
http://sts.thss.tsinghua.edu.cn/Coqschool2013

5th Asian-Pacific Summer School on Formal Methods
August 5-10, 2013, Tsinghua University, Beijing, China

Interactive Development of Proofs

Guillaume Melquiond

August 5th, 2013



Coq Graphical Interface

Error pane

Goal to prove

Assumptions

Tactics

Theorem
statement

Proof cursor



Coq Propositional Logic in a Nutshell

Type of formulas: Prop

Logic connectives:

I Implication: A -> B

If A is a provable formula, then B is provable too.

I Conjunction: A /\ B

Both A and B are provable formulas.

I Disjunction: A \/ B

Either A is a provable formula, or B is. (Or both are.)

I Negation: not A

If A is provable, then any formula is provable.

Constants:

I True: trivially provable.

I False: if provable, anything is.



A Few Words About Syntax

Operators Associativity Prefix form

not A

A /\ B right and A B

A \/ B right or A B

A -> B right

Example: A /\ B /\ C -> (A /\B) /\ C

represents (A ∧ (B ∧ C ))→ ((A ∧ B) ∧ C ).



Some Top-level Commands

I Variable name : type defines a new symbol of given type.
Synonyms: Hypothesis, Axiom, Parameter.

I Theorem name : formula starts the proof of a formula.
It is given a name for later reuse, once the proof is complete.
Synonyms: Lemma, Corollary, Example.

I Qed checks that a proof is complete and saves it.

I Goal formula starts the proof of a formula.
Same as Theorem, except that it cannot be reused later.

I Definition name : type := value defines a new constant
(or function) with the given type and value.



Forward and Backward Reasoning

If the formulas A→ B, B → C , C → D have been proved
beforehand, how does one prove A→ D ?

I Forward reasoning: assuming A is provable, prove D.

1. Deduce B from A and the lemma proving A→ B.
2. Deduce C from B and the lemma proving B → C .
3. Deduce D from C and the lemma proving C → D.
4. We are done, since we wanted to prove D.

I Backward reasoning: assuming A is provable, prove D.

1. Prove C instead, by applying the lemma proving C → D.
2. Prove B instead, by applying the lemma proving B → C .
3. Prove A instead, by applying the lemma proving A→ B.
4. We are done, since we have assumed A and have to prove A.

Notes:

I Forward reasoning and backward reasoning are not exclusive.

I Backward reasoning is generally easier in Coq.



Coq Script

Variables A B C D : Prop.

Hypothesis A_implies_B : A -> B.
Hypothesis B_implies_C : B -> C.
Hypothesis C_implies_D : C -> D.

Lemma A_implies_D : A -> D.
Proof.
intros A_is_assumed.
apply C_implies_D.
apply B_implies_C.
apply A_implies_B.
apply A_is_assumed.
Qed.



Handling Implications

Remember: A→ B means that B is provable if A is.

If the goal is F1 → F2 → . . .→ Fn → G ,
tactic intros h1 h2 ... hn performs the following steps:

1. It assumes that F1, . . . , Fn are provable, and puts the
corresponding lemmas named h1, . . . , hn in the context.

2. It replaces the goal by G .



Applying Lemmas and Hypotheses

If the goal is G and
if lemma L proves F1 → F2 → . . .→ Fn → G ,
tactic apply L performs the following steps:

1. It replaces the current goal by F1.

2. It creates n − 1 new goals that require to prove F2, . . . ,Fn.

If lemma L simply proves G , the current goal is removed
and the next one takes its place.



Proving Conjunctions in Goal

Remember: A ∧ B means that both A and B are provable.

If the goal is G1 ∧ G2,
tactic split replaces the current goal by G1

and adds a new goal G2.

Variant: lemma conj proves A→ B → A ∧ B for any formulas A
and B, so apply conj has the same effect.



Using Conjunctions in Context

If an assumption h proves a conjunction F1 ∧ F2,
tactic destruct h as [h1 h2] performs the following steps:

1. It removes the assumption h from the context.

2. It introduces two new assumptions h1 and h2 that prove F1
and F2 respectively.

Variant: the two tactics intros h ; destruct h as [h1 h2]

can be written intros [h1 h2] for short.



Coq Script

Variables A B : Prop.

Lemma and_comm : A /\ B -> B /\ A.
Proof.
intros hAB.
destruct hAB as [hA hB].
split.
- apply hB.
- apply hA.
Qed.



Proving Disjunctions in Goal

Remember: A ∨ B means that A or B is provable.

If the goal is G1 ∨ G2, tactic left replaces it with G1.

Similarly, tactic right replaces the goal with G2.

Variants: lemma or_introl (resp. or_intror) proves
A→ A ∨ B (resp. B → A ∨ B) for any formulas A and B,
so tactic apply or_introl (resp. apply or_intror)
has the same effect.



Using Disjunctions in Context

If an assumption h proves a disjunction F1 ∨ F2,
tactic destruct h as [h1|h2] performs the following steps:

1. It removes the assumption h from the context.

2. It introduces an assumption h1 that proves F1.

3. It creates a second goal with an assumption h2 that proves F2.

Variant: the two tactics intros h ; destruct h as [h1|h2]

can be written intros [h1|h2] for short.



Handling Negations and Constants

I not A is syntactic sugar for A→ False.
It can thus be handled like any implication.

I Tactic apply I proves the constant goal True.

