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Coq Propositional Logic in a Nutshell

Type of formulas: Prop

Logic connectives:

I Implication: A -> B

If A is a provable formula, then B is provable too.

I Conjunction: A /\ B

Both A and B are provable formulas.

I Disjunction: A \/ B

Either A is a provable formula, or B is. (Or both are.)

I Negation: not A

If A is provable, then any formula is provable.

Constants:

I True: trivially provable.

I False: if provable, anything is.



A Few Words About Syntax

Operators Associativity Prefix form

not A

A /\ B right and A B

A \/ B right or A B

A -> B right

Example: A /\ B /\ C -> (A /\B) /\ C

represents (A ∧ (B ∧ C ))→ ((A ∧ B) ∧ C ).



Some Top-level Commands

I Variable name : type defines a new symbol of given type.
Synonyms: Hypothesis, Axiom, Parameter.

I Theorem name : formula starts the proof of a formula.
It is given a name for later reuse, once the proof is complete.
Synonyms: Lemma, Corollary, Example.

I Qed checks that a proof is complete and saves it.

I Goal formula starts the proof of a formula.
Same as Theorem, except that it cannot be reused later.

I Definition name : type := value defines a new constant
(or function) with the given type and value.



Forward and Backward Reasoning

If the formulas A→ B, B → C , C → D have been proved
beforehand, how does one prove A→ D ?

I Forward reasoning: assuming A is provable, prove D.

1. Deduce B from A and the lemma proving A→ B.
2. Deduce C from B and the lemma proving B → C .
3. Deduce D from C and the lemma proving C → D.
4. We are done, since we wanted to prove D.

I Backward reasoning: assuming A is provable, prove D.

1. Prove C instead, by applying the lemma proving C → D.
2. Prove B instead, by applying the lemma proving B → C .
3. Prove A instead, by applying the lemma proving A→ B.
4. We are done, since we have assumed A and have to prove A.

Notes:

I Forward reasoning and backward reasoning are not exclusive.

I Backward reasoning is generally easier in Coq.



Coq Script

Variables A B C D : Prop.

Hypothesis A_implies_B : A -> B.
Hypothesis B_implies_C : B -> C.
Hypothesis C_implies_D : C -> D.

Lemma A_implies_D : A -> D.
Proof.
intros A_is_assumed.
apply C_implies_D.
apply B_implies_C.
apply A_implies_B.
apply A_is_assumed.
Qed.



Handling Implications

Remember: A→ B means that B is provable if A is.

If the goal is F1 → F2 → . . .→ Fn → G ,
tactic intros h1 h2 ... hn performs the following steps:

1. It assumes that F1, . . . , Fn are provable, and puts the
corresponding lemmas named h1, . . . , hn in the context.

2. It replaces the goal by G .



Applying Lemmas and Hypotheses

If the goal is G and
if lemma L proves F1 → F2 → . . .→ Fn → G ,
tactic apply L performs the following steps:

1. It replaces the current goal by F1.

2. It creates n − 1 new goals that require to prove F2, . . . ,Fn.

If lemma L simply proves G , the current goal is removed
and the next one takes its place.



Proving Conjunctions in Goal

Remember: A ∧ B means that both A and B are provable.

If the goal is G1 ∧ G2,
tactic split replaces the current goal by G1

and adds a new goal G2.

Variant: lemma conj proves A→ B → A ∧ B for any formulas A
and B, so apply conj has the same effect.



Using Conjunctions in Context

If an assumption h proves a conjunction F1 ∧ F2,
tactic destruct h as [h1 h2] performs the following steps:

1. It removes the assumption h from the context.

2. It introduces two new assumptions h1 and h2 that prove F1
and F2 respectively.

Variant: the two tactics intros h ; destruct h as [h1 h2]

can be written intros [h1 h2] for short.



Coq Script

Variables A B : Prop.

Lemma and_comm : A /\ B -> B /\ A.
Proof.
intros hAB.
destruct hAB as [hA hB].
split.
- apply hB.
- apply hA.
Qed.



Proving Disjunctions in Goal

Remember: A ∨ B means that A or B is provable.

If the goal is G1 ∨ G2, tactic left replaces it with G1.

Similarly, tactic right replaces the goal with G2.

Variants: lemma or_introl (resp. or_intror) proves
A→ A ∨ B (resp. B → A ∨ B) for any formulas A and B,
so tactic apply or_introl (resp. apply or_intror)
has the same effect.



Using Disjunctions in Context

If an assumption h proves a disjunction F1 ∨ F2,
tactic destruct h as [h1|h2] performs the following steps:

1. It removes the assumption h from the context.

2. It introduces an assumption h1 that proves F1.

3. It creates a second goal with an assumption h2 that proves F2.

Variant: the two tactics intros h ; destruct h as [h1|h2]

can be written intros [h1|h2] for short.



Handling Negations and Constants

I not A is syntactic sugar for A→ False.
It can thus be handled like any implication.

I Tactic apply I proves the constant goal True.

I Since False implies any formula,
the current goal can be replaced by False with tactic exfalso.

Variant: apply False_ind.



Coq Script

Variables A B : Prop.

Lemma not_not : A -> not (not A).
Proof.
intros hA hnotA.
apply hnotA.
apply hA.
Qed.

