The Coq proof assistant : principles and practice

J.-F. Monin

Université Grenoble Alpes

2016

Lecture 8

Coq

J.-F. Monin

Analyzing

Properties of constructors

Partial functions

development

constructors

Properties of constructors Inversion

Partial functions

A small development

Analyzing constructors

Properties of constructors Inversion

Partial functions

Properties of constructors

Partial functions

development

Analyzing constructors
Properties of constructors
Inversion

Partial functions

Properties of constructors

Coq

J.-F. Monin

Analyzing

Properties of constructors

Partial functions

A small development

Constructors make distinguishable values

Constructors with different names
Tactic discriminate

Same constructor applied to different arguments

Each constructor is injective

Proof: using appropriate projections

See coq file

Automated using tactic injection

```
constructors
```

Inversion

Tartial fullctions

developmen

```
Inductive even : nat -> Prop :=
```

| E0 : even 0

| E2: forall n:nat, even $n \rightarrow \text{even } (S (S n))$.

Problem 1

Given a goal containing an assumption even 1, conclude because such an assumption is inconsistent

Problem 2

Given a goal containing an assumption e: even S (S x), get an assumption even x, because only E2 x can make the type of e

Analyzing constructors

Properties of constructors Inversion

Partial functions

small evelopment

```
Inductive even : nat -> Prop :=
| FO : even 0
```

| EO : even O

| E2: forall n:nat, even $n \rightarrow \text{even } (S (S n))$.

Why this name

The above reasoning looks like a reading of constructors in the opposite way.

Warning

Nothing to do with induction, just case analysis.

But technically more involved than expected

Basically, destruct or case works well when the conclusion contains occurrences of X, if X is the argument of the hypothesis to be exploited even X

Properties of constructors Inversion

Partial functions

A small development

```
Inductive even : nat -> Prop :=
    | E0 : even 0
```

| LU : even U

| E2: forall n:nat, even $n \rightarrow \text{even } (S (S n))$.

By hand

See example in coq file

Automated

Tactic inversion and variants

Properties of constructors

Partial functions

A small development

Analyzing constructors
Properties of constructors
Inversion

Partial functions

Properties of constructors Inversion

Partial functions

A small development

 \dots have to be represented either by total functions, or by inductive predicates.

Example

On colors: see coq file

Properties of constructors Inversion

Partial functions

A small development

Analyzing constructors
Properties of constructors
Inversion

Partial functions

A small development

Coq

J.-F. Monin

Analyzing

Properties of constructors Inversion

Partial functions

development

Finding the min of a list See coq file