I Since False implies any formula,
the current goal can be replaced by False with tactic exfalso.

Variant: apply False_ind.



Coq Script

Variables A B : Prop.

Lemma not_not : A -> not (not A).
Proof.
intros hA hnotA.
apply hnotA.
apply hA.
Qed.

Lemma excluded_middle : A /\ not A -> B.
Proof.
intros [hA hnotA ].
exfalso.
apply hnotA.
apply hA.
Qed.



Forward Reasoning

Assuming the current goal is formula G ,
tactic assert (h : F) performs the following steps:

1. It replaces the current goal with formula F .

2. It creates a new goal G and adds to its context the
assumption that there is a proof of F called h.



Forward Reasoning

If hypothesis h proves formula F and
if lemma L proves F → G ,
tactic apply L in h changes h so that it proves G .



If and Only If

Formula A <-> B is syntactic sugar for (A→ B) ∧ (B → A).
As a goal, it can thus be handled like any conjunction.

If lemma L proves A↔ B, tactic apply -> L behaves as

assert (h : A <-> B).
apply L.
...
destruct h as [AtoB BtoA].
apply AtoB.

that is, it proves a goal A→ B.

Tactic apply <- L proves B → A.



Some Other Low-Level Tactics

I Tactic clear h removes an assumption named h from the
context.

I Tactic revert h performs the opposite of intros h:

1. Assumption h of a proof of formula F is removed from the
context.

2. The current goal is changed from G to F → G .

I Tactic generalize h is the same as revert h, except that
it does not remove the assumption from the context.



Quantifying Over Formulas

Formula forall X:Prop, F means that formula F is provable
whichever formula is substituted to the free occurrences of X in F .

Example: lemma conj (cf tactic split) is actually

∀A B : Prop, A→ B → A ∧ B.

If the current goal is ∀X : Prop,F ,
tactic intros A performs the following steps:

1. It introduces an arbitrary formula named A in the context.

2. It replaces the current goal with F , in which all the free
occurrences of X have been substituted by A.



Coq Script

Lemma and_comm :
forall A B : Prop , A /\ B -> B /\ A.

Proof.
intros A B [hA hB].
split.
- apply hB.
- apply hA.
Qed.

Goal True /\ False.
Proof.
apply and_comm.



First-Order Logic: Types, Values, and Quantified Formulas

We now introduce types (e.g. bool, nat) and typed values (e.g.
true, 0, 1).

If P is a predicate of type T → Prop and x is a value of type T ,
then P x is a formula. Also valid for higher arity.

Formula forall x:T, F means that formula F is provable
whichever value of type T is substituted to the free occurrences of
x in F .



Handling Universally-Quantified Formulas

If the goal is a formula ∀x : T , P,
tactic intros a performs the following steps:

1. It adds a new value a of type T in the context.

2. It replaces the goal with the formula P in which all the free
occurrences of x have been replaced by a.

If lemma L proves a formula ∀x : T , F1 → . . .→ Fn → P,
tactic apply L performs the following steps:

1. It searches a value v such that the current goal is P with all
the occurrences of x replaced by v .

2. It creates new goals for all the hypotheses Fi after replacing
all their occurrences of x with v .



Proving Equalities in Goal

Relation eq has type T → T → Prop for any type T .
x = y is syntactic sugar for eq x y.

Tactic reflexivity proves a goal v = v .

Variant: lemma eq_refl proves ∀x : T , x = x ,
so tactic apply eq_refl has the same effect.



Using Equalities in Context

Given a lemma L proving the formula F1 → . . .→ Fn → x = y ,
tactic rewrite L performs the following steps:

1. It substitutes all the occurrences of expression x in the current
goal with expression y .

2. It creates n additional goals F1, . . . ,Fn.

Variants:

I Tactic rewrite <- L replaces all the occurrences of y in the
current goal by x .

I Tactic rewrite L at 1 3 4 replaces some specific
occurrences of x .

I Tactic rewrite L in h replaces all the occurrences of x in
assumption h.



Coq Script

Variable T : Type.

Lemma eq_sym :
forall x y : T, x = y -> y = x.

Proof.
intros x y heq.
rewrite heq.
apply eq_refl.
Qed.



Existential Quantifiers

Formula exists x:T, F means that there exists a value v of type
T such that F is provable when all the free occurrences of x are
substituted by v .

If the goal is ∃x : T , F , tactic exists v replaces it with formula
F in which all the occurrences of x are substituted by v .

If an assumption h proves ∃x : T , F ,
tactic destruct h as [v hv] performs the following steps:

1. It removes h from the context.

2. It introduces a value of type T named v in the context.

3. It introduces a proof named hv of formula F in which all the
free occurrences of x are substituted by v.



Coq Script

Variable T : Type.
Variables P Q : T -> Prop.

Lemma exists_and :
(exists z:T, (P z /\ Q z)) ->
(exists x:T, P x) /\ (exists y:T, P y).

Proof.
intros h.
destruct h as [z hz].
destruct hz as [Pz Qz].
split.
- exists z.

apply Pz.
- exists z.

apply Pz.
Qed.



Some Vernacular Commands

I Check L displays the type of L.
If L is a theorem, it displays its statement.

I Print t displays the value of t.

I SearchAbout n displays all the theorems that mention n.

I SearchPattern F displays all the theorems that prove F.
Note: placeholders _ are allowed in F.

I SearchRewrite t displays all the theorems that prove either
t = _ or _ = t.


