Some \(x\)
        | Node \(x ~_{~} \quad=>\) Some \(x\)
        end
    end.
```


Correctness of Head

In order to verify that rahead is correct, one has to prove that it has the same behavior as head.

```
Definition abs : ralist -> list T := ...
```

Lemma rahead_correct :
forall 1 : ralist,
rahead $1=$ head (abs l).

Abstracting from RA Lists to Standard Lists

```
Fixpoint abs_tree (t : tree) \{struct t\} : list \(T\) :=
    match t with
    | Leaf \(x\) => cons x nil
    | Node \(x\) t1 t2 =>
    cons \(x\) (app (abs_tree t1) (abs_tree t2))
    end.
Fixpoint abs (l : ralist) \{struct l\} : list \(T\) :=
    match l with
    | raNil => nil
    | raCons t _ q \(\Rightarrow\) app (abs_tree t) (abs q)
    end.
```


Definition and Correctness of Cons

```
Definition racons (x : T) (l : ralist) : ralist :=
    match l with
    | raNil => raCons (Leaf x) 0 l
    | raCons t s raNil => raCons (Leaf x) 0 l
    | raCons t1 h1 (raCons t2 h2 q) =>
        if h1 == h2 then raCons (Node x t1 t2) (1 + h1) q
        else raCons (Leaf x) 0 l
    end.
Lemma racons_correct :
    forall (x : T) (l : ralist),
    abs (racons x l) = cons x (abs l).
```


Definition and Correctness of Tail

```
Definition ratail (l : ralist) : ralist :=
    match l with
    | raNil => raNil
    | raCons t h q =>
        match t with
        | Leaf _ => q
        | Node _ t1 t2 =>
            raCons t1 (h - 1) (raCons t2 (h - 1) q)
        end
    end.
Lemma ratail_correct :
    forall l : ralist,
    abs (ratail l) = tail (abs l).
```


Summary

What was done:

- Defining tree and list.
- Defining rahead, racons, and ratail.
- Proving that they behave like head, cons, and tail, according to the abs mapping.

What has not be done yet:

- Proving that racons and ratail produce trees that are both balanced and of (strictly) increasing height.
- Defining raget and raset.
- Proving that they are correct.

Data Invariant

```
Fixpoint height (t : tree) {struct t} : nat :=
    match t with
    | Leaf _ => 0
    | Node _ t1 _ => 1 + height t1
    end.
Fixpoint balanced (t : tree) {struct t} : Prop :=
    match t with
    | Leaf _ => True
    | Node _ t1 t2 =>
        height t1 = height t2 /\
        balanced t1 /\ balanced t2
    end.
```

Note: height assumes that the tree is balanced.

Data Invariant

```
Fixpoint structured_aux (l : ralist) (h : nat)
    {struct l} : Prop :=
    match l with
    | raNil => True
    | raCons t h' q =>
        balanced t /\ height t = h' /\ h <= h' 八
        structured_aux q (1 + h')
    end.
Definition structured (l : ralist) : Prop :=
    match l with
    | raNil => True
    | raCons t h q =>
        balanced t /\ height t = h /\
        structured_aux q h
    end.
```

Note: these are functional predicates, rather than inductive ones.

Preservation of Invariant

Lemma structured_racons:
forall (l : ralist) (x : T) ,
structured 1 ->
structured (racons x l).

Lemma structured_ratail :
forall (l : ralist),
structured 1 ->
structured (ratail l).

Definition of Get

```
Fixpoint tree_get (t : tree) (h : nat) (n : nat)
                {struct t} : option T :=
    match t with
    | Leaf x => if n == 0 then Some x else None
    | Node x t1 t2 =>
    if n == 0 then Some x
    else
    let s := height2size (h - 1) in
    if n <= s then tree_get t1 (h - 1) (n - 1)
    else tree_get t2 (h - 1) (n - 1 - s)
    end.
Fixpoint raget (l : ralist) (n : nat)
        {struct l} : option T :=
    match l with
    | raNil => None
    | raCons t h q =>
    let s := height2size h in
    if n < s then tree_get t h n
    else raget q (n - s)
    end.
```


Code Extraction

Principles:

1. Write a library in Coq.
2. Prove its correctness using Coq.
3. Extract it to a functional language, e.g. OCaml or Haskell.
4. Profit!

Code Extraction

- Map Coq types to types from the target language:

```
Extract Inductive bool =>
    "bool" [ "true" "false" ].
Extract Inductive option =>
    "option" [ "Some" "None" ].
Extract Inductive nat => "int" [ "0" "succ" ]
    "(fun f0 fS n ->
        if n=0 then f0 () else fS (n-1))".
```

Note: the mapping of nat is unsafe.

- Map Coq functions:

```
Extract Inlined Constant leb => "(<=)".
Extract Inlined Constant eqb => "(==)".
Extract Inlined Constant plus => "(+)".
Extract Inlined Constant minus => "(-)".
```

Note: the mapping of minus is terribly wrong.