Lemma excluded_middle : A /\ not A -> B.
Proof.
intros [hA hnotA ].
exfalso.
apply hnotA.
apply hA.
Qed.



Forward Reasoning

Assuming the current goal is formula G ,
tactic assert (h : F) performs the following steps:

1. It replaces the current goal with formula F .

2. It creates a new goal G and adds to its context the
assumption that there is a proof of F called h.



Forward Reasoning

If hypothesis h proves formula F and
if lemma L proves F → G ,
tactic apply L in h changes h so that it proves G .



If and Only If

Formula A <-> B is syntactic sugar for (A→ B) ∧ (B → A).
As a goal, it can thus be handled like any conjunction.

If lemma L proves A↔ B, tactic apply -> L behaves as

assert (h : A <-> B).
apply L.
...
destruct h as [AtoB BtoA].
apply AtoB.

that is, it proves a goal A→ B.

Tactic apply <- L proves B → A.



Some Other Low-Level Tactics

I Tactic clear h removes an assumption named h from the
context.

I Tactic revert h performs the opposite of intros h:

1. Assumption h of a proof of formula F is removed from the
context.

2. The current goal is changed from G to F → G .

I Tactic generalize h is the same as revert h, except that
it does not remove the assumption from the context.



Quantifying Over Formulas

Formula forall X:Prop, F means that formula F is provable
whichever formula is substituted to the free occurrences of X in F .

Example: lemma conj (cf tactic split) is actually

∀A B : Prop, A→ B → A ∧ B.

If the current goal is ∀X : Prop,F ,
tactic intros A performs the following steps:

1. It introduces an arbitrary formula named A in the context.

2. It replaces the current goal with F , in which all the free
occurrences of X have been substituted by A.



Coq Script

Lemma and_comm :
forall A B : Prop , A /\ B -> B /\ A.

Proof.
intros A B [hA hB].
split.
- apply hB.
- apply hA.
Qed.

Goal True /\ False.
Proof.
apply and_comm.



First-Order Logic: Types, Values, and Quantified Formulas

We now introduce types (e.g. bool, nat) and typed values (e.g.
true, 0, 1).

If P is a predicate of type T → Prop and x is a value of type T ,
then P x is a formula. Also valid for higher arity.

Formula forall x:T, F means that formula F is provable
whichever value of type T is substituted to the free occurrences of
x in F .



Handling Universally-Quantified Formulas

If the goal is a formula ∀x : T , P,
tactic intros a performs the following steps:

1. It adds a new value a of type T in the context.

2. It replaces the goal with the formula P in which all the free
occurrences of x have been replaced by a.

If lemma L proves a formula ∀x : T , F1 → . . .→ Fn → P,
tactic apply L performs the following steps:

1. It searches a value v such that the current goal is P with all
the occurrences of x replaced by v .

2. It creates new goals for all the hypotheses Fi after replacing
all their occurrences of x with v .



Proving Equalities in Goal

Relation eq has type T → T → Prop for any type T .
x = y is syntactic sugar for eq x y.

Tactic reflexivity proves a goal v = v .

Variant: lemma eq_refl proves ∀x : T , x = x ,
so tactic apply eq_refl has the same effect.



Using Equalities in Context

Given a lemma L proving the formula F1 → . . .→ Fn → x = y ,
tactic rewrite L performs the following steps:

1. It substitutes all the occurrences of expression x in the current
goal with expression y .

2. It creates n additional goals F1, . . . ,Fn.

Variants:

I Tactic rewrite <- L replaces all the occurrences of y in the
current goal by x .

I Tactic rewrite L at 1 3 4 replaces some specific
occurrences of x .

I Tactic rewrite L in h replaces all the occurrences of x in
assumption h.



Coq Script

Variable T : Type.

Lemma eq_sym :
forall x y : T, x = y -> y = x.

Proof.
intros x y heq.
rewrite heq.
apply eq_refl.
Qed.



Existential Quantifiers

Formula exists x:T, F means that there exists a value v of type
T such that F is provable when all the free occurrences of x are
substituted by v .

If the goal is ∃x : T , F , tactic exists v replaces it with formula
F in which all the occurrences of x are substituted by v .

If an assumption h proves ∃x : T , F ,
tactic destruct h as [v hv] performs the following steps:

1. It removes h from the context.

2. It introduces a value of type T named v in the context.

3. It introduces a proof named hv of formula F in which all the
free occurrences of x are substituted by v.



Coq Script

Variable T : Type.
Variables P Q : T -> Prop.

Lemma exists_and :
(exists z:T, (P z /\ Q z)) ->
(exists x:T, P x) /\ (exists y:T, P y).

Proof.
intros h.
destruct h as [z hz].
destruct hz as [Pz Qz].
split.
- exists z.

apply Pz.
- exists z.

apply Pz.
Qed.



Some Vernacular Commands

I Check L displays the type of L.
If L is a theorem, it displays its statement.

I Print t displays the value of t.

I SearchAbout n displays all the theorems that mention n.

I SearchPattern F displays all the theorems that prove F.
Note: placeholders _ are allowed in F.

I SearchRewrite t displays all the theorems that prove either
t = _ or _ = t.